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ON SOME INTEGRAL INEQUALITIES OF BLOCK TYPE

BY

B. FLORKIEWICZ (WROCLAW)

In recent papers [2] and [3] the method of derivation of the integral
inequalities of Hardy type, ie., integral inequalities of the form

(1) [s|hlPde < [r|hPdt,
I I

where p>1, I =(a, B), —0o<a<pB<oo,andr,s are some fixed functions,
was presented and the classes of functions h for which the inequalities (1)
hold were examined. In this paper the same method will be used to obtain
and examine certain integral inequalities of Block type, i.e., integral inequal-
ities of the form

2 0; ) h(X)IP < [(rIhl?+s|hlP)dt,

I
where xe€l and r, s, v; are some fixed functions. The inequalities of the
form (2) were considered by Block [1] and Redheffer [4], [S].

Let us denote by AC(I) the class of all real functions defined and
absolutely continuous on the open interval I = (a, ), —o0 <a < B < o0. Let
p be any real number such that p>1 and let re AC(I) and ¢ AC(I) be
such that r >0, ¢ >0 in I and r|¢|? 'sgn@e AC(I). Let us put

3) s=(rlgpl” 'sgng) ¢’ 7 and v=r|¢]" 'sgng- ' "

and denote by H the class of functions he AC(I) satisfying the following
conditions:

)] frlhPdt < oo, [s|h?dt < oo,
I I
5 liminfv |h|P < o0, limsupv|hl?> —o0.
t—a+ t—=p—

Under the above assumptions ([2], Theorem 1 and Lemma 2) the following
is true:
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THeoreM 1. For every function he H the following statements are valid:
(i) The limits in (5) are proper and finite, and

(6) lim v|h?— Lim v|h|” < ((r|AIP+s|h|P)dt.
t—~f— t—a+ 1

(i) If h # 0, then (6) becomes an equality if and only if h = ce with ¢
= const # 0 and the additional conditions

friolPdt < oo, fls|@Pdt <
I T

are satisfied.

Now, enlarging the class of the above functions r and ¢, we derive the
integral inequalities of the form (2).

Let us fix a point xeI and let I, = (a, x), I, =(x, B). Now, let r and ¢
be some given functions such that r>0, ¢ >0 in I, Ul,, re AC(l,),
eeAC(I,), r|¢|P " 'sgnpe AC(l,) for k =1, 2, and such that
W) limsupv > —oo, liminfv < o0,

t—ox-— tox+
where v is defined by (3).
Let v;(x) = limsupv—liminfv denote the jump of v at the point xel. It

t—=x— t—=x+

follows from (7) that v;(x) > —co. If v;(x) = oo, then in the sequel we assume
that

v;(X)|h(x)IP =0 if h(x) =0
and that
v;(x)[h(x)|?P =0 if h(x)#0.

Further, let H denote the class of functions he AC(I) defined as pre-
viously, where s is defined by (3).

THEOREM 2. For every function he H the following statements are valid:

(i) The limits in (5) are proper and finite, and

8) v;(x)|h(x)|"+ lim v|h|P— Lim v|h|® < [(r|AIP+s|h|)dt.
] |

t=p— t—a+

(1) If h # O, then (8) becomes an equality if and only if h = ¢, where ¢
= const # 0 and ¢ AC(]) is such that ¢ # 0 in I and in each of the intervals
I, k =1, 2, we have either ¢ = c, ¢, where ¢, = const # 0, provided that the
conditions

friglPdt <o, [|s|@Pdt <o
Iy Iy

are satisfied, or ¢ =0 on I,.
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Proof. Let he H. Then he AC(I) and by (7) we have

9) limsupv|h? > —o0, liminfv|h? < c0.

$—=x= t—x+

Hence, by (5), the assumptions of Theorem 1 are satisfied in each of the
intervals I, = («, x) and I, = (x, B). Thus the limits in (5) and (9) are proper
and finite, and (6) holds both in I, and I,. Adding both sides of those
inequalities we obtain

(100  lim v|h?P— lim v|h’+ lim v|h|/’— lim v|h|? < j(rllil"+slh|‘”)dt.
1

1—=x- t—=x+ t—-p— t—~a+

By the continuity of h at the point x and from the existence of finite limits
lim v|h|” and lim v|h|? it follows that if H contains a function which is non-

t—ox— t—x+

zero at x, then there exist finite limits lim » and lim v and, moreover, v;(x)

t—ox— t—=x+

< oo. Hence, in that case we have

(11) lim v|h|P— lim v|h|® = v;(x)|h(x)".

t—-x— t—=x+

On the other hand, if all functions in H are zero at x, then v;(x) = oc and

(12) lim v|h{P— lim v|h|" > 0 = v;(x)|h(x)|?.
t—=x-— t—ox+
Indeed, if
lim v|h? # 0,

t—=x—

then, in view of (7),

lim v= 00
t—=x—
must hold, and therefore
lim v|h? > 0.
t—=x-
Similarly we deduce that
lim v|h? <O.
t—-x+

Now (8) follows from (10)«12), which proves (i).

If for some function he H we have an equality in (8), then it follows
from (11) and (12) that an equality in (10) holds; since (6) is valid in every
interval I,, k = 1, 2, we must have an equality in (6). Using Theorem 1 (ii) we
infer that (6) becomes an equality for h# 0 if and only if h=c, ¢ in I,
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where ¢, = const # 0 and ¢ satisfies the additional conditions

frlglPdt <o, [ls|@Pdt <oco.
Iy I
Hence (ii) follows.
Let us denote by H the class of functions he H which satisfy the
additional limit condition
(13) liminfo|h|? < limsupv|h|®.

t—a+ t—p—
The condition (13) is equivalent to

(13) lim v[h? < lim o]

t—oa+t t—~p-

TueoreM 3. For every function he H the inequality

(14) 0; () [h(x)| < [(rIAlP+s[hI?)dt
1

holds. The inequality (14) becomes an equality if and only if h = cp, where ¢
= const and $ is a function satisfying all the conditions of Theorem 2 (ii) and
the following additional condition:

lim v|@|? = lim v|@|*.

t—a+t t—p—

Proof. By virtue of (13’) and Theorem 2 (i), the inequality (14) follows

fron_x_ (8). If both sides of (14) are equal for some non-vanishing function
he H, then by (8) and (13') we have

lim v|h|? = lim v|h|".

t—a+ t—=p—-
Applying Theorem 2 (ii) we get h =cp, where c =const #0 and ¢ is a
function satisfying all the conditions of Theorem 2 (ii). The theorem follows
now easily.

Inequalities of the form (14) are called the inequalities of Block type (see
[5]). They are some generalizations of the inequalities considered by Block
in [1].

Now, we describe the class  in the most frequently occurring cases. Let
q = p/(p—1) > 1 denote the conjugate of p > 1. We assume in the sequel that
s > 0 almost everywhere in I = (a, f) and that the proper limits

imv=v(®) and lim v=0v(p)
t-a+t t—p—

exist. We introduce the following terminology:
o (resp. B) is of the I type if v(a) <O (resp. v(B) = 0);
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a (resp. p) is of the II type if 0 <v(x) < o0 (resp. —o0 <v(f) <0) and
¢ ]
fr¥Pdt <oo (resp. [r"¥Pdt <) for some tel;
a t

a (resp. B) is of the III type if v(x) = co (resp. v(f) = — ) and

t
v()([r~9?dt)* =0(1) for t »a+

8
(resp. v(r)([r~¥?dt)"* =0(1) for t = f—).

We denote by H the class of functions he AC(I) satisfying the conditions
(4), and by H, (resp. H®) the class of functions he H satisfying the condition

(15) liminflhl =0 (resp. liminf|h| = 0).
t—a+ t—=f—
In the cases considered below, (15) is equivalent to
(15) im h=h(a@)=0 (resp. lim h = h(f) = 0).
t—a+ t—p—

THEOREM 4. Let s = 0 almost everywhere in the inter~val I =(a, p).
(i) If both points a and B are of the I type, then H = H.

_ () If the point a is of the II type and the point B is of the I type, then
H o Ho.
_ (ui1) If the point o is of the I1I type and the point B is of the I type, then
H = Ho.

(iv) If the point a is of the I type and the point B is of the Il type, then
H > H°.

(v) If the point a is of the I type and the point B is of the 11l type, then
A =H"

(vi) If both points a and B are of the II or III type, then H = Hy n H°.

Proof. If he AC(I) and

t
frlhPdt <o and [r"9Pdt <o for some tel,
I a

then by Lemma 3 in [2] it follows that a finite limit value h(a) exists. It is
also shown in [2] that if v(a) > 0 and h(x) =0, then the estimation

(16) 0<v(®)h@)? < v(t)(}r"""dt)”“ }rlﬁl’dt

is true in some right-hand neighbourhood of the point a.
We show that if he AC(I), s=0 in I and

s|hPdt <o and v(x) =0,
I
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then liminfo|h|” < 0. Indeed, if there exists a sequence {t,} such that r, €I,
t—~a+

t, »a+ and v(t) <0, then v(r,)|h(t,)]” <0, and therefore
liminfov|h|? < 0.

t—a+
Now, let v > 0 in some right-hand neighbourhood U < (a, x) of the point a.
Let us put w = r|¢|?” ' sgn ¢. In that case s = we'~? in I and it follows from
the condition s > 0 that w > 0 in I. Since, by the assumption, w is absolutely

continuous in U, it is non-decreasing in U and the limit lim w exists. On the
t-a+

other hand, we have v = wep' 7, and since v > 0 in U, we obtain w > 0 in U.
From the definition of w it follows that ¢ >0 in U, and therefore the
function ¢'~” is decreasing in U and the limit

lim ¢! ?>0

t—a+

exists because ¢ > 0. It follows from the condition

v(@) = lim wp! P=0

t—a+
that
lim w=0.
t-a+
Now suppose that
liminfo|h)? > 0.
t—=a+

Then there are a constant ¢ > 0 and a right-hand neighbourhood U, < U of
a such that v|h? >0 in U,. Hence @' P|hP > ow™! in U,. Let acU,,
teU, and a <t. We have

t t t
[s|hPdt = (W' P|hPdt > o (w™ ' wdt = o(Inw(f)—Inw(a))

and as a—a+ we obtain
t
fs|hiPdt =
because w(a) — 0+, which contradicts the condition 'jslhl"dt < 0. Thus
I

liminfo || < 0.

t—=a+

Now, if a is of the I type and he H, then liminfv|h|? < 0, because if v(x)

t—a+
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=0, then it is a result of the above considerations, while if v(a) <0, then
v|h|” < 0 in some neighbourhood of a, and hence
liminfv|h|? < O.
t—a+
If a is of the II type and he H,, then v |h|? > 0 in some neighbourhood
of «, and hence

liminfv|h? = 0,
t—a+
because 0 < v(x) < o0 and liminf|h| = 0.
t—a+

If « is of the II type, B is of the II or III type and he H, then

lim v|h|?>0 and lim v|h/?P <0
t—a+ t—f—

and it follows from (13’) that
lim v|h|? = 0.

t—a+
Since
t
fr~¥?dt < o for some tel and 0 <v(a)< o0,
a

the finite value h(x) exists and h(x) =0, i.e., he H,,.
If a is of the III type and he H,,, then the estimation (16) is true in some
neighbourhood of a, and hence
lim v|h|? = 0.
t—a+
If « is of the III type and he H, then

(r~9Pdt <00 for some tel,

and hence the finite value h(a) exists. By Theorem 2 (i), a finite limit lim v|h|?
t—a+t

exists for heH, and hence h(z) = 0, because v(x) = 0. Thus heH,.
‘ Similar symmetric conclusions are valid if B («) is substituted for a ()
and the class H® for H,.

Basing on these considerations we can easily derive the theorem.

Now, the applications of Theorems 3 and 4 will be given, and the
definite integral inequalities of Block type will be derived by using the
method presented above.

ExampLE 1. Let I =(a, f), —00 €< a < B < o0, and let r > 0 be an arbit-
rary absolutely continuous function on I such that

jr“""dt < 0.
I
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Fix xel. Further, let
Q= 'jr“‘“’dt in (a,x) and ¢= ?r"""dt in (x, f).
a t
In this case s =0 in I and for « < x < we obtain the inequality
(17) [(}r“’/"dt)“”"+(,?r"‘“’dt)""‘] |h(x)|? < ?rllﬂ"dt

which is valid for he Hyn H®. An equality occurs in (17) only for the
function

B '
h=c[r ¥dt(r~9?dt in (a, x)

X a

and
x B
h =er—q“’dt jr_q/pdt in (xs ﬂ)s
a t

where ¢ = const.
If we assume that —o0 <a <fB < oo, r=1 and p =2, then (17) takes
the form

p—a
(x—a)(B—x)
where an equality occurs only for

h=c(f—x)(t—a) in (a, x)

B :
(18) Ih(x)I? < [R2dt, a<x<B,

and
h= c(x—.a)(ﬂ—t) in (x’ ﬁ)’

where ¢ = const (see [1]).
ExampLE 2. Let I =(a, ), —o0 <a <Bf <oo,r=1in I, p=2 and let
xel be an arbitrary fixed point and A >0 an arbitrary fixed constant.
Let us put ¢ = coshA(t—a) in (a, x) and ¢ =coshi(f—t) in (x, f). We
obtain the inequality

AsinhA(f—a)

19) cosh A(x —a)cosh 1 (8 —x)

|h(x))? < }(,;sz h?)dt

which holds for @ < x < f and he H. An equality occurs in (19) only for the
function '

h=ccoshi(f—x)coshi(t—a) in (a, x)
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and
h = ccoshi(x—a)coshA(f—t) in (x, f),

where ¢ = const.

Let ¢ = A 'sinhA(t—a) in (2, x) and ¢ = coshA(f—1t) in (x, f). Then
we have the inequality

AcoshA(f—a)
sinh A(x—a)cosh A(B—x)
which holds for @ < x < § and he H,. An equality occurs in (20) only for the
function

(20)

B
lh(x)1? < [(R*+ A% hY)dt

=§cosh).(ﬂ-—x)sinhl(t—a) in (x, x)

and
c

"=3

sinhA(x—a)coshA(f—t) in (x, B),

where ¢ = const.
Let ¢ =coshA(t—a) in (a, x) and ¢ = A" 'sinhA(B—¢) in (x, ). Then
we obtain the inequality
Acoshi(f—a)
cosh A(x—a)sinh A(f — x)
which holds for « < x < 8 and he H°. An equality occurs in (21) only for the
function

(3))

[}
lh(x) < [(F*+ A% h?)dt

h= %sinh).(ﬂ—x)coshl(t—a) in (a, x)
and

h= —Ecoshl(x—a)sinhl(ﬂ—t) in (x, f),

where ¢ = const.

Let ¢ =4 'sinhA(t—a) in (2, x) and ¢ = A" 'sinhA(B—1t) in (x, B).
Then the inequality

AsinhA(f—a)
sinh A(x —a)sinh A (8 —x)
is valid for « <x < B and he Hyn H°. An equality occurs in (22) only for
the function

. B
(22) lh(x)|* < [(h*+A% h?)dt

h= %sinh).(ﬂ—x)sinh).(t—a) in (2, x)
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and
h= %sinh}.(x—a)sinh).(ﬂ—t) in (x, B),

where ¢ = const.

The inequalities (19), (20) and (22) are discussed in [1].

ExampLE 3. Let I =(0, B), 0 <f < o0, p=2 and r =t° in I, where a is
an arbitrary constant such that a # 1. Let x be an arbitrary point of I.
Further, let 4 be an arbitrary fixed constant such that A > max(0, 1—a).

Let f=oco and let us put ¢ =t* in (0, x) and ¢ =t'"°"* in (x, ).
Then we obtain the inequality

(23 QA+a—-1)x*"' ()2 < [("A*+A(A+a-1)1°" 2 h*)dt

0

for 0 <x < oo. If a <1, then (23) is valid for he Hy; if a > 1, then (23) is
valid for he H®. An equality in (23) holds only for the function h
=cx!7* *¢* in (0, x> and h=cx*t'"*"* in (x, o), where ¢ = const.

Let g <o and let us put

¢=r"in (0,x) and ¢=(A+a=)(/B}+/p' """ in (x, p).
Then we have the inequality
(2A+a—-1)x~!
1+(A+a—1)(x/p)***e1

which holds for 0 < x < § and heH:and if a > 1, then H = H; if a < 1, then
H = H,. An equality in (24) occurs only for the function

h=cl(A+a—D(x/By+A(x/B)' " *1¢*  in (0, x)

(24)

B
lh(x)> < [(*h*+A(A+a—1)t""2h?)dt
0

and

h=cx*[(A+a=) /B +A@/B)'~*"*1 in (x, B),

where ¢ = const.
The inequality (24) for a >0, A =1 and B =1 is considered in [1].
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