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Let R" denote Euclidean n-space with inner product (xy, ..., X} (¥, ---, V)

=x'y = ) x;y;- The unit (n—1)-sphere "~ ! given by x-x =||x||*> = 1 is the
i=1

simplest {most symmetric) compact hypersurface in R", and has been the
object of innumerable investigations. Spherical geometry is a subject in itself,
historically motivated, of course, by the [act that the 2-sphere is an excellent
model of the earth’s surface; and the circle is the most intensively studied of
all geometric objects! In this survey we will consider not single circles and
spheres but smooth families of such; they arise naturally, for example, in
geometric optics. It is, perhaps, inttially surprising that families of such
simple geometric objects can give rise to interesting and intricate geometry;
we hope to convince the reader of this below. In what follows we shail
confine our attention largely to the especially relevant cases of famihes of
circles in the plane and spheres in Euclidean 3-space; most of the results do,
however, have higher dimensional analogues.

1. Wavefronts (spheres of fixed radius)

Let M < R? be a simple closed plane curve, parametrised by arc-length by
the mapping x: S' — R?, s+ x(s), where S' is a circle. We can view M as an
initial wavefront in the homogeneous medium R?; we shall suppose that
waves propogate with unit speed in this medium. By Huyghens’ principle
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subsequent wavefronts are obtained as the envelope of families of circles of
fixed radius (equal to the elapsed time) centred on M.
Delining
F: S'xR*— R by F(s, a) =||x(s)—alj?

we see that the circle centred at x(s) of radius r is given by F(s, a) = r?, and
the required envelope is obtained, in the traditional way, by eliminating s
from the equations

(h F(s, a)—rzz—aa;(F(s, a)—r?)=0.

Classically the envelope is thought of as being obtained as the locus of its
characteristic points, these points being the intersection of two “consecutive
circles”. Since two circles intersect in 0, 1 or 2 points any envelope of circles
has 0, 1 or 2 characteristic points for each parameter value (except of course
in the very degenerate case when the entire circle consists of characteristic
points). In the example considered here there are always two characteristic
points on each circle; the wavefront can, in fact, be obtained by laying fixed
distances r ofl along each normal in both directions. One (characteristic!)
property of envelopes of circles we shall need later is that at a point where
the envelope 1s smooth, it is tangent to the corresponding circle. In the case
of wavefronts this means that distinct wavelronts have parallel tangents at
corresponding points; in fact they have common normals of course.

Generally speaking wavefronts have singularities at the points of
regression of the envelope. These occur at points of the envelope where, in
addition to the previous two equations (1) vanishing, we have ¢*/ds*(F (s, a)
—r?) = 0. To understand the nature of these singularities we naturally have
to use some singularity theory. so we now introduce the family of functions
which are of principal interest to us, and do so in some generality. One of
the first authors to use these in differential geometry was Porteous in [22].
Let M™ c R” be a smooth submanifold of Euclidean n-space of dimension m
and consider the family of distance squared functions

F: MxR*— R defined by F(x, a)=|x—al?

Below we shall require, at various stages, consequences ol the following
fundamental result of E. Looijenga.

THeorReM. For generic M — R" the family F is a generic family of
functions on M.

We shall not be more specific concerning the term generic family of
functions; the reader is referred to [20] and [23] for precise details. However
for n < 5 the theorem implies. in particular, that this family of functions is
smoothly stable, in the natural sense, and it is topologically stable for any
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value of n. The Theorem is, in fact, a transversality result, the proof of which
is not too difficult.

This theorem is useful for studying wavelronts for the following reason.
Staying with the general case for the moment, the wavefront propagating
from an initial “disturbance” M after time r remains the envelope of spheres
of radius r centred on M and is obtained by eliminating the x variables from
the equations

cF oF
(2) F—r2=“——='_‘=————=0
0x, 0X
using x,, ..., X, variables on M. (Of course these equations can also be

interpreted as determining the centres of spheres of radius r tangent to M —
which is one way of seeing that the wavefronts can be obtained by laying off
fixed distances down normals to M.) Fixing our attention at some point
(x0, ag)e M x R* with ||xo—ayl|* =r?, we see that F yields a map germ
F: (M™xR", (xo, ag)) — (R, r?) which we can consider as an unfolding of f
= F(—, ap): (M™, xo) — (R, r?). Looijenga’s result implies that for a fixed r
and generic M the map F is, in fact, a versal unfolding of the germ f when
n < 6. The equations (2) above then define the discriminant set of this
unfolding, that is the set of parameter values a with F(—, a) having a critical
point with critical value the base value, in this case rZ. It is a fundamental
but straightforward fact that the discriminant of such a versal unfolding
depends (up to diffefomorphism) only on f and the dimension n of the
unfolding space.

Now in generic n-parameter families of functions for n < 5 only simple
singularities of functions as defined by Arnold occur ([1]), in fact only those
labelled A4, ..., Ag, Ds, D5, D4, E¢. The consequence is that if the
dimension of the ambient space is at most S we have a finite number of local
models for parallels. In particular returning to the case of a plane curve we
find that if F = 0F/ds =0, 0* F/0s*> # 0 at some point (s, ao) €S' x R? then
the germ f has an A, singularity at s; and the wavefront is locally smooth.
On the other hand if the second derivative of F does vanish but the third
does not the germ f has an A, singularity and the envelope, near the
corresponding point of regression, is locally diffeomorphic to an ordinary
cusp. A simple computation shows that this occurs precisely when a is the
centre of curvature of M at x(s) but this later point is not a vertex of M. For
M a curve oi surface in R® the generic local singularities occurring for the f’s
are A;, A, and A;, and the wavefront is correspondingly locally smooth, or
has a cuspidal edge or a swallowtail.

Before proceeding two remarks are in order. First, generaily wavefronts
will have self intersections. For example in the plane they will often have
ordinary double points, but these self intersections can be dealt with very
easily, they are geometrically relatively uninteresting, and we shall largely
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ignore them. Secondly we note that generally current understanding of
function germs other than those which are simple is very poor, but thankfully
only simple singularities occur when considering generic families of circles in
R? and spheres in R’.

The discussion of parallels above is, of course, all for a given fixed value
of r. It 1s natural to enquire how, from an initial generic M, the wavefronts
change with time. Certainly the results described above will not suffice; for
example generally curves do have vertices, and we have, as yet, no
description of the evolution of the wavefronts through the corresponding
centres of curvature. To proceed we start by considering a slightly dlfTerent
family of lunctions

F: MxR"xR" — R defined by F(x,a,r =|x—al?—r.

The result of Looijenga proves that for any (x4, aqg, ro)e M x R* x R* with
lix2—ay||? = r2 the family F yields a versal unfolding of the germ f =
F(—. ag, ro): (M, xo) =(R, 0). This means that the family of wavefronts, X, or
“big wavefront” as we sometimes call it, parametrised by r and obtained by
eliminating x from the equations £ = dF/dx, = ... = 6F/éx,, = 0, also has
for n < § a finite number of local models, these being the discriminant sets of
simple singularities of low codimension. We now wish to investigate how this
family changes with time so we consider the projection of the set 2 to the r
parameter. In [2] Arnold classified generic functions on discriminants of
simple singularities, precisely so he could describe the evolution of generic
wavcfronts. In the case of A,( singularities his results are as follows.

An A, singularity f: (R™, 0) — (R, 0) 1s one which is right equivalent to a
germ of the form

m— 1
g(x)zg(xla ey X)) = 2 ixizixl:vi+la
i= 1

and the latter has a versa! unfolding

G(xl-i"'! Xms ala"'aan) G x a) Z +‘x +x“'1+ Z ak J

for any n > k. The discriminant & is obtained by eliminating the x; terms
from the equations G = 0G/dx, = ... = 0G/éx, =0 (clearly the x; terms,
1 <i<m—1, are irrelevant; in particular this discriminant does not depend
on m). We wish to classily functions on this discriminant: we shall say that
two germs a,, a,: (R", 0) = (R, 0) are #(<) equivalent if there is a germ of a
diffeomorphism ¢: (R", 0) — (R", 0), taking < to itself, with o, 0¢ = a,. When
n >k, so that the unfolding G has (n—k) redundant variables, the
discriminant & or more precisely the pair (R”, &) 1s locally diffeomorphic to
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the product (R*, 7;) xR*~* where <, is the discriminant of a miniversal
unfolding. ‘
For A, singularities Arnold’s result can be stated as follows.

THeorREM ([2]). (i) When n =k, that is G is a miniversal unfolding of g,
any germ a: (R*, 0) = (R, 0) with dx/da,(0) # 0 is R(F) equivalent to one of
the germs ta,.

(i) When n >k any germ a: (R", 0) —>(R, 0) with dx/0a;(0) # O for some
k<j<nis #(%) equivalent to the projection aa,. If 0a/8a;(0) =0 for
k <j<n, dufda,(0) #0 and the restriction of & to 0 xR has a Morse

n
singularity at O then a is R(<) equivalent to the germ +a,+ Z +a?.
j=k+1

Generic functions on discriminant sets of A, singularities are modelled,
then, on the germs described in (i) and (ii) above. In the first case of (i) we
shall speak of a trivial transition (nothing essentially changes), in the second
case we shall speak of a Morse transition.

Some examples should make this clearer. For an A, singularity the
discriminant of a universal unfolding is an ordinary cusp and the condition
ox/da, (0) # 0 simply means that at O the fibre of the map « is transverse to the
cuspidal tangent. For a versal unfolding with three unfolding variables the
discriminant is now locally a product of this cusp with an interval. The three
possibilities for generic functions here are illustrated in the diagram (Fig. 1).

As another example, for the discriminant of a miniversal unfolding of an
4, singularity, the swallowtail, the condition dx/da, (0) # 0 means again that at

ala,,a;,0,)= 0y, trivial projection

Fig. 1a



90 J. W. BRUCE AND P. J. GIBLIN

A b)

~__
N

>
> <

&

Py

«lay.ay,a) =a,-0?, beaks transition

A c)

. ;3’

¢ la,,a,a) =0y +a?, lips transition

Fig. | b, ¢

0 the fibre of a is transverse to the cuspidal tangent or equivalently the
tangent to the curve of self intersection at 0. The corresponding transition is
pictured in Figure 2. Arnold’s results for the remaining simple singularities
are of a similar nature (see [2] and also [6] for alternative proofs).

Let us now return to our wavefronts. Recall that we have a big family of
wavefronts 2 and a projection n: X — R to the r co-ordinate. We know that
2 18 locally diffeomorphic to the discriminant set of a versal unfolding of a
simple singularity for n < 5, and for a generic choice of initial wavefront M
we except the projection n to be generic, that is modelled by one of the
transitions described in Arnold’s theorem. Unfortunately proving this fact is
not at all easy. The basic problem is that the discriminants are local models
for the big wavefront only up to diffecomorphism. So for example for an A4,
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Fig. 2. Swallowtail transition

transition in R® we clearly need 1o locate the cuspidal edge and cuspidal
tangents of the wavefronts. Techniques for essentially doing this are
described in [7] and as an application it is shown that wavefront evolution
in the plane and Euclidean 3-space is indeed described locally by Arnold’s
models. The proof of these facts requires fairly detailed and specific
calculations: this is apparently a common feature of the application of
Arnold’s results. Moreover some of the transitions which one might expect
(simply from a count of the conditions imposed by these transitions) do not
occur. So for example for a generic initial wavefront M in the plane the only
transitions are of swallowtail type, which occur at the centres of curvature of
vertices, while beaks and lips do not occur. (It is clear that lips transition
cannot occur for the wavefront remains two connected curves throughout its
evolution.) This feature whereby the geometry rules out certain generic
transitions is one we shall meet again. Finally we mention that the self
intersection of evolving wavefronts can be described by very much the same
methods as used by Arnold; the results are in [8].

2. Spheres of varying radii

Returning again to the plane one may ask what one can say about envelopes
of families of circles of varying radii centred on some curve M = R?. In one
sense, of course, very little, for by varying the radius, which we may now
take to be a (positive) function r(s) of arc-length, we can obtain almost any
curve as the corresponding envelope. In this case we consider the family of
functions

F(s, @) = ||lx(s)—dll* = r?(s).
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The function F (s, a) vanishes precisely on the circle centred at x(s) of radius
r(s) and the envelope is obtained, as before, by eliminating s from the
equations F = 0F/ds = 0. Now
oF
Cs

=2(x(s)—a)  T(s)—2r(s)r'(s),

where T'(s) is the unit tangent vector to our curve at x(s} and ' denotes
derivatives with respect to s. Writing the characteristic points corresponding
to the value s of our parameter as @ = x(s)+aT(s)+ SN (s), where N(s) is the
standard normal at x(s) for our oriented curve (N = T turned anticlock wise
through a right angle) we find that the two conditions F = 0F/ds = 0 imply
(respectively) a*+ B% =r%(s) and a = —r(s)r'(s). Thus, as one expects, the
characteristics of the envelope consist of two, one or no points and he on a
line parallel to the normal to the curve at the corresponding value of s.
Moreover we clearly have two, one or no points according as 1 —(r)? is > 0,
=0 or is <0. (The condition (r)> > 1 means that consecutive circles are
nested.) The same techniques as for wavefronts can be applied to determine
the local forms for these envelopes. Again they are generically modelled by
discrinminants of versal unfoldings of A, and A, singulanties (envelopes of
hypersurfaces are always modelled by discriminants as was observed in [9];
see also [11]). So far however this appears to be little more than an idle
generalization — are these envelopes of any real interest?

As we remarked above the resulting envelopes are quite general, indeed
we shall see in Section 3 that essentially any plane curve can arise as such an
envelope. If we view this envelope as an outline of an object we can consider
the changes in the envelope if we fix our initial curve x(s) and vary r(s) with
time or fix the function r(s) and allow x(s) to vary with time — all the while
preserving arc-length along the curve. We can view the first situation as
growth of our object from an initial spine x(s), while the second can be
thought of as motion of the object determined by an isotopy of that spine.
One can then prove the following ([12]).

THEOREM. (1) For any plane curve x(s) and generic family of radius
Sfunctions r(s, t) the only transitions possible in the envelope are lips, beaks and
swallowtails (and of course trivial transitions too).

(i) For any generic isotopy of our curve x(s, t) and any family of radius
functions r(s) for which (r'(s))’—1 and r"(s) do not vanish simultaneously only
swallowtail (and trivial) transitions occur.

Some further remarks are in order here. First each circle in our envelope
bounds a disk and we can consider the union of these disks as a physical
object. However, only part of the envelope appears as the frontier of the
union; in fact in the case of A, transitions none of the envelope is on the
frontier. These are “internal” transitions and are not visible in the overall
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shape of the object. The swallowtail, on the other hand, corresponds to the
birth or death of a corner. See Figure 3. Secondly the conditions (r'(s))*—1
=r"(s) =0 need to be avoided in (ii) since they imply a nontrivial A4,
transition which would persist with time ¢, and so be non-generic. Intuitively
these conditions mean that “consecutive” circles are tangent to third order.

- .
e -

\/ -
L ]

:

Fig. 3. Emergence of a corner

3. Symmetry sets

We have seen how to associate with a smooth curve in the plane, and a
family of radius functions, a new curve which is the envelope of the family.
Here we consider the reverse process of starting with a curve — let us say a
simple closed smooth curve M in R? and constructing a second curve with
the property that an envelope of circles on this second curve yields M. It
follows from the tangency property of envelopes mentioned in Section 1 that
this is the locus of centres of circles which touch the curve (at least) twice
that is bitangent to M. To be precise, for a smooth embedding x: S' — R? we
define the symmetry set of M = x(S') to be the set of points a in R for
which either

(1) there exist s,, s,e8' (s, # 5;) with F, singular at s, and s,, and
Fa(sl) = Fa(SZ) or

(2) there exists se S! with F, having a singularity of type 4, for k > 3
at s.

Thus (1) says that a circle, centre g, touches M at x(s;) and x(s,). Also
(2) allows the points of contact to coincide provided the contact is 4-point at
least, and makes the symmetry set closed.

Notice that the definition allows circles such as those in Figure 4; more
restrictive definitions have been considered by other authors. For example,
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Fig. 4. Circles bitangent 1o a curve

the symmetric axis transform, or sym-ax was introduced by Blum [4] and
used in theoretical biology and pattern recognition ([5]) to reduce a 2-
dimensional shape to a “skeleton” representing its local symmetries. This
allows only circles having interior contact at both points (C, in Fig. 4). The
central set ([21]) allows only circles for which the radius i1s equal to the
minimum distance from the centre to the curve (C, and C, in Fig. 4).

We use an extended version of the A, notation to describe the multi-
contact of circles with curves. Thus A{ = 4, A, stands for ordinary (2-point)
contact at two points, 4; A, for ordinary contact at one point and osculating
(3-point) contact at another, and so on. It is understood that collections of
singularities denoted in this way are at the same level, that is F, has the same
value at each of them so that it is one circle which touches the curve in
various places. It is this which makes multigerms more interesting here than
for discriminants.

Of course the idea can be generalized to allow M to be any smooth m-
manifold in R": we take the centres of (n— 1)-spheres touching M twice, or
having at least A, contact at some point of M. The locus of centres is a
union of manifolds of dimension < rn—1, and generically there will be an
(n— 1)-dimensional stratum. (An example where this fails is an ordinary
circular cylinder in R?) The cases m =1, n=2or 3, and m =2, n = 3 were
studied in [14] and the theory of multi-versal unfoldings was used to obtain
local normal lorms for all the generically occurring singularity types. For
curves in R* there are only four, illustrated in Figure 5. For surfaces in R*
there are |1 types ([14, Fig. 6]).

One interest in the symmetry set i1s that its discrete smooth invariants
provide a method of comparing shapes (closed curves [or example) which is
halfway between the (uselessly coarse) notion of dillfeomorphism and the
standard (uselessly fine) differential geometric invariants of the shapes.(!)

The idea is to regard the symmetry set as pari of the full bifurcation set
A (F) of F, that is the set of points ae R" for which either
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A

Fig. 5. Local forms for symmetry sets in the plane

(1) F, is singular at two distinct points of M where F, has the same
value or

(2) F, has a degenerate singularity at some point of M.

The points (2) form the A, set, or the bifurcation set of F, or the focal
set or caustic of M, so that

full bifurcation set = symmetry set U {ocal set.

There is a local uniqueness theorem for full bifuraction sets of versally
unfolded germ just as there is for discriminants, where versal here means as a
family of potential function [11, Chap. 6]. Moreover the same is true of
multi-germ unfoldings. That is, given a coilection of simple singularities there
is a multi-versal unfolding from which the full bifuraction set is determined;
furthermore any two such unfoldings are isomorphic and the full bifuraction
sets are locally diffeomorphic. (See [14, Appendix].) As usual, the significance
of simplicity is that the type of a multigerm singularity (with factors A4,, D,
or E,) determines it up to right-equivalence: there are no moduli present
which would result in an infinite number of local models of the full
bifurcation set of a given collection of singularity types. For details see [14];
here is an example where there is only one “state” variabie, which we can
always assume with A; singularities (cf. Section 1 above}.

ExampLE. Singularity type A, A;.
Let F: (R, |0, 1}) = R be defined by the normal form

f(s;) =52, s, close to 0,

f(1+s5;) =53, s; close to 0.
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We can also write this in the more convenient form
fi(s)=5s%  fr(s) =s*, s close to O.

As an example of a multiversal unloiding we now have (using the same
conventions)

Fy(s, ay, a3, a3) = s* +a,
Fy(s, ay, ay, a3) = s* +s*a, +sa, —a,.
We now want to {ind the set
B(F)=la: 0F/0s =0 at (s, a) and (s, a),
and F(s, a) = F(s5', a) for some s, §';

or 0F/ds = ¢*F/ds*> =0 at (s, a) for some s}.
Note that s and s’ can both be singular points for F,, or one for F, and one
for F,, for it is possible to have two singularities at the same level near the

Fig. 6. The A, A; full bilurcation set
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A; singularity. In fact this happens precisely along the line a, =0, a;, <0
and with s+s = 0. Thus the set #(F) is

'a: a, =0, a, <0 or (s*+s%a,+sa, = 2ay, 4s*+2sa,+a, =0

for some s) or (4s®+2sa, +a, = 6s*+a, = 0 for some s)!

This is the union of a hall-plane, a swallowtail and a cusp edge (Fig. 6), the
cusp edge being the A, set which corresponds to the focal set when F is the
family of distance-squared functions on a surface in R°.

It is clear from the local normal forms in the plane (Fig. 5) that the
symmetry set of a generic curve M is not in general a smooth curve: it has
cusps and endpoints as well as triple crossings {(and of course double
crossings, but these correspond to two circles of different radius, each tangent
to M in two points). Taking the smooth part of the symmetry set we can in
fact reconstruct most of M from the envelope of circles which are bitangent
to M; indeed M is the closure of the envelope [14, § 3.5]). Thus M is
determined by its symmetry set and by the radius function on each smooth
part of the symmetry set. The same applies to curves and surfaces in R*, and
the proof depends on the following observation. Let poe M < R” where M is
compact; then there is an (n— 1)-sphere or hyperplane in R" touching M at
po and at another point pe M, p # p,. Presumably this is true for compact
M of any codimension in any R", but we could not prove it,

There is a variant of the symmetry set for curves that is widely used in
pattern and shape recognition ([5]). Instead of taking the centre of the
bitangent circle, we can take the midpoint of the chord of contact, giving
what we have called the midpoint locus, but which appears in the above cited
papers as the smoothed local symmetry. Figure 7 shows the symmetry set and
midpoint locus for a cubic oval. Note that the latter ends at the vertices of
the oval and does have the appearance of a “spine” around which the oval is
built. Unlortunately there does not seem to be any way of regarding the

Fig. 7. Symmetry set left and midpoint locus right for a cubic oval

7 - Banach Cenpter t. 20
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midpoint locus as a discriminant or bifurcation set! For plane curves it is
generally smooth, as one can show by elementary arguments ([19]), apart
from endpoints and of course self-intersections. It can also be shown that a

A

AjA,

Az

AA,

N
A, = ~ P -~

Fig. 8. All the generic transitions on l-parameter families of symmetry sets in the plane
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generic curve M is determined by its midpoint locus and the radius function,
for example by first reconstructing the symmetry set from these data.

Finally in this section we consider the changes which occur in the
symmetry set of a curve M in R*> when M moves in a gereric 1-parameter
family. As for wavefronts, we find these changes by means of a “big full
bifurcation set” and generic function on this set. For 1-parameter families of
curves in R® there are 3 “control variables” (unfolding parameters) and the
big full bifuraction sets are 9 of the 11 which arise for surfaces in R?,
corresponding to singularity types A%, 4, A,, A}, As, A}, A2 A,, A, A;, A3
and A, (the remaining two types, D and D;, cannot occur with only one
state variable). Generic functions on these sets are found by the method of
[10], and the details are in [12]. For a given singularity type the family of
sections of the big full bifurcation set corresponding to one of the generic
functions may not now be well-defined up to local difffomorphism but will
be up to stratified local homeomorphism. This is enough to ensure that, in the
pictures of transitions (Fig. 8), smooth pieces, cusps and crossings are
correctly represented. (Indeed, for all the sections except the “central” one,
passing through the most degenerate singularity, we believe the pictures to be
in fact correct to diffeomorphism.) It is particularly interesting that the
geometrical constraints of the symmetry set situation, where we work with
the family of distance-squared functions, do not allow the occurrence of all
the possible transitions on an arbitrary full bifurcation set in R?. It would be
interesting to know of other natural situations where the “missing” examples
do occur. One such example is shown in Figure 9; of course the D and D,
do not occur for the reason given above.

VY AL

Fig. 9. A transition that does occur on planar symmetry sets

4. Caustics

In Section 3 we considered the full bifurcation set of M™ — R" and noted that
it contained the focal set or caustic consisting of points ac R at which the
distance-squared function F,: M — R has a degenerate singularity. It is of
course possible to make a separate study of this set, and its evolution for a
1-parameter family of manifolds. The reason for the name “caustic” is that
the normals to M (think of M as a source of radiation) focus on the caustic,
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Fig. 10. Normals to a parabola focusing on the evolute

or burning set; see Figure 10 for the normals to a parabola. We shall assume
M is a hypersurface (m = n—1) in what follows. It is clear that the singular
points of wavefronts will all lie on the caustic, for F, has a degenerate
singularity just when the corresponding point of the discriminant of F is
singular. In fact as the wavefronts evolve from M their singularities trace out
precisely the caustic [15, § 1].

Because a caustic is a bifurcation set and not a discriminant, the
evolution of caustics (as M now changes in a 1-parameter family) presents
more difficulties than the evolution of wavefronts (for a fixed M), except in
the case of curves, where the single state variable makes the discriminant of
an A, singularity coincide with the bifurcation set of an A4, ., singularity. For
curves the only generic transition is the swallowtail transition. Arnold and
Zakalyukin [2], [3], [24] have determined the transitions for caustics of 1-
parameter families of surfaces in R?; see also [18]. It is necessary to find
diffeomorphisms which preserve a bifurcation set, which is done via the
construction of vector fields tangent to the smooth strata of the bifurcation
set.

Finally we mention the special case of caustics by reflexion. Here we
regard M as a mirror (we take M to be convex) and consider a point
“source” L, incident rays from L being reflected from M (Fig. 11). The
focusing curve of the reflected rays is the caustic by reflexion of M relative to
L. It can in fact be regarded as the caustic (focal set) of an associated
manifold called the orthotomic of M relative to L. A study of caustics by
reflexion has been made in a series of papers; see for example [16], [17].
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Orthotomic

Mirror

Reflected ray

Fig. 11

A natural 2-parameter family of caustics by reflexion arises from a fixed
curve M in R? and all possible positions for L in R?. This has been studied
in [13] and the transitions (swallowtail, butterfly) found for a generic M.

Returning to the orthotomic we note that this too can be obtained as an
envelope of a family of circles! Namely the circles centred on M passing
through L. Moreover this orthotomic is of independent interest, since it can
be viewed as an affine dual of M (see [11, § 5.32], [9]). Thus when M is not
convex the orthotomic will have cusps and double points corresponding to
inflexions and bitangents of M. Families of circles (or spheres if M is a
surface in R?) can consequently be used to study the contact of a curve or
surface with its tangent lines or planes. They do indeed arise in many
different situations!
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