TANGENT CONES AND LIPSCHITZ STRATIFICATIONS

TADEUSZ MOSTOWSKI

Institute of Mathematics, Warsaw University,
Warsaw, Poland

1. Introduction and statement of the results

This paper is closely related to [1].

In [3] B. Teissier gave an algebraic characterisation of Whitney's conditions. It would be interesting to have also an algebraic characterisation of stratifications satisfying the estimates of Proposition 1.1 in [1].

We shall do here the first step in this direction, i.e. for a given (germ at 0 of an) analytic set $X \subset \mathbb{C}^n$ we shall give an algebraic description of all analytic sets Y such that, for some constant C,

(*)
$$|P_{q_1} - P_{q_2}| \le C |q_1 - q_2| / \text{dist}(\{q_1, q_2\}, Y)$$

for all $q_1, q_2 \in X_{reg}$, where $P_q: T_q C^n \to T_q X$ is the orthogonal projection. It relates the inequality (*) to singular parts of tangent cones to X at points of X_{sing} .

To get an idea of how our characterisation looks like, consider for a moment a hypersurface X given by one equation F=0, F without multiple factors. Let $p \in X_{\text{sing}}$; we have the notion of the tangent cone $C_p(X) \subset T_p C^n$ to X at p ([4]). It is given by $G_p(\xi) = 0$, where G_p is the homogeneous part of $F(p+\xi)$ and $\xi = (\xi_1, \ldots, \xi_n)$. Assume that G_p has no multiple factors for all p. Let $C'_p(X)$ be the singular part of $C_p(X)$. Then, as we shall prove, a necessary condition for Y to satisfy (*) is

(1)
$$C'_p(X) \subset C_p(Y)$$
 for all $p \in X_{\text{sing}}$,

and this is the only condition for tangent cones to Y.

To treat the general case we need a definition, closely related to Zariski's equisingularity.

Consider the space C^n with a distinguished hyperplane H, given by $\{x_1 = 0\}$. We shall say that a linear projection $\pi: C^n \to C^d$ (where C^d is given by $x_{d+1} = 0, \ldots, x_n = 0$) is parallel to H if its kernel is spanned by vectors in H.

Let $X \subset C^n$ be a hypersurface, given by a reduced equation F = 0, such that dim $X \cap H < n-1$. A point $p \in X \cap H$ will be called a Z-point of X if, for a generic projection π : $C^n \to C^{n-1}$ parallel to H, the discriminant of F with respect to π is $\neq 0$ for all $x_1 \neq 0$, in a neighbourhood of $\pi(p)$. (The kernel of any projection π , parallel to H, contains a unique vector of the form $a = (0, a_2, \ldots, a_{n-1}, 1)$; the space of all such projections can be thus identified with C^{n-2} and genericity means "outside of an algebraic set". If a projection π induces a finite map $X \to C^{n-1}$ and we choose the x_n -axis so that $\pi(x_1, \ldots, x_n) = (x_1, \ldots, x_{n-1})$, then F is equivalent, in a neighbourhood of p, to a distinguished polynomial with respect to x_n ; the discriminant of this polynomial we call the discriminant of F with respect to π).

A point in $X \cap H$ which is not a Z-point will be called an NZ-point; thus we defined two subsets of $X \cap H$: Z(X) and NZ(X).

Let $p \in Z(X)$; we choose the x_n -axis to be the kernel of the generic projection π . Then X can be described in a neighbourhood of p in terms of Puiseux series:

$$x_n = p_n + \varphi_\alpha(x_1^{1/r}, x_2, ..., x_{n-1}), \quad \alpha = 1, ..., k,$$

where p_n is the x_n -th coordinate of p and the analytic functions $\varphi_{\alpha}(t, x_2, ..., x_{n-1})$ satisfy, for every r-th root of unity ε ,

(2)
$$\varphi_{\alpha}(t, x_{2}, ..., x_{n-1}) - \varphi_{\beta}(\varepsilon t, x_{2}, ..., x_{n-1})$$

is either identically 0 or \neq 0 for all $x_1 \neq 0$.

Now suppose that $X \subset \mathbb{C}^n$ is of pure dimension d and $\dim X \cap H < d$. A point $p \in X \cap H$ will be called a Z-point of X if for a generic projection π : $\mathbb{C}^n \to \mathbb{C}^{d+1}$, parallel to H, the point $\pi(p)$ is a Z-point of the hypersurface $\pi(X)$; the distinguished hyperplane of \mathbb{C}^{d+1} is of course $\{x_1 = 0\}$.

It is easy to prove that p is a Z-point of X if and only if for generic axes x_{d+1}, \ldots, x_n in H the coordinates of points of X in a neighbourhood of p satisfy equations of the form

(3)
$$x_i = \psi_{i,\alpha}(x_1^{1/r}, x_2, ..., x_d), \quad \alpha = 1, ..., \alpha_i, i = d+1, ..., n,$$

where, for every i, the analytic functions $\varphi_a(t, x_2, ..., x_d) = \psi_{i,a}(t, x_2, ..., x_d)$ satisfy (2).

Now we return to our problem. Let $X \subset C^n$ be of pure dimension d and $p \in X$. Let $M \to C^n$ be the σ -process centered at p and M_0 its exceptional fiber. We cover M by open sets M_1, \ldots, M_n such that $(M_i, M_0 \cap M_i) \approx (C^n, \{x_1 = 0\})$. Let \tilde{X}_p, \tilde{Y}_p be the strict transforms of X and Y; put

$$NZ(\tilde{X}_p) = \bigcup_i NZ(\tilde{X}_p \cap M_i).$$

Then a necessary condition for Y to satisfy (*) is

$$(4) NZ(\tilde{X}_p) \subset \tilde{Y}_p \cap M_0 \text{for all } p \in X_{\text{sing}}.$$

This is a condition for the tangent cones $C_p(Y)$, for $\tilde{Y}_p \cap M_0$ can be identified with $C_p(Y)$ in the following way. $M_0 \approx CP^{n-1}$, so $\tilde{Y}_p \cap M_0$ is a projective variety given, say, by homogenous equations $G_i(\xi) = 0$. These equations define also a subset of C^n : $\{p+\xi: G_i(\xi)=0\}$; this set is $C_p(Y)$.

It is easy to check that (4) generalises (1); under the assumptions of (1) $NZ(\tilde{X}_p)$ is identified with $C_p(X)$ as $\tilde{Y}_p \cap M_0$ is identified with $C_p(Y)$.

Now $C_p(Y)$ can be considered as the "first non-trivial jet" of Y at p; this suggests that (4) should be considered as the first of a sequence of conditions for Y, of the same nature.

We need some notation. C^n with subscripts C_0^n , C_1^n , ... will all be copies of C^n with the distinguished hyperplanes H_0 , H_1 , ..., given by $x_1 = 0$.

For every $i, 1 \le i \le n$, and $p \in \mathbb{C}^n$ we put

$$\sigma_p^i \colon C_0^n \to C^n, \quad \sigma_p^i(x_1, \ldots, x_n) = p + (x_1 x_i, \ldots, x_{i-1} x_i, x_i, x_i x_{i+1}, \ldots, x_i x_n)$$

 $(\sigma$ -process). For every $a \in N$ let

$$\psi^a$$
: $C_1^n \to C_0^n$, $\psi^a(x_1, \ldots, x_n) = (x_1^a, x_2, \ldots, x_n)$.

For $p \in C_i^n$ $(j \ge 1)$ let σ_p be again the σ -process

$$C_{j+1}^n \ni (x_1, \ldots, x_n) \mapsto p + (x_1, x_1 x_2, \ldots, x_1 x_n) \in C_j^n$$

For an equidimensional $X \subset \mathbb{C}^n$ we put

$$X_0^i(p) = \text{strict transform of } X \text{ under } \sigma_p^i,$$

$$X_0^{\wedge i}(p) = NZ(X_0^i(p)) \subset H_0,$$

$$X_0^i = \{(p, p_0): p \in X_{\text{sing}}, p_0 \in X_0^i(p)\} \subset X_{\text{sing}} \times C_0^n,$$

$$X_0^{\wedge i} = \{(p, p_0): p \in X_{\text{sing}}, p_0 \in X_0^{\wedge i}(p)\} \subset X_{\text{sing}} \times H_0.$$

For every $Y \subset C^n$ we define

$$Y_0^i(p) = \text{strict transform of } Y \text{ under } \sigma_p^i,$$

$$Y_0^i = \{(p, p_0): p \in X_{\text{sing}}, p_0 \in Y_0^i(p)\} \subset X_{\text{sing}} \times C_0^n,$$

$$Y_0^{\vee i} = \{(p, p_0): p \in X_{\text{sing}}, p_0 \in Y_0^i(p) \cap H_0\} \subset X_{\text{sing}} \times H_0.$$

For every $a \in N$ let

$$\begin{split} X_1^{ia}(p) &= (\psi^a)^{-1} \left(X_0^i(p) \right), \\ Y_1^{ia}(p) &= (\psi^a)^{-1} \left(Y_0^i(p) \right), \\ X_1^{ia} &= \left\{ (p, p_1) \colon p \in X_{\text{sing}}, \ p_1 \in X_1^{ia}(p) \right\}, \\ Y_1^{ia} &= \left\{ (p, p_1) \colon p \in X_{\text{sing}}, \ p_1 \in Y_1^{ia}(p) \right\}, \\ X_1^{\wedge ia}(p) &= X_0^{\wedge i}(p), \\ Y_1^{\vee ia}(p) &= Y_0^{\vee ia}(p); \end{split}$$

the two last sets are considered as subsets of H_1 ; H_1 is just another copy of H_0 .

By induction on k we shall define subsets

$$X_k^{ia} \subset X_{\text{sing}} \times H_1 \times \dots \times H_{k-1} \times \mathcal{L}_k^n,$$

$$X_k^{\wedge ia} \subset X_{\text{sing}} \times H_1 \times \dots \times H_{k-1} \times H_k;$$

they will be in the form

$$X_{k}^{ia} = \{(p, p_{1}, ..., p_{k}): (p, p_{1}, ..., p_{k-1}) \in X_{k-1}^{\wedge ia},$$

$$(p, p_{1}, ..., p_{k}) \in X_{k}^{ia}(p, p_{1}, ..., p_{k-1})\},$$

$$X_{k}^{\wedge ia} = \{(p, p_{1}, ..., p_{k}): (p, p_{1}, ..., p_{k-1}) \in X_{k-1}^{\wedge ia},$$

$$(p, p_{1}, ..., p_{k}) \in X_{k}^{\wedge ia}(p, p_{1}, ..., p_{k-1})\}.$$

It suffices to define $X_k^{ia}(p, p_1, ..., p_{k-1})$ and $X_k^{\wedge ia}(p, p_1, ..., p_{k-1})$; they are given by

 $X_k^{ia}(p, p_1, ..., p_{k-1})$ is the strict transform of

$$X_{k-1}^{ia}(p, p_1, ..., p_{k-2}) \text{ under } \sigma_{p_{k-1}} \colon C_k^n \to C_{k-1}^n,$$

$$X_k^{\wedge ia}(p, p_1, ..., p_{k-1}) = NZ(X_k^{ia}(p, p_1, ..., p_{k-1})).$$

For every $Y \subset C^n$ and $k \ge 1$ we define

$$Y_k^{ia} = \{(p, p_1, \ldots, p_k): (p, p_1, \ldots, p_{k-1}) \in X_{k-1}^{\land ia}, p_k \in Y_k^{ia}(p, p_1, \ldots, p_{k-1})\},$$

$$Y_k^{\lor ia} = \{(p, p_1, \ldots, p_k): (p, p_1, \ldots, p_{k-1}) \in X_{k-1}^{\land ia}, p_k \in Y_k^{\lor ia}(p, p_1, \ldots, p_{k-1})\},$$

where $Y_k^{ia}(p, p_1, ..., p_{k-1})$ is the strict transform of $Y_{k-1}^{ia}(p, p_1, ..., p_{k-2})$ under $\sigma_{p_{k-1}}$,

$$Y_k^{\vee ia}(p, p_1, \ldots, p_{k-1}) = Y_k^{ia}(p, p_1, \ldots, p_{k-1}) \cap H_k.$$

Our characterisation of sets Y satisfying (*) is as follows.

Proposition. Y satisfies (*) if and only if $X_k^{\wedge ia} \subset Y_k^{\vee ia}$ for all i, k, a.

We shall give two applications of this proposition. We shall work only with (germs of) algebraic sets.

Let K, N be given positive integers. Let $g_{i\alpha}$ be variables, i = 1, ..., K, $\alpha = (\alpha_1, ..., \alpha_n)$, $|\alpha| = \alpha_1 + ... + \alpha_n \le N$. We consider $g_{i\alpha}$ as coordinates in an affine space G_{KN} . Any point $g = (g_{i\alpha}) \in G_{KN}$ gives K polynomials $g_i(x) = \sum_{\alpha} g_{i\alpha} x^{\alpha}$, and so we can define

$$Y_a = \{x \in \mathbb{C}^n : g_i(x) = 0 \text{ for all } i = 1, ..., K\}.$$

Recall that the family of constructible sets in C^n is the Boolean algebra of subsets of C^n generated by all algebraic sets.

COROLLARY 1. Let $X \subset \mathbb{C}^n$ be an algebraic set of pure dimension d. Then, for every K, N, the sets

 $G_{KN}(X) = \{g \in G_{KN}: Y_g \text{ satisfies } (*) \text{ in some neighbourhood of } 0\},$

$$G'_{KN}(X) = \{g \in G_{KN}(X): \dim Y_g < d\}$$

are constructible (and, by [1], non-empty for sufficiently big K, N).

 $G_{KN}(X)$, $G'_{KN}(X)$ are not always algebraic.

EXAMPLE. Let X be a surface having 0 as an isolated singular point such that $C'_0(X) \neq \{0\}$. By [1], there exists a curve Y satisfying (*). By Lojasiewicz's inequality

$$|P_q - P_{q'}| \le C|q - q'|/\text{dist}(\{q, q'\}, 0)^k$$
 for all $q, q' \in X \setminus \{0\}$,

for some k, and therefore, as is easy to see, there exists an integer p such that any curve Y satisfies (*) provided that

$$dist(x, Y') \le |x|^p$$
 for all $x \in Y$, sufficiently close to 0.

Enlarging Y if necessary, we can assume that it is given by $P_1 = 0, \ldots, P_{n-1} = 0$ and the ideal generated by the P_i 's and the $(n-1) \times (n-1)$ -minors of the matrix $(\partial P_i/\partial x_j)$ contains (for some m) m^m, where $m = (x_1, \ldots, x_n)$. We take a coordinate system such that the x_n -axis is not contained in $C'_0(X)$. Let Y_{ε} be given by

$$x_1^N = \varepsilon P_1(x), \ldots, x_{n-1}^N = \varepsilon P_{n-1}(x).$$

Then, if N is big enough, we have, for every $\varepsilon \neq 0$,

$$\operatorname{dist}(x, Y_{\varepsilon}) \leq |x|^{p}$$
 for $x \in Y$, $|x| < \delta_{\varepsilon}$,

where $\delta_{\varepsilon} > 0$, and so every Y_{ε} satisfies (*) (for $\varepsilon \neq 0$). However Y_0 doesn't satisfy (*), since $C_0(Y) \Rightarrow C_0'(X)$.

Now let $X, Y \subset \mathbb{C}^n$ be two algebraic sets, X of pure dimension d. Let $L(X, Y) = \{ p \in X_{\text{sing}} : (*) \text{ is satisfied in a neighbourhood} \}$

of p, with a constant C depending on p,

$$NL(X, Y) = X_{\text{sing}} \setminus L(X, Y).$$

COROLLARY 2. NL(X, Y) is algebraic.

In the sequel the letter C will denote different constants.

2. Preliminaries

We consider two copies C_x^n , C_y^n of C^n with coordinates x_1, \ldots, x_n and y_1, \ldots, y_n respectively. Let $H_x = \{x_1 = 0\} \subset C_x^n$, $H_y = \{y_1 = 0\} \subset C_y^n$. We

shall list some obvious properties of the maps σ , ψ : $C_{\nu}^{n} \rightarrow C_{x}^{n}$ given by

$$\sigma(y_1, ..., y_n) = (y_1, y_1, y_2, ..., y_1, y_n) \text{ } (\sigma\text{-process}),$$

$$\psi(y_1, ..., y_n) = (y_1^a, y_2, ..., y_n),$$

where a is a given positive integer. Let f be either σ or ψ .

For $q \in C_x^n$ (resp. $\tilde{q} \in C_y^n$) let $H_{x,q}$ (resp. $H_{y,\tilde{q}}$) be the hyperplane parallel to H_x (resp. H_y) passing through q (resp. \tilde{q}).

Let
$$\tilde{q}_1$$
, $\tilde{q}_2 \in C_y^n$ and $q_1 = f(\tilde{q}_1)$, $q_2 = f(\tilde{q}_2)$. Let

$$\tilde{\Pi}_i \subset T_{\tilde{q}_i} C_v^n \cap H_{v,\tilde{q}_i}, \quad i=1, 2,$$

be two linear subspaces and let $\Pi_i \subset T_{q_i} C_x^n$ be their images under df. Since C_x^n , C_y^n are linear spaces, we can speak about the angles $\not \subset (\tilde{\Pi}_1, \tilde{\Pi}_2)$, $\not\subset (\Pi_1, \Pi_2)$;

$$(5) \qquad \qquad \not \leftarrow (\tilde{\Pi}_1, \, \tilde{\Pi}_2) = \not \leftarrow (\Pi_1, \, \Pi_2).$$

This is obvious, since

$$\sum_{i} a_{j} (\partial/\partial y_{j})|_{\tilde{q}_{i}} \in \tilde{\Pi}_{i} \iff \sum_{j} a_{j} (\partial/\partial x_{j})|_{q_{i}} \in \Pi_{i} \quad \text{for } i = 1, 2.$$

Let $X \subset C_x^n$ (resp. $\tilde{X} \subset C_y^n$) be analytic sets. For $q \in X_{reg}$ (resp. $\tilde{q} \in \tilde{X}_{reg}$) we define

(6)
$$T_q^0 X = T_q X \cap H_{x,q} \quad \text{(resp. } T_{\tilde{q}}^0 \tilde{X} = T_{\tilde{q}} \tilde{X} \cap H_{y,\tilde{q}} \text{)}.$$

Let

(7)
$$P_q^0: T_q C_x^n \to T_q^0 X, \qquad P_{\tilde{q}}^0: T_{\tilde{q}} C_y^n \to T_{\tilde{q}}^0 \tilde{X}$$

be the orthogonal projections and

(8)
$$P_q^{0\perp} = I - P_q^0, \quad P_{\tilde{q}}^{0\perp} = I - P_{\tilde{q}}^0.$$

Let $X \subset C_x^n$ be a given analytic set and take for \tilde{X} the strict transform of X under σ if $f = \sigma$ and $\psi^{-1}(X)$ if $f = \psi$. Let \tilde{q}_1 , $\tilde{q}_2 \in \tilde{X}_{reg} \setminus H_y$, $q_i = f(\tilde{q}_i)$ for i = 1, 2. Then (5) gives

(9)
$$|P_{\tilde{q}_1}^{0\perp} P_{\tilde{q}_2}^0| = |P_{q_1}^{0\perp} P_{q_2}^0|.$$

For every $q \in C_x^n$ (resp. $\tilde{q} \in C_y^n$) we put

(10)
$$d^{0}(q, X) = \operatorname{dist}(q, X \cap H_{x,q})$$
 (resp. $d^{0}(\tilde{q}, \tilde{X}) = \operatorname{dist}(\tilde{q}, \tilde{X} \cap H_{y,\tilde{q}})$)

Let $\tilde{q} \in C_y^n$ and $q = f(\tilde{q}) \in C_x^n$; then we have

(11)
$$d^{0}(q, X) = \begin{cases} d^{0}(\tilde{q}, \tilde{X}), & \text{if } f = \psi, \\ q_{1} d^{0}(\tilde{q}, \tilde{X}), & \text{if } f = \sigma, \end{cases}$$

where q_1 is the x_1 -coordinate of q.

If q(t) is a germ of a curve at $0 \in \mathbb{C}_x^n$ such that

$$v = \lim_{t \to 0} \dot{q}(t)/|\dot{q}(t)| \in C_0(X),$$

but $\langle (v, H_x) \rangle > \varepsilon$, then there exists a C, depending on ε , such that

(12)
$$d^{0}(q(t), X) \leq C \operatorname{dist}(q(t), X).$$

We shall also use two trivial observations from elementary geometry. Let $H = H^{n-1} \subset \mathbb{C}^n$ be a hyperplane and Π_1^0 , Π_2^0 two linear subspace of H, of the same dimension. Let v_1 , v_2 be two unit vectors in \mathbb{C}^n such that

$$\langle (H, v_i) \rangle \beta > 0$$
 for $i = 1, 2, |v_1 - v_2| \leq \alpha$.

Put $\Pi_i = \Pi_i^0 \oplus Cv_i$ and let P_i (resp. P_i^0) be the orthogonal projection of C^n onto Π_i (resp. Π_i^0), $P_i^{\perp} = I - P_i$, $P_i^{0 \perp} = I - P_i^0$. Then

(13)
$$|P_2^{0\perp} P_1^0| \leq |P_2^{\perp} P_1| (1 + (1/\sin\beta)), \\ |P_2^{\perp} P_1| \leq |P_2^{0\perp} P_1^0| (1 + (1/\sin\beta)) + (\alpha/\sin\beta).$$

Let $\pi\colon C^n\to C^d$ be the standard projection, $\pi(x_1,\ldots,x_n)=(x_1,\ldots,x_d)$ and let T, T' be two d-dimensional planes in C^n such that $\not<(T,\ker\pi)>\varepsilon$, $\not<(T',\ker\pi)>\varepsilon$. If w_k , w'_k are liftings of $\partial/\partial x_k$ to T, T' respectively $(k\leqslant d)$, then, for some C, C', depending on ε ,

$$(14) C \max \angle (w_k, w_k') \leq \angle (T, T') \leq C' \max \angle (w_k, w_k').$$

3. A characterisation of Z-points

Let $X \subset \mathbb{C}^n$ be an analytic set of pure dimension d and $H = \{x_1 = 0\} \subset \mathbb{C}^n$. $T_q^0 X$, P_q^0 , $P_q^{0\perp}$ are defined (for $q \in X_{reg}$) as in (7) and (8).

LEMMA 1. A point $p \in X \cap H$ is a Z-point of X if and only if there exists a C, depending on p, such that

$$|P_{q_1}^{0\perp}P_{q_2}^0| \leqslant C|q_1-q_2|$$

for all q_1 , $q_2 \in X_{reg} \setminus H$, having the same x_1 -coordinate, lying in a suitable neighbourhood of p.

Proof of the "if" part. Let p be a Z-point. We choose axes x_{d+1}, \ldots, x_n in H so that the coordinates of points of X satisfy (2) and (3). Then if $q \in X$ has coordinates

$$(x_1, \ldots, x_d, \psi_{d+1,\alpha_{d+1}}(x_1^{1/r}, \ldots, x_d), \ldots, \psi_{n,\alpha_n}(x_1^{1/r}, \ldots, x_d)),$$

then $T_q^0 X$ is spanned by

$$w_{k}(q) = (\partial/\partial x_{k}) + \sum_{i=d+1}^{n} \left[(\partial/\partial x_{k}) \psi_{i,a_{i}} \right] \partial/\partial x_{i},$$

310 t. mostowski

 $1 < k \le d$. It is easy to prove (the details are in [1]) that $|w_k(q)| \le C$, $|w_k(q) - w_k(q')| \le C |q - q'|$ for all k and for every $q' \in X_{reg} \setminus H$ having the same x_1 -coordinate as q. This, together with (14), implies (15).

For the "only if" part we need a lemma.

Lemma 2. Let $\Gamma \subset C^n$ be a germ of a curve at p, singular at p, and let $l \subset C^n$ be a line. Assume that the orthogonal projection π_l : $C^n \to l$ induces an isomorphism $T_q \Gamma \to T_{\pi_l(q)} l$ for every $q \neq p$ and the norm of its inverse is $\leq C$, C independent of q. Then there exist sequences of points q_v , $q'_v \in \Gamma_{reg}$ such that $q'_v \neq q_v$, q_v , $q'_v \to p$, and

$$\not< (T_{q_{\nu}}\Gamma, T_{q'_{\nu}}\Gamma)/|q_{\nu}-q'_{\nu}| \to \infty.$$

Proof. We can assume that p=0 and l is the x_1 -axis. Consider the case n=2. Assume first that Γ contains a component Γ_0 , singular at the origin. Then Γ_0 can be described by

$$x_1 = t^r$$
, $x_2 = \lambda(t)$, $r \ge 2$, λ analytic.

For every r-th root of unity $\varepsilon \neq 1$ we have $\lambda(\varepsilon t) \neq \lambda(t)$ for all $t \neq 0$, so

$$\lambda(\varepsilon t) - \lambda(t) = t^k u(t), \quad u(0) \neq 0,$$

and thus $\lambda'(\varepsilon t) - \lambda'(t)$ is of order t^{k-1} . It is easy to calculate that if q corresponds to $t \neq 0$ and q' to εt , then |q-q'| is of order $|t|^k$, while $\not < (T_q \Gamma, T_{q'} \Gamma)$ is of order $|t|^{k-r}$.

In the other case Γ contains two nonsingular components Γ_1 , Γ_2 , intersecting at 0, given by

$$\Gamma_1$$
: $x_2 = \lambda(x_1)$, Γ_2 : $x_2 = \mu(x_1)$, λ , μ analytic.

Clearly $\lambda(0) = \mu(0) = 0$ and $\lambda(x_1) \neq \mu(x_1)$ for $x_1 \neq 0$. We take q lying on Γ_1 and q' on Γ_2 and repeat the reasoning.

If n > 2, we take a linear projection $\pi: \mathbb{C}^n \to P$ on a plane P containing l such that $\pi \mid \Gamma$ is proper and, for some C,

$$|q-q'| \le C |\pi(q)-\pi(q')|$$
 for all $q, q \in \Gamma_{reg}$, close to 0.

Necessarily $\pi(0)$ is a singular point of $\pi(\Gamma)$. Let \tilde{q}_{ν} , $\tilde{q}'_{\nu} \in \pi(\Gamma)_{\text{reg}}$ satisfy the conclusion of the lemma for $\pi(\Gamma)$ and we take for q_{ν} , q'_{ν} any points in Γ_{reg} projecting into \tilde{q}_{ν} , \tilde{q}'_{ν} .

Returning to the proof of Lemma 1 we take a point $p \in X \cap H$ such that (15) is satisfied in a neighbourhood of p. Let p_t be a germ of an analytic map $(C, 0) \to (C^n, p)$ such that $p_t \in X_{reg} \setminus H$ for $t \neq 0$. There exists an open and dense set D of projections ${}^{\bullet}C^n \to C^d$, parallel to H, such that for every $n \in D$ we have: $n: X \to C^d$ is proper and for some C = C(n) and every $t \neq 0$, $dn(p_t): T_{p_t}^0 X \to T_{n(p_t)}^0 C^d$ is an isomorphism and the norm of its inverse is bounded by C.

Fix a $\pi \in D$; after a translation and a coordinate change in H we can assume that p = 0, $\pi(x_1, \ldots, x_n) = (x_1, \ldots, x_d)$.

1° There exists a $C' = C'(\pi)$ such that for every $q \in X_{reg} \setminus H$, sufficiently close to p,

$$d\pi(q)$$
: $T_q^0 X \rightarrow T_{\pi(q)}^0 C^d$

is an isomorphism and the norm of its inverse is bounded by C'. For otherwise, using the curve selection lemma for real semianalytic sets, we prove that there exists a real-analytic map q(r) such that $q(r) \in X_{reg} \setminus H$ for $r \neq 0$, q(0) = 0 and the norm of the inverse to $d\pi(q(r))$ tends to ∞ $(r \in \mathbb{R})$. Let q(t) $(t \in C)$ be the complexification of q(r). We reparametrise q(t) and p(t) so that the x_1 -coordinates of q(t) and p(t) coincide and we get a contradiction with (15).

2° $X_{\text{sing}} \subset H$. For suppose it is not so. Then $\dim X_{\text{sing}} \setminus \overline{H} = d-1$. Let $W = \pi(\overline{X_{\text{sing}}} \setminus \overline{H})$; clearly $\dim W = d-1$. A general line l in C^d , parallel to $\{x_1 = 0\}$, intersects W transversally; its lifting Γ to X has singular points. Applying to Γ Lemma 2 we get sequences of points q_{ν} , $q'_{\nu} \in \Gamma_{\text{reg}}$ such that $\not < (T_{q_{\nu}} \Gamma, T_{q'_{\nu}} \Gamma)/|q_{\nu} - q'_{\nu}| \to \infty$. Now, using (14), we get a contradiction with (15).

3° Let $x' = (x_2, ..., x_d)$, $y = (x_{d+1}, ..., x_n)$. It follows from 2° that there exists finitely many C^{n-d} -valued analytic functions $\varphi_{\alpha}(t, x')$, $\varphi_{\alpha} = (\varphi_{\alpha,d+1}, ..., \varphi_{\alpha,n})$ and an integer r such that if $(x_1, x', y) \in X$, then, for some α ,

$$y=\varphi_{\alpha}(x_1^{1/r}, x').$$

For any α and any r-th root of unity ϵ we put

$$\psi(t, x') = \varphi_{\alpha}(\varepsilon t, x') - \varphi_{\alpha}(t, x') = (\psi_{d+1}(t, x'), \ldots, \psi_{n}(t, x')).$$

For these ψ that don't vanish identically let (for a generic x') ord, $\psi_i = s_i$ (at t = 0); after a permutation of x_{d+1}, \ldots, x_n we can assume for simplicity that $s_{d+1} = \ldots = s_{d+k} = s$ and $s_i > s$ for i > d+k. Thus

$$\psi_i = t^{s_i} \tilde{\psi}_i(t, x'), \quad \tilde{\psi}_i(0, x') \quad \text{not identically } 0.$$

We shall show that at least one of the $\tilde{\psi}_i$ for $i \leq d+k$ is $\neq 0$ at $x' = 0 = \pi(p)$.

Suppose that $\tilde{\psi}_i(0, 0) = 0$ for all $i \leq d + k$. Then

$$\psi_{i}(t, x') = t^{s} \psi_{i}^{*}(x') + O(t^{s+1}), \quad \psi_{i}^{*}(0) = 0, \quad i \leq d+k,$$

$$\psi_{i}(t, x') = O(t^{s+1}), \quad i > d+k.$$

For t, x' unprecised for the moment let

(16)
$$q = (t^r, x', \varphi_a(t, x')), \quad q' = (t^r, x', \varphi_a(\varepsilon t, x')) \in X.$$

Then $|q-q'| = |\psi(t, x')|$ and it follows from 1°, (14) that $(T_q^0 X, T_{q'}^0 X)$ is of order $\max_{2 \le j \le d} |\partial \psi(t, x')/\partial x_j|$,

so (15) implies that

(17)
$$|\partial_j \psi(t, x)| \leq C |\psi(t, x)| \quad \text{for } 2 \leq j \leq d,$$

where $\partial_i = \partial/\partial x_i$. For $2 \le j \le d$ we have

$$\partial_j \psi_i(t, x') = t^s \, \partial_j \psi_i^*(x') + O(t^{s+1}), \quad i \leq d+k,$$

$$\partial_j \psi_i(t, x') = O(t^{s+1}), \quad i > d+k.$$

Let $\psi_i^0(x')$ be the homogenous part of ψ_i^* , of degree, say, $m_i (i \le d + k)$; then

$$\psi_i^*(x') = \psi_i^0(x') + O(|x'|^{m_i+1}).$$

Let Ω be an open cone in the x'-space, with vertex at 0, disjoint with all the cones $\psi_i^0(x') = 0$. Let $m = \min m_i$; again we can assume that $m_i = m$ for $i \le d+l$, $m_i > m$ for i > d+l, where l is some number $\le k$. After a linear change among x_2, \ldots, x_d we can assume that for all $i \le d+l$

$$|\partial_2 \psi_i^0(x')| \geqslant C|x'|^{m-1}$$
 for $x' \in \Omega$;

clearly for all x'

$$|\psi_i^*(x')| \leqslant C|x'|^m.$$

Now take in (16) $x' \in \Omega$, $|t| = |x'|^m$. Then

$$\begin{aligned} |\psi_i(t, x')| &\leq |t|^s |\psi_i^*(x')| + |x'|^{m(s+1)} \leq C |x'|^{m(s+1)}, \quad i \leq d+k, \\ |\psi_i(t, x')| &\leq C |t|^{s+1} \leq C |x'|^{m(s+1)}, \quad i > d+k, \end{aligned}$$

SO

$$|\psi(t, x')| \leqslant C |x'|^{m(s+1)}.$$

But for $i \leq d+l$

$$\begin{aligned} |\hat{\partial}_{2} \psi_{i}(t, x')| &\geq |t|^{s} |\hat{\partial}_{2} \psi_{i}^{*}(x')| - O(|t|^{s+1}) \\ &\geq C |t|^{s} |x'|^{m-1} - C |t|^{s} |x'|^{m} - C |x'|^{m(s+1)} \geq C |x'|^{m(s+1)-1} \end{aligned}$$

and we have a contradiction with (17).

4° After a linear change in the x_{d+1}, \ldots, x_n -coordinates we can assume that for all α , ε , and i, either ψ_i is identically 0 or $\psi_i(0, 0) \neq 0$. This shows that the set of $\pi \in D$ for which the latter condition holds, is open and dense. But this is equivalent to the definition of a Z-point, so $p \in Z(X)$.

4. Proof of the proposition

Let $X \subset \mathbb{C}^n$ be analytic, dim X = d.

LEMMA 3. Let Γ be a germ at $p \in X$ of a curve such that $\Gamma \setminus \{p\} \subset X_{reg}$. Then the C^{∞} -function

$$\Gamma_{\text{reg}} \ni q \mapsto P_q \in C^{n^2}$$

(where, of course, $P_q: \mathbb{C}^n \to T_q X$) satisfies, for some C,

$$|DP_q| \leqslant C/|q-p|$$

(even $|DP_q| \leq C/|q-p|^{\alpha}$ for some $\alpha < 1$, but we don't need that).

Proof. Assume that p=0. Let $\pi\colon C^n\to C^d$ be a projection such that for all $q\in\Gamma\setminus\{0\}$ $d\pi(q)\colon T_qX\to T_{\pi(q)}C^d$ is an isomorphism and the norm of its inverse is bounded by some C. After a coordinate change in C^d we can assume that Γ is given by $x_i=\lambda_i(x^{1/r}),\ i=2,\ldots,n,\ \lambda_i$ analytic, ord $\lambda_i\geqslant r$. Let $w_1(q),\ldots,w_d(q)$ be liftings of $\partial/\partial x_1,\ldots,\partial/\partial x_d$ to vectors in $T_qX,\ q\in\Gamma_{reg}$; then w_j are analytic in $x_1^{1/s}$ for some s; since they are bounded, ord $w_j\geqslant s$. Thus $|Dw_j|\leqslant C/|x_1|^{1-(1/s)}$.

Now let Γ be again a germ of a curve at p (= 0 for simplicity), $\Gamma \setminus \{p\} \subset X_{\text{reg}}$; let Γ be given by $x_i = \lambda_i (x_1^{1/r})$, ord $\lambda_i \geqslant r$.

LEMMA 4. For every $q \in \Gamma \setminus \{0\}$ and any number $a \in C$, $|a| \neq 0$ and small enough, there exists a $q' \in \Gamma \setminus \{0\}$ having a as its x_1 -coordinate such that

$$|P_q^{\perp} P_{q'}| \leq C |q - q'| / \min(|q_1|, |a|),$$

where q_1 is the x_1 -coordinate of q and C is independent of q, a.

Proof. In the x_1 -axis we join q_1 and a by an arc L of length $\leq 2\pi |q_1 - a|$ such that for every $t \in L$

$$|t| \geqslant \min(|q_1|, |a|).$$

We lift L to a real curve in Γ_{reg} , starting at q. If q' is its end, then, by Lemma 3,

$$|P_q^{\perp}P_{q'}| \leqslant C|q_1 - a|/\min(|q_1|, |a|) \leqslant C|q - q'|/\min(|q_1|, |a|). \qquad \Box$$

Lemma 4, together with (13), implies the following lemma.

LEMMA 5. Let Γ_1 , Γ_2 be germs of curves at $p \in X$, $\Gamma_i \setminus \{p\} \subset X_{reg}$, such that the angles between the tangent vectors to Γ_i and $\partial/\partial x_1$ are $<(\pi/2)-\alpha$, $\alpha>0$. Let $H=\{x_1=0\}$ and let $Y\subset C^n$ be any analytic set. Then the following conditions are equivalent:

$$1^{\circ} |P_{q_{1}}^{\perp} P_{q_{2}}| \leq C |q_{1} - q_{2}| / \text{dist}(\{q_{1}, q_{2}\}, Y) \text{ for all } q_{i} \in \Gamma_{i} \setminus \{p\};$$

 $2^{\circ} |P_{q_1}^{0 \perp} P_{q_2}^{0}| \leq C |q_1 - q_2| / \text{dist}(\{q_1, q_2\}, Y) \text{ for all } q_i \in \Gamma_i \setminus \{p\}, i = 1, 2, \text{ such that } q_1, q_2 \text{ have the same } x_1 \text{-coordinate.}$

We can now prove the proposition. We shall use the same symbols P^0 , $P^{0\perp}$ for projections onto $T^0 X_k^{ia}$, $T^{0\perp} X_k^{ia}$ for various i, a, k.

1° Assume that $Y_k^{\vee ia} \ni X_k^{\wedge ia}$ for some k, i, a; we shall show that (*) doesn't hold. We assume that the smallest k with the latter property is > 1 (the case k = 1, or, which is the same, k = 0, we leave to the reader). Thus, for every $p \in X_{\text{sing}}$ we have $C'_p(X) \subset C_p(Y)$.

Let $\tilde{p} = (p, p_1, ..., p_{k-1}) \in NZ(X_{k-1}^{ia}) \setminus Y_{k-1}^{\vee ia}$. By Lemma 1 and the curve selection lemma there exist germs of analytic maps $\tilde{q}_1(t)$, $\tilde{q}_2(t)$ such that $\tilde{q}_1(0) = \tilde{q}_2(0) = \tilde{p}$, $\tilde{q}_1(t)$, $\tilde{q}_2(t) \in X_{k-1,reg}^{ia}$ for $t \neq 0$, the x_1 -coordinates of $\tilde{q}_1(t)$, $\tilde{q}_2(t)$ coincide, and

$$|P_{\tilde{q}_1(t)}^{0\perp}P_{\tilde{q}_2(t)}^0|/|\tilde{q}_1(t)-\tilde{q}_2(t)|$$
 is unbounded.

Let $q_1(t)$, $q_2(t)$ be the images of $\tilde{q}_1(t)$, $\tilde{q}_2(t)$ under $\sigma_p^i \psi^a \sigma_{p_1} \dots \sigma_{p_{k-1}}$; then, by (9), (11)

$$|P_{q_1(t)}^{0\perp}P_{q_2(t)}^{0}|d^0(\{q_1(t), q_2(t)\}, Y)/|q_1(t)-q_2(t)|$$
 is unbounded.

Clearly, $q_1(t)$, $q_2(t)$ are tangent at p to $C'_p(X) \subset C_p(Y)$ and $q_1(t)$ and $q_2(t)$ have the same x_i -coordinates; further

$$\lim_{t\to 0} (\dot{q}_j(t)/|\dot{q}_j(t)|) \notin \{x_i = 0\} \quad \text{for } j = 1, 2.$$

Now (12) and (13) imply that

$$|P_{q_1(t)}^{\perp} P_{q_2(t)}| \operatorname{dist} (\{q_1(t), q_2(t)\}, Y)/|q_1(t) - q_2(t)| \text{ is unbounded,}$$

so (*) is not satisfied.

2° Assume that $X_k^{\wedge ia} \subset Y_k^{\vee ia}$ for all i, a, k, but (*) is not satisfied. Then, by the curve selection lemma, there exist germs of analytic maps $q_1(t)$, $q_2(t)$ such that $q_1(0) = q_2(0) = p \in X_{\text{sing}}$, $q_1(t)$, $q_2(t) \in X_{\text{reg}}$ for $t \neq 0$ and

$$|P_{q_1(t)}^{\perp}P_{q_2(t)}| \operatorname{dist}(\{q_1(t), q_2(t)\}, Y)/|q_1(t)-q_2(t)|$$
 is unbounded ([1]).

Select one of the coordinate axes, x_i , such that, for some $\alpha > 0$,

$$\not < \left(\lim_{t\to 0} \left(\dot{q}_j(t)/|\dot{q}_j(t)|\right), \ \left\{x_i=0\right\}\right) \leqslant \frac{1}{2}\pi - \alpha.$$

By Lemma 5 we can assume that $q_1(t)$, $q_2(t)$ have the same x_i -coordinate. Let $q_1^*(t)$, $q_2^*(t)$ be the liftings of $q_1(t)$, $q_2(t)$ via σ_p^i ; then

(18)
$$|P_{q_1(t)}^{0\downarrow}, P_{q_2(t)}^{0\downarrow}| d^0(\{q_1^*(t), q_2^*(t)\}, Y_0^i)/|q_1^*(t) - q_2^*(t)|$$
 is unbounded.

We choose a so that $(\psi^a)^{-1}(q_j^*(t))$ are sums of smooth curves $\Gamma_{j\beta}$ given by

$$\Gamma_{j\beta}$$
: $x_s = \varphi_{j\beta,s}(x_1)$, $s = 2, \ldots, n$.

By (9), (11), (18) remains unchanged if we pass from $q_j^*(t)$ to $(\psi^a)^{-1}(q_j^*(t))$ and

from X_0^i , Y_0^i to X_1^{ia} , Y_1^{ia} ; further it remains unchanged after liftings via the σ -processes. But after a finite number of such liftings the strict transforms of Γ_{ib} become disjoint and we get a contradiction.

5. Constructibility of X_k^{ia} and Y_k^{ia}

First we introduce some notation. If

$$F(t) = b_0 + b_1 t + \ldots + b_{n-1} t^{n-1} + t^n,$$

we define ([1])

$$\Delta_i^F = \sum_{\alpha_1,\ldots,\alpha_i}^* \prod_{r,s}^* (t_r - t_s),$$

where \sum^* denotes the summation over all α_k such that $\alpha_k \neq \alpha_j$ for $k \neq j$, and \prod^* the product over all r, s such that $r \neq s$ and r, $s \neq \alpha_j$ for all j. The t_r are of course all the roots of F. We consider Δ_i^F as polynomials in b_0, \ldots, b_{n-1} . Thus Δ_0^F is the discriminant of F and F has less than n-k distinct roots if and only if $\Delta_i^F = 0$ for all $i \leq k$.

If $F(t) = a_0 + a_1 t + ... + a_n t^n$, then we put $G = b_0 + b_1 t + ... + b_{n-1} t^{n-1} + t^n$, where $b_i = a_i/a_n$, and

$$\Delta_i^F(a_0, \ldots, a_n) = a_n^{k(i)} \Delta_i^G(b_0, \ldots, b_{n-1}),$$

where k(i) is the smallest number such that Δ_i^F is a polynomial.

LEMMA 6. Let $S \subset C^p$ be algebraic and $X \subset S \times C^n$ algebraic. Let π : $S \times C^n \to S$ be the standard projection, $H = \{x_1 = 0\} \subset C^n$; assume that all the fibers $X_s = \pi^{-1}(s) \cap X \subset \{s\} \times C^n \approx C^n$ are of pure dimension d and $\dim X_s \cap H < d$. Then there exists an algebraic set $S_0 \subseteq S$ and an algebraic set $Z \subset S \times C^n$ such that $Z_s = NZ(X_s)$ for all $s \in S \setminus S_0$, where $Z_s = Z \cap \pi^{-1}(s)$.

Proof. Assume first that d = n - 1. There exists a polynomial F(s, x) $(s \in \mathbb{C}^p, x \in \mathbb{C}^n)$ and an algebraic set $S_1 \subseteq S$ such that

$$X_s = \{x: F(s, x) = 0\}$$
 for all $s \in S \setminus S_1$.

For every $\xi \in H$ consider $F(s, x + \lambda \xi)$ as a polynomial in one variable λ with s, x, ξ as parameters; let $\Delta_i^F(s, x, \xi)$ be its generalised discriminants. Let

$$C_i = \{(s, \xi): \Delta_i^F(s, x, \xi) = 0 \text{ for all } x \in H\}.$$

Let j be the smallest number such that $(S \setminus S_1) \times H \neq C_j$; put $C = C_j$, $\Delta = \Delta_j^F$. If $\Delta(s, x, \xi) = \sum \Delta_{\alpha}(s, \xi) x^{\alpha}$ ($x \in H$), then C is given by $\Delta_{\alpha}(s, \xi) = 0$ for all α . Let $\Delta_{\alpha}(s, \xi) = \sum \Delta_{\alpha\beta}(s) \xi^{\alpha}$; put $S_0 = S_1 \cup \{\Delta_{\alpha\beta}(s) = 0 \text{ for all } \alpha, \beta\}$. It is easy to see that $NZ(X_s)$ is given (for $s \in S \setminus S_0$) by $A_{\gamma}(s, x) = 0$ for all γ , where

$$\Delta(s, \, \xi, \, x) = \sum A_{\gamma}(s, \, x) \, \xi^{\gamma}.$$

Now suppose that d is arbitrary. Let $\Pi \subset H \times ... \times H(n-d-1)$ times) $= H^{n-d-1}$ be the set of all $a = (a_{d+2}, ..., a_n)$ such that $\partial/\partial x_2, ..., \partial/\partial x_{d+1}, a_{d+2}, ..., a_n$ are linearly independent. Every $a \in \Pi$ determines a projection $\Pi(a)$: $C^n \to C^{d+1}$. There is a Zariski open set $\Omega \subset S \times \Pi$ and an algebraic set $\mathfrak{X} \subset S \times H^{n-d-1} \times C^{d+1}$ such that if $(s, a) \in \Omega$, then $\mathfrak{X}_{(s,a)} = \pi(a)(X_s)$ and dim $\mathfrak{X}_{(s,a)} = d$. Choose a polynomial P(s, x) such that the complement of Ω in $S \times H^{n-d-1}$ is contained in $\{P=0\}$. By the codimension 1- case there exists an algebraic set $W \subset S \times H^{n-d-1}$, given by $Q_i(s, a) = 0$, and an algebraic set $3 \subset S \times H^{n-d-1} \times C^{d+1}$ such that $\Omega \neq 3$ and $\mathfrak{X}_{(s,a)} = NZ(\mathfrak{X}_{(s,a)})$ for $(s, a) \in \Omega \setminus W$. Let $S_0 = \{s: P(s, a) = 0, Q_i(s, a) = 0 \text{ for all } i \text{ and for all } a \in H^{n-d-1}\} \subseteq S$. Let $G_i(s, a, z) = 0$ be the equations of \mathfrak{Z} (where $z \in C^{d+1}$). For $s \in S \setminus S_0$ we have: $x \in Z(X_s)$ if and only if $\pi(a) \times \notin \mathfrak{Z}_{(s,a)}$ for an open set of a's, so $NZ(X_s)$ is given by $G_i(s, a, \pi(a) \times I) = 0$ for all $a \in H^{n-d-1}$.

COROLLARY 3. Let $S \subset C^p$, $X \subset S \times C^n$ be algebraic such that all the fibers X_s are equidimensional. Then

$$NZ(X) = \bigcup_{s \in S} (\{s\} \times NZ(X_s))$$

is constructible.

Lemma 7. Let $S \subset \mathbb{C}^p$, X, $Y \subset S \times \mathbb{C}^n$ be algebraic. Then there exist algebraic sets $S_0 \subseteq S$ and $Z \subset S \times \mathbb{C}^n$ such that $Z_s = X_s \setminus Y_s$ for all $s \in S \setminus S_0$.

Proof. Take any non-zero $f \in I(X)$, $g \in I(Y)$. After a linear change of coordinates in C^n we can assume that $f = a(s)x_n^k + \ldots$, $g = b(s)x_n^l + \ldots$, where \ldots denote terms of lower degree with respect to x_n . Let $S_1 = \{s \in S: a(s) = 0, b(s) = 0\} \subseteq S$. Put $X_s' = \pi_0(X_s)$, where $\pi_0: C^n \to C^{n-1}$ is the projection parallel to the x_n -axis. Note that $\pi_0: X_s \to X_s'$ is proper for $s \notin S_1$ and therefore X_s' are algebraic for $s \notin S_1$. There exist an algebraic set $X^* \subset S \times C^{n-1}$ such that $X_s' = X_s^*$ for $s \notin S_1$. There exists polynomials $\delta(s, x')$ and $\varphi(s, x)$ (where $x' = (x_1, \ldots, x_{n-1})$) such that: $1^{\circ} \delta$ does not vanish identically on X^* , 2° for every $(s, x') \in X^* \setminus \{\delta = 0\}$ we have

$$(s, x', x_n) \in X \setminus Y \iff \varphi(s, x', x_n) = 0.$$

Put

$$ilde{X}_s = [X_s \cap \pi_0^{-1}(\{\delta_s = 0\})] \cup [X_s \cap \{\varphi_s = 0\}],$$

where $\delta_s(x') = \delta(s, x')$ and $\varphi_s(x) = \varphi(s, x)$. Clearly $\overline{X_s \setminus Y_s} = \overline{\tilde{X}_s \setminus Y_s}$ and $\tilde{X} = \bigcup_s [\{s\} \times \tilde{X}_s]$ is algebraic. If $\tilde{X}_s \subsetneq X_s$ for some $s \notin S_1$, we can repeat the argument with X replaced by \tilde{X} . If $X_s = \tilde{X}_s$ for all $s \notin S_1$, then

$$\overline{X_s \setminus Y_s} = \overline{[X_s \cap \pi_0^{-1}(\{\delta_s = 0\})] \setminus Y_s} \cup [X_s \cap \pi_0^{-1}(\overline{X_s^* \setminus \{\delta_s = 0\}})]$$

and the conclusion of the lemma can be assumed to hold for $\overline{[X_s \cap \pi_0^{-1}(\{\delta_s = 0\})] \setminus Y_s}$ and $\overline{X_s^* \setminus \{\delta_s = 0\}}$.

COROLLARY 4. $\bigcup_{s \in S} (\{s\} \times \overline{X_s \setminus Y_s})$ is constructible.

By induction on k we get now:

COROLLARY 5. Let $S \subset C^p$, $X, Y \subset S \times C^n$ be algebraic and all the fibres X_s are equidimensional. Then, for all i, a, $k \cup [\{s\} \times (X_s)_k^{\land ia}]$, $\bigcup_s [\{s\} \times (Y_s)_k^{\lor ia}]$ are constructible; in particular (putting S = point) $X_k^{\land ia}$, $Y_k^{\lor ia}$ are constructible.

6. Proofs of the corollaries

Proof of Corollary 1. We observe first that $G_{KN}(X)$ is semialgebraic (if we consider C^n and G_{KN} as real vector spaces). In fact, the function

$$X_{\text{reg}} \times X_{\text{reg}} \ni (q_1, q_2) \mapsto |P_{q_1} - P_{q_2}| \in \mathbf{R}$$

is semialgebraic (i.e. its graph is semialgebraic) and similarly the distance function $(q_1, q_2) \mapsto |q_1 - q_2|$. We rewrite the definition of $G_{KN}(X)$:

$$\begin{split} G_{KN}(X) &= \{g\colon \exists \varepsilon > 0, \ C > 0 \ \forall \ q_1, \ q_2 \in X_{\text{reg}}, \ |q_1| < \varepsilon, \ |q_2| < \varepsilon, \ \exists \ x \ g_1(x) = 0, \\ &\dots, \ g_K(x) = 0, \ |P_{q_1} - P_{q_2}| \leqslant C \ |q_1 - q_2| / \min(|q_1 - x|, \ |q_2 - x|)\}; \end{split}$$

now our claim follows directly from Tarski's theorem (e.g. [2]). Similarly the sets

$$K_k^{ia}(X) = \{g \colon X_k^{\wedge ia} \subset (Y_g)_k^{\vee ia}\}$$

are constructible since their definition can be rewritten as

$$\{g: \ \forall (p, p_1, \ldots, p_k) \ (p, p_1, \ldots, p_k) \in X_k^{\land ia} \Rightarrow (p, p_1, \ldots, p_k) \in (Y_g)_k^{\lor ia} \}$$

and, because of Corollary 5, the results of [2] can be again used. So the semialgebraic set $G_{KN}(X)$ is a countable intersection $\bigcap_{i,a,k} K_k^{ia}(X)$ of construct-

ible sets; this is possible, as is easy to see, only if the intersection stabilises. Thus, for sufficiently big a, k whe have

$$G_{KN}(X) = \bigcap_{i,b \leq a,l \leq k} K_l^{ib}(X).$$

To prove that $G'_{KN}(X)$ is constructible, we have only to observe that $\{g \in G_{KN}: \dim Y_g \leqslant r\}$ is constructible for every r; it is easily proved by induction on n.

Proof of Corollary 2. We prove as before that L(X, Y) is semialgebraic. Now for every $p \in X_{\text{sing}}$ we put

$$X_{k}^{\wedge ia}(p) = \{(p_{1}, \ldots, p_{k}): (p, p_{1}, \ldots, p_{k}) \in X_{k}^{\wedge ia}\},$$

$$Y_{k}^{\vee ia}(p) = \{(p_{1}, \ldots, p_{k}): (p, p_{1}, \ldots, p_{k}) \in Y_{k}^{\vee ia}\}.$$

Again using [2] we prove that the sets

$$L_k^{ia} = \{ p \in X_{\text{sing}} \colon X_k^{\land ia} \subset Y_k^{\lor ia} \}$$

are constructible. By our proposition L(X, Y) is the interior in X_{sing} of $\bigcap_{i,a,k} L_k^{ia}$; this implies, as is easy to see, that L(X, Y) is constructible. It follows that NL(X, Y) is constructible, and, since it is closed, it is algebraic.

7. Examples

We shall use our proposition to give some explicit examples of Lipschitz stratifications of surfaces in C^3 .

Let X be the germ at 0 given by

$$v^2 = x^3 + z^2 x^2$$
.

We shall describe all curves Y satisfying (*). Of course the only interesting point is the origin. Clearly

$$C_0(X)$$
: $y = 0$.

First we find tangents to Y at 0.

a) If we substitute zx for z and zy for y, we get

$$y^2 = x^2 z + x.$$

The only NZ-point is x = 0, y = 0, z = 0; it corresponds to the z-axis so the z-axis must be tangent to a component of Y.

b) If we substitute xz for z and xy for y, we get

$$y^2 = x + x^2 z^2,$$

and this surface has no NZ-points.

Thus we can assume that Y is tangent to the z-axis. Now we take any integer $a \in N$ and put

$$z = t^a$$
, $x = t^{a+1} x_1$, $y = t^{a+1} y_1$.

The strict transform of X is

$$X_1$$
: $y_1^2 = t^{a+1} x_1^2 t^{a-1} + x_1$;

it has only one NZ-point: $x_1 = 0$, $y_1 = 0$, t = 0. We have to substitute

$$x_1 = tx_2, \quad y_1 = ty_2.$$

The strict transform of X_1 is

$$X_2$$
: $y_2^2 = t^{a+2} x_2^2 t^{a-2} + x_2$.

The only NZ-point is again $x_2 = 0$, $y_2 = 0$, t = 0, so we have to substitute

$$x_2 = tx_3, \quad y_2 = ty_3,$$

etc. After a such steps we get

$$X_a$$
: $y_a^2 = t^{2a} x_a^2 (1 + x_a)$.

 X_a has two NZ-points:

I:
$$x_a = 0$$
, $y_a = 0$, $t = 0$,

II:
$$x_a = -1$$
, $y_a = 0$, $t = 0$.

If we blow-up I, i.e. substitute

$$x_a = t x_{a+1}, \quad y_a = t y_{a+1},$$

we get

$$X_{a+1}$$
: $y_{a+1}^2 = t^{2a} x_{a+1}^2 (1 + t x_{a+1})$

with the only NZ-point $x_{a+1} = 0$, $y_{a+1} = 0$, t = 0, and the same situation will appear after any number of blowing-ups. So, remembering that for every k

$$x = t^{a+k}, \quad y = t^{a+k} y_k, \quad z = t^a,$$

we see that I corresponds to the z-axis, which must be a component Y_1 of Y. Now we consider II. We substitute

$$x_a = -1 + tx_{a+1}, \quad y_a = ty_{a+1};$$

we get

$$X_{a+1}$$
: $y_{a+1}^2 = t^{2a-1}(-1+tx_{a+1})^2 x_{a+1}$;

the only NZ-point of X_{a+1} is $X_{a+1} = 0$, $Y_{a+1} = 0$, t = 0. So we substitute

$$x_{a+1} = tx_{a+2}, \quad y_{a+1} = ty_{a+2},$$

etc. After 2a such steps we get

$$X_{3a}$$
: $y_{3a}^2 = (-1 + t^{2a} x_{3a})^2 x_{3a}$;

this surface has no NZ-points, so the procedure stops. Thus Y must contain a curve Y_2 on which

$$x+t^{2a} \equiv 0 \mod t^{4a}, \quad y \equiv 0 \mod t^{4a}$$

Such a curve can be of course characterised by

$$Y_2$$
: $x+z^2=\lambda z^4$, $y=\mu z^4$, λ , μ bounded.

Thus finally any Lipschitz stratification of X is

$$X\supset (z\text{-axis})\cup Y_2\supset \{0\}.$$

As a second example we derive a relation between Lipschitz stratifications and polar curves. Let X be a surface in C^3 . Assume that the projection π : $C^3 \to C^2$, parallel to the z-axis, is proper when restricted to X. For every $\xi \in C^2$ we have the projection $\pi(\xi)$: $C^3 \to C^2$, parallel to $(\xi, 1)$. Let $P(\xi)$ be the polar curve determined by $\pi(\xi)$, i.e.

$$P(\xi)$$
 = the closure of $\{x \in X_{reg}: d\pi(\xi): T_x X \to T_{\pi(\xi)x} C^2 \text{ is not a linear isomorphisms}\}.$

There exists an open set Ω in \mathbb{C}^2 such that the number of components of $P(\xi)$ for $\xi \in \Omega$ is independent of ξ :

$$P(\xi) = P_1(\xi) \cup \ldots \cup P_{\mu}(\xi),$$

and the Puiseux expansion of every $P_{\alpha}(\xi)$ has the form (after introducing $x_1 = x$, $x_2 = y$)

$$P_{\alpha}(\xi): \quad x_{i} = \varphi_{i}^{\alpha}(z^{1/r}, \xi)$$

$$= \sum_{i=1}^{j(i,\alpha)-1} a_{ij}^{\alpha} z^{j/r} + b_{i}^{\alpha}(\xi) z^{j(i,\alpha)/r} + o(z^{j(i,\alpha)/r})$$

where φ_i^{α} are analytic in z, ξ , $a_{ij} = \text{const}$ (independent of ξ) and $b_i^{\alpha}(\xi) \neq \text{const}$ at least for one i (remark that $j(i, \alpha)$ is finite at least for one i, for every α).

For every α let $j(\alpha) = \min_{i=1,2} j(i, \alpha)$ and

$$Y_{\alpha}$$
: $x_i = \sum_{j=1}^{j(\alpha)} a_{ij}^{\alpha} z^{j/r} + o(z^{j(\alpha)/r}), \quad i = 1, 2,$

where, of course, $o(z^{j(\alpha)/r})$ denotes any function going faster to 0 than $z^{j(\alpha)/r}$. We shall prove that for any choice of the "remainders" $o(z^{j(\alpha)/r})$ the curve Y defined by

$$Y = X_{\rm sing} \cup Y_1 \cup \ldots \cup Y_{\mu}$$

satisfies (*).

It is enough to show that for any two curves $q_1(t)$, $q_2(t)$, lying in $X_{reg} \setminus Y$ for $t \neq 0$, such that

ord
$$|q_1(t) - q_2(t)| > \text{ord } d(q_1(t), Y),$$

(*) holds, with C depending maybe on these curves.

So let $q_1(t)$, $q_2(t)$ be such curves. Then we remark that there exists a number c>0 and an open and non-empty set $\Omega_0\subset\Omega$ such that for all $\xi\in\Omega_0$

$$d(q_1(t), X_{\text{sing}} \cup P(\xi)) \ge cd(q_1(t), Y)$$
 for all t sufficiently close to 0.

We change coordinates. Let \bar{x}_1 be any axis such that, for some c' > 0,

Take any $\xi_0 \in \Omega_0$ such that $\partial/\partial \bar{x}_1 \notin \ker \pi(\xi_0)$ and let $\ker \pi(\xi_0)$ be the direction of the \bar{x}_3 -axis. The \bar{x}_2 -axis we choose arbitrarily. We can suppose that $q_1(0) = q_2(0) = 0$.

We take for H the plane $\bar{x}_1 = 0$ and define $T_q^0 X$, P_q^0 etc. as before. Thus we have to prove that

$$|P_{q_1(t)}^0 - P_{q_2(t)}^0| \le C|q_1(t) - q_2(t)|/d(q_1(t), Y).$$

Let us take an integer N such that if

$$\psi(\bar{x}_1, \bar{x}_2, \bar{x}_3) = (\bar{x}_1^N, \bar{x}_2, \bar{x}_3),$$

then $\psi^{-1}(q_i(t))$ have branches which can be described by

$$\tilde{q}_i = \tilde{q}_i(\bar{x}_1); \quad \bar{x}_i = g_i^{(i)}(\bar{x}_1), \quad j = 2, 3; \ i = 1, 2,$$

 $g_i^{(i)}$ analytic, and further

ord
$$d(\tilde{q}_1(\bar{x}_1), \psi^{-1}(Y)) = b \in \mathbb{N}$$
.

Put

$$\bar{x}_i = g_i^{(1)}(\bar{x}_1) + u_i \bar{x}_1^b, \quad j = 2, 3,$$

where u_2 , u_3 are new variables. Thus we have maps

$$C^3_{(\bar{x}_1,u_2,u_3)} \xrightarrow{\varphi} C^3 \xrightarrow{\psi} C^3$$
.

Let $H' \subset C^3_{(\bar{x}_1, u_2, u_3)}$ be given by $\bar{x}_1 = 0$ and

$$X^* = \overline{(\varphi\psi)^{-1}(X) \setminus H'};$$

let

$$q_i^*$$
: $u_j = h_j^{(i)}(\bar{x}_1), \quad j = 2, 3; i = 1, 2,$

be the equations of the curves \tilde{q}_i in the (\bar{x}_1, u_2, u_3) -coordinates.

Now if we take a projection $\pi(\xi)$, where $\xi \in \Omega_0$ and $\ker \pi(\xi)$ contains a vector $\alpha(\partial/\partial \bar{x}_2) + \beta(\partial/\partial \bar{x}_3)$, $\alpha \neq 0$ or $\beta \neq 0$, then

 $P^*(\xi) \stackrel{\text{def}}{=}$ the polar variety of X^* defined by the linear projection

whose kernel contains $\alpha(\partial/\partial u_2) + \beta(\partial/\partial u_3)$

$$= (\varphi \psi)^{-1} (P(\xi)) \subset H',$$

by the choice of b. The set of projections in the $C^3_{(\bar{x}_1,u_2,u_3)}$ — space for which the above formula holds, is of course open in the set of all projections parallel to H' (with one-dimensional kernel). This implies that X^* has no NZ-points. Thus

$$|P^0_{q_1^{\circ}(\bar{x}_1)} - P^0_{q_2^{\circ}(\bar{x}_1)}| \leq C \, |q_1^{*}(\bar{x}_1) - q_2^{*}(\bar{x}_1)|,$$

so

$$|P_{q_1(t)}^0 - P_{q_2(t)}^0| \le C|q_1(t) - q_2(t)|/|t|^b.$$

References

- [1] T. Mostowski, Lipschitz equisingularity, Dissertationes Math. 243 (1985).
- [2] A. Robinson, Introduction to Model Theory, North-Holland, Amsterdam 1963.
- [3] B. Teissier, Variétés polaires II, in Actes de la Conférence de géometrie algébrique à la Ràbida, Lecture Notes in Math. 961, Springer-Verlag, Berlin 1981, 314-491.
- [4] H. Whitney, Complex Analytic Varieties, Addison-Wesley, Reading 1972.

Presented to the semester Singularities 15 February-15 June, 1985