SINGULARITIES
BANACH CENTER PUBLICATIONS, YOLUME 20
PWN--POLISH SCIENTIFIC PUBLISHERS
WARSAW 1988

TANGENT CONES AND LIPSCHITZ STRATIFICATIONS

TADEUSZ MOSTOWSKI

Institute of Mathematics, Warsaw University,
Warsaw, Poland

1. Introduction and statement of the results

This paper is closely related to [1].

In [3] B. Teissier gave an algebraic characterisation of Whitney’s
conditions. It would be interesting to have also an algebraic characterisation
of stratifications satisfying the estimates of Proposition 1.1 in [1].

We shall do here the first step in this direction, i.e. for a given (germ at 0
of an) analytic set X < C" we shall give an algebraic description of all
analytic sets Y such that, for some constant C,

(%) |P,, — Py l < Clg, —gqal/dist (19, g2}, Y)

for all q,, g,€ X,,,, where P,: T.C"— T, X is the orthogonal projection. It
relates the inequality (*) to singular parts of tangent cones to X at points of
Xsin 4

sTo get an idea of how our characterisation looks like, consider for a
moment a hypersurface X given by one equation F = 0, F without multiple
factors. Let pe X,,; we have the notion of the tangent cone C,(X) = T, C"
to X at p ([4]). It is given by G,({) = 0, where G, is the homogeneous part
of F(p+¢) and ¢ =(&,, ..., £,). Assume that G, has no multiple factors for
all p. Let C,(X) be the singular part of C,(X). Then, as we shall prove, a
necessary condition for Y to satisfy (x) is

(1) Cp(X) = C,(Y) for all pe X,

and this is the only condition for tangent cones to Y.

To treat the general case we need a definition, closely related to Zariski’s
equisingularity.

Consider the space C" with a distinguished hyperplane H, given by |x,
= 0}. We shall say that a linear projection n: C"— C* (where C? is given by
Xg+1 =0, ..., x, =0) is parallel to H if its kernel is spanned by vectors in H.
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Let X < C" be a hypersurface, given by a reduced equation F = 0, such
that dim X " H < n—1. A point pe X N H will be called a Z-point of X i, for
a generic projection n: C"— C*! parallel to H, the discriminant of F with
respect to m is # 0 for all x; # 0, in a neighbourhood of n(p). (The kernel of
any projection. m, parallel to H, contains a unique vector of the form a
=(0, a,, ..., a,_1, 1); the space of all such projections can be thus identified
with C"~2? and genericity means “outside of an algebraic set”. If a projection
n induces a finite map X — C""! and we choose the x,-axis so that
(xy, ..., X)) =(x;, --., X,—1), then F is equivalent, in a2 neighbourhood of p,
to a distinguished polynomial with respect to x,; the discriminant of this
polynomial we call the discriminant of F with respect to =).

A point in X nH which is not a Z-point will be called an NZ-point;
thus we defined two subsets of X " H: Z(X) and NZ(X).

Let peZ(X); we choose the x,-axis to be the kernel of the generic
projection m. Then X can be described in a neighbourhood of p in terms of
Puiseux senies:

xn=pn+¢a(xilr’ xls""xn—l)s ﬂ=1,..., k:

where p, is the x,th coordinate of p and the analytic functions
Qu(t, X9, ..., x,_4) satisfy, for every r-th root of unity ¢,

(2) (Pa(ts Xgy -ney Xp- 1)_(pﬂ(£t7 X2y c0ey Xp— 1)
is either identically O or # O for all x, # 0.

Now suppose that X < C" is of pure dimension d and dim X N H <d.
A point peX n H will be called a Z-point of X if for a generic projection n: C”
— C¥*1 parallel to H, the point n(p) is a Z-point of the hypersurface n(X);
the distinguished hyperplane of C**! is of course {x, = 0}.
It is easy to prove that p is a Z-point of X if and only if for generic axes
Xi4+1s -++5 Xy in H the coordinates of points of X in a neighbourhood of p
satisfy equations of the form

(3) X =Yia(xty X3, s xg), a=1,...,a,i=d+1,...,n,
where, for every i, the analytic functions @,(t, X3, ..., Xg) = ¥, . (t, X5, ..., Xg)
satisfy (2).

Now we return to our problem. Let X < C" be of pure dimension d and
pe X. Let M — C" be the o-process centered at p and M, its exceptional
fiberr We cover M by open sets M,,...,M, such that
(M;, Mg M) = (C", {x, = 0}). Let )Z’p, ]7, be the strict transforms of X and
Y; put

NZ(X,)=UNZ(X,nM).
Then a necessary condition for Y to satisfy («) is

) NZ(X)<Y,nM, for all peX,,.
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This is a condition for the tangent cones C,(Y), for f’pmMO can be
identified with C,(Y) in the following way. My =~ CP"" !, so Y,n M, is a
projective variety given, say, by homogenous equations G;(£) = 0. These
equations define also a subset of C": {p+¢: G;(¢) = 0!; this set is C,(Y).

It is easy to check that (4) generalises (1); under the assumptions of (1)
NZ(X,) is identified with C,(X) as Y, M, is identified with C,(Y).

Now C,(Y) can be considered as the “first non-trivial jet” of Y at p; this
suggests that (4) should be considered as the first of a sequence of conditions
for Y, of the same nature.

We need some notation. C" with subscripts Cj, C7, ... will all be copies
of C" with the distinguished hyperplanes H,, H,, ..., given by x; = 0.

For every i, 1 <i<n, and peC" we put

g €3 =C",  6h(xy, .y X)) = PH(X) Xy ooy Ximy Xy Xiy X Xig 1y 2000 X x,)
(o-process). For every ae N let
Y C = Ch, Y (xy, ..., x) =(x%, x2, ..., X,).
For pe C} (j = 1) let o, be again the o-process
Cii13(X15 ooy X2 p+(Xg, X1 Xa, .y Xy X5)€ CF.
For an equidimensional X < C" we put
X% (p) = strict transform of X under ¢,
X5 (p) = NZ(X%(p) = Ho,
o ={(p, Po): PEX,ng, Po €X0(P)} = Xy X C3,
XS‘ = {(P, Po): pexsing’ Do EXG‘(P)} < Xsing xH,.
For every Y < C" we define
Y; (p) = strict transform of Y under o},
Y5 = {(p, Po): PEX s Po€Y5(P)} = Xy X C3,

Yovi = {(P, pO): peXsing’ poeyci(p)('\Ho} c Xsing XHO.
For every ae N let

TP = W)™ (XL (p)s
Yi“(p) = W) ' (Ys(p),
XP = {(p, p1): P Xyng> PLEXT (D)},
Y1 = {(p, P1): PE Xong» P1€ Y1°(P)},
X(p) = X5' (p),
Yy (p) = Yo' (p);

20 — Banach Center . 20
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the two last sets are considered as subsets of H,; H, is just another copy of
H,.
By induction on k we shall define subsets

Xy X, <xH x...xH_, <},
XX, xH,x...xH,_, xH,;

sing

sing

they will be in the form

Xi = Up, Prs ooy 27 (Py Prs ooy Pi-1) €XCY,
(P. P1s -y P €X' (P, iy - Pui)}s
X9 = WP, Prs--os PO Py P1s - s P-1) €X009,
(P P1s .- PIEXS(D, Prs -y D))
It suffices to define X{?(p, p1, ..., px-1) and X (p, p1s ..., Pu—1); they are
given by
X&(p, p1s .., Px-1) 1s the strict transform of

Xia-l(p9 Pis ..oy pk-Z) under aph—l: C:__’C:—l’

XkAia(p’ Pis « s Pk—l) = NZ(XLG(Ps Pis «-+» pk—l))'
For every Y < C" and k > 1 we define

Ykia = :(p; pl9 LR ] pk): (P, P1s -+ pk—l)EXkA—iala PkEW“(Pr Pi1s -+ pk—l)}9
K@ = {(py Prsoeor P (Pa Puy s Pom ) EXOY, €YD, Py s Pr- 1))

where Y°(p, py, ..., Px—1) is the strict transform of Y2, (p, py, ..., Px_2)

under O 1

Yk“'“(p, Pis--s Ph—1) = Ykia(Pa P1s -5 Px—1) N Hy.

Our characterisation of sets Y satisfying (*) is as follows.
ProrosiTioN. Y satisfies (%) if and only if X < Y,v' for all i, k, a.

We shall give two applications of this proposition. We shall work only
with (germs of) algebraic sets.

Let K, N be given positive integers. Let g;, be vanables, i =1, ..., K, a
= (g, --es Xp), &) =+ ... +a, < N. We consider g;, as coordinates in an
affine space Ggy. Any point g =(g,,)e Gxky gives K polynomials g;(x)
=) giax%, and so we can define

a

Y,={xeC" gi(x)=0for all i=1, ..., K}.

Recall that the family of constructible sets in C” is the Boolean algebra
of subsets of C" generated by all algebraic sets.
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CoroLLARY 1. Let X < C" be an algebraic set of pure dimension d. Then,
for every K, N, the sets
Gy (X) = |geGgy: Y, satisfies (x) in some neighbourhood of 0},
Gxn(X) = {geGyy(X): dim Y, < d}
are constructible (and, by [1], non-empty for sufficiently big K, N).

Gyn(X), Ggn(X) are not always algebraic.

ExampLE. Let X be a surface having 0 as an isolated singular point
such that C,(X)# {0}. By [1], there exists a curve Y satisfying (). By
Lojasiewicz’s inequality

|P,—P,| < Clg—q'l/dist({g, ¢'}, 0) for all q, ¢'e X\ {0},

for some k, and therefore, as is easy to see, there exists an integer p such that
any curve Y satisfies () provided that

dist(x, Y') < |x|? for all xeY, sufficiently close to 0.

Enlarging Y if necessary, we can assume that it is given by P, =0, ..., P,_,
= 0 and the ideal generated by the P;’s and the (n— 1) x(n— 1)-minors of the
matrix (0P;/0x;) contains (for some m) m™, where m =(x,, ..., x,). We take a

coordinate system such that the x,-axis is not contained in Cq(X). Let Y, be
given by

xY =P (x), ..., x)-y = ePp_y(x).
Then, if N is big enough, we have, for every ¢ # 0,’
dist(x, Y) <|x|? for xeV,|x| <§é,,

where &, > 0, and so every Y, satisfies (*) (for ¢ # 0). However Y, doesn't
satisfy (%), since Cy(Y) D CoH(X).
Now let X, Y < C" be two algebraic sets, X of pure dimension d. Let
L(X,Y)={peX,,: (x) is satisfied in a neighbourhood

sing *
of p, with a constant C depending on p},
NL(X’ Y) = Xsmg\L(X’ Y)

CoroLLARY 2. NL(X, Y) is algebraic.
In the sequel the letter C will denote different constants.

2. Preliminaries

We consider two copies C;, €} of C" with coordinates x,, ..., x, and
Vi ---» ¥ respectively. Let H,={x, =0} < C}, H,={y, =0 < C;. We

¥
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shall list some obvious properties of the maps o, y: C; — C; given by

(Vs - s Y = (V15 Y1 Y25 ---» Y1 ¥a) (0-process),
'/I(yh R yn) = (y‘i: Ya, .- yn))

where a is a given positive integer. Let f be either ¢ or .

For qe C3 (resp. ge C) let H,, (resp. H, ;) be the hyperplane parallel to
H, (resp. H,) passing through g (resp. g).

Let 4y, 4,€ C} and g, = f(q}), 92 = /(). Let

0 cT,CnH,; i=1,2,
be two linear subspaces and let IT; = T, €7 be their images under df. Since

C;, C, are linear spaces, we can speak about the angles (1, ),
{(nl’nl);

(5) ¥ (1, 11,) = x(,, 0.

This is obvious, since

Y aj oy ell; = Y a;(9/ox)l, €ll; fori=1,2.
J Jj

Let X < C'(resp. X < C}) be analytic sets. For ge X, (resp. cje)'("reg) we
define

05 o
(6) T’X=TXnH,, (resp. T X =T, XNH,,.
Let

(7 P: TC:>TYX, P T;C-T'X

be the orthogonal projections and
oL 0
(8) Pt=1-P], P =I-P]

Let X — C7 be a given analytic set and take for X the strict transform of
X under g if f =0 and ¢~ (X) if f = . Let G, §,€X ,\H,, ¢ = f(g) for
i =1, 2. Then (5) gives

©9) AR AL

For every qeC} (resp. §e€C}) we put
(10) d°(q, X) =dist(q, X " H,,) (resp. d°(F, X) =dist(7, X n H,})).
Let §eC; and g = f(§) €C}; then we have

o qe@ R, =y,
(b . X)‘{qld%‘i, %), iff-o

where ¢, 1s the x,-coordinate of g.
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If g(t) is a germ of a curve at 0 (7, such that
v=l1mq@)/|g (1) eCo(X),

1—0
but <« (v, H,) > ¢, then there exists a C, depending on ¢, such that
(12) d°(q (1), X) < Cdist(gq(1), X).

We shall also use two trivial observations from elementary geometry.
Let H = H" ! < C" be a hyperplane and IT9, 15 two linear subspace of H,
of the same dimension. Let v,, v, be two unit vectors in C" such that

X(H,vp=2B>0 fori=1,2|p,—v, <a.

Put II, = O°@®Cv;, and let P, (resp. P?) be the orthogonal projection of
C" onto II, (tesp. II?), P+ =I1—P;, P?+ =1—P?. Then

|PS* Pl < [Py Pyl (1+(1/sin §)),
|P#Py| < |P3* PY|(1+(1/sin B)) + (a/sin B).

Let n: C" — ¥ be the standard projection, m(x,, ..., X,) = (X1, ..., Xg)
and let T, T' be two d-dimensional planes in C" such that <« (T, kern@) > ¢,
X (T, kerm) > €. If w,, w, are liftings of ¢/0x, to T, T' respectively (k < d), then,
for some C, C’, depending on ¢,

(13)

(14) Cmax (W, w) < (T, TY< max X (wy, wp).
3. A characterisation of Z-points

Let X < C" be an analytic set of pure dimension d and H = {x, =0} = C".
T'X, P, P2+ are defined (for geX,,) as in (7) and (8).

reg

Lemma 1. A point pe X nH is a Z-point of X if and only if there exists
a C, depending on p, such that

(15) P3Pyl < Clay — g,

1 7492

for all q,, q;€X ,\H, having the same x,-coordinate, lying in a suitable
neighbourhood of p.

Proof of the “if” part. Let p be a Z-point. We choose axes x4, 1, ..., X,
in H so that the coordinates of points of X satisfy (2) and (3). Then if ge X
has coordinates

(xls veey Xgy ¢d+l.ad+l(x}./r! LR xd)’ Ty d’n.an(x%/rs vy xd’))’

then 7' X is spanned by

we(g) = (ox)+ Y [&/x)iq] 0/ 0x;,

i=d+1
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1 <k<d It is easy to prove (the details are in [1]) that |w,(g) <C,
[wi (@) —wi ()| < Clg—4q'| for all k and for every q'€ X\ H having the same
x,-coordinate as g. This, together with (14), implies (15). O

For the “only if” part we need a lemma.

LEmMA 2. Let I' = C" be a germ of a curve at p, singular at p, and let
[ = C" be a line. Assume that the orthogonal projection n;: C"— | induces an
isomorphism T, ' — T, )| for every q # p and the norm of its inverse is < C, C
independent of q. Then there exist sequences of points q,, q, €I, such that
qv # 4y, 4y, 4y — P, and

(T, I, T, D/lg,—q.| — .

Proof. We can assume that p = 0 and ! is the x,-axis. Consider the case

n = 2. Assume first that I' contains a component Iy, singular at the orgin.
Then Iy can be described by

x, =t, x;=A4A(), r=2, 4 analytic.
For every r-th root of unity ¢ # 1 we have A(er) # A(t) for all t # 0, so
Aet)—A(t) = t*u(), u(0)#0,

and thus A'(et)—A'(t) is of order t* 1 It is easy to calculate that if g
corresponds to t# 0 and ¢ to &, then |g—¢q'| is of order |t/*, while
X(T,T, T, I is of order |t|*™".

In the other ease I' contains two nonsingular components I'y, T,
intersecting at 0, given by

Iy:x;=4(xy), T3 x3=p(xy), A, p analytic.

Clearly A(0) = z(0) = 0 and A(x,) # u(x,) for x; # 0. We take g lying on I',
and q' on I', and repeat the reasoning.

 If n > 2, we take a linear projection n: C* — P on a plane P containing !
such that =|I" is proper and, for some C,

lg—q| < Cl|n(@)—=n(q)l for all g, qel,, close to 0.

Necessarily n(0) is a singular point of n(I'). Let g,, q,en(I),, satisfy the
conclusion of the lemma for z(I') and we take for q,, 4, any points in I,
projecting into §,, q,.

Returning to the proof of Lemma 1 we take a point pe X N H such that
(15) is satisfied in a:neighbourhood of p. Let p, be a germ of an analytic map
(C, 0) = (C", p) such that pe X ,\H for t # 0. There exists an open and
dense set D of projections*C" — (¥, parallel to H, such that for every neD
we have: n: X —» (Y is proper and for some C = C(n) and every t # 0,
dr(p): T, X — Tg,, " is an isomorphism and the norm of its inverse is

bounded by C.
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Fix a neD; after a translation and a coordinate change in H we can
assume that p=0, n(x,, ..., X,) =(Xy, ..., Xg).
1° There exists a C' = C'(n) such that for every qe X\ H, sufficiently
close to p,
drn(q): TP X — Tq, C*

is an isomorphism and the norm of its inverse is bounded by C'. For
otherwise, using the curve selection lemma for real semianalytic sets, we
prove that there exists a real-analytic map g(r) such that q(r)e X,.,\ H for
r # 0, g(0) = 0 and the norm of the inverse to drn(g(r)) tends to o (re R). Let
q(t) (te C) be the complexification of g(r). We reparametrise ¢(¢) and p(t) so
that the x,-coordinates of q(¢) and p(t) coincide and we get a contradiction
with (15).

2 X, < H. For suppose it is not so. Then dimX; \H =d-1.

Let W = n(X,,,\H); clearly dim W = d—1. A general line [ in €, parallel to
{x, =0}, intersects W transversally; its lifting I' to X has singular points.
Applying to I' Lemma 2 we get sequences of points gq,, q, €I’ such that
(1, I, T N/lg,—q, =o. Now, using (14), we get a contradiction
with (15).

3% Let X' =(x3, ..., X5, y =(Xg41, ---» Xp)- It follows from 2° that there
exists finitely many C" %.valued analytic functions ¢,(t, X), @,

= (Qga+1>---» Pa,) and an integer r such that if (x,, x’, y)€X, then, for
some a,

y = @, (x{", x).

For any a and any r-th root of unity ¢ we put

(b, x) = @a(et, x) =@, (t, X) = (Yuu s (¢, X), ..., ¥alt, X))

For these  that don’t vanish identically let {for a generic x') ord, y; = s;(at ¢
= 0); after a permutation of x4,,, ..., x, we can assume for simplicity that
sd+1 = ... =sd+k =3 and Si >395 fOl‘ l >d+k. Thl.lS

v =, x), (0, x) not identically O.

We shall show that at least one of the ¥, for i <d+k is #0 at
x'=0=mn(p). _
Suppose that (0, 0) =0 for all i <d+k. Then

Vilt, X) =y (x)+ 0", Yr0) =0, i<d+k,
Vilt, X)=0(@"Y), i>d+k.
For t, x’ unprecised for the moment let

(16) g=('. x, @, (t, X)), 4q =(", x, @,(et, xNeX.
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Then |g—q| = Y (t, x')| and it follows from 1° (14) that
X (TP X, TP X) is of order max |0y (2, x')/dx/,

25j<d
so (15) implies that
(17) 10,9 (t, x)| <Cly(t, x)) for 2<j<d,
where 0, = J/0x;. For 2 <j <d we have
Yi(t, x)=royr(x)+0@EY), i<d+k,
oy (e, x)=0(*Y, i>d+k.

Let ¢2(x’) be the homogenous part of y*, of degree, say, m;(i < d+k):
then

WE(x) = Y2 (x)+0(x|™ )

Let 2 be an open cone in the x'-space, with vertex at 0, disjoint with all
the cones ¥ (x') = 0. Let m = minm;; again we can assume that m; = m for
i<d+!, mj>mfor i >d+1 where | is some number < k. After a linear
change among x,, ..., x, we can assume that for all i <d+!

|62 (x) = C|x|™"" ! for x'e;
clearly for all x’

i (X)) < Clx1™.

Now take in (16) x'eQ, |t| = |x|™. Then
Wi (e, XN < [P IF () + XD < Clx ™D, i< d+k,

Wit, X) S ClefP*! < CIX™S*D, i > d+k,
SO
W (e, X) < Clx|™e* D,
But for i <d+1
1820 (e, X = [t |G, y* (x) = O (I +Y)
2 C Itls lxrlm— 1 C Itls |x1|m___ C |x;!m(s+ 1) > C |xt|m(5+ -1

and we have a contradiction with (17).

4° After a linear change in the x;,,, ..., X,-coordinates we can assume
that for all «, g, and i, either y,; is identically O or ¥, (0, 0) # 0. This shows

that the set of me D for which the latter condition holds, is open and dense.
But this is equivalent to the definition of a Z-point, so pe Z(X).
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4. Proof of the proposition
Let X < C" be analytic, dim X =d.
Lemma 3. Let I be a germ at pe X of a curve such that I'\{p} = X,
Then the C™-function
n2

Te2q9—PeC
(where, of course, P,: C"— T, X) satisfies, for some C,

|DP,| < C/lg— pl

(even |DP,| < Cflq—pl* for some a <1, but we don’t need that).

Proof. Assume that p = 0. Let n: C"— ¥ be a projection such that for
all ge '\ {0} dn(q): T, X — ,,(q,C" is an isomorphism and the norm of its
inverse is bounded by some C. After a coordinate change in ¢! we can
assume that I' is given by x; = A,(x'), i = 2, ..., n, 4; analytic, ord 4, > r. Let
wy (), ..., wy(q) be liftings of 8/0x,, ..., §/0x, to vectors in T, X, geI',,; then
w; are analytlc in x}’* for some s; since they are bounded, ord w; = 5. Thus
IDwj < Clxl =5,

Now let I' be again a germ of a curve at p (=0 for simplicity),
F\ip} c X, let I be given by x; = 4;(x}"), ord 4, > r.

LemMa 4. For every ge I'\ {0} and any number ae C, |a| # 0 and small
enough, there exists a q'e '\ {0} having a as its x,-coordinate such that

|P; Pyl < Clg—q'l/min(lg,l, |al),
where g, is the x,-coordinate of q and C is independent of q, a

Proof. In the x;-axis we join g, and a by an arc L of length
< 2nlq, —a] such that for every teL

|t] = min(|q,l, |al).
We lift L to a real curve in I',,, starting at gq. If ¢' is its end, then,
by Lemma 3,
(Py Pyl < Clq, —al/min(q,l, lal) < Clg—q'l/min(iq,l, |al). 0
Lemma 4, together with (13), implies the following lemma.
Lemma 5. Let I'y, I', be germs of curves ar peX, I';\{p} = X,,,, such
that the angles between the tangent vectors to I'; and d/0x, are <(n/2)—a,

a>0. Let H=1{x, =0} and let Y < C" be any analytic set. Then the
following conditions are equivalent:

1° [P3, Pyl < Clay—qal/dist({q,, 423, Y) for all gie I\ (p};
ps |P°iP° < Clgy —qil/dist(1ay. g2}, ¥) for all qel\{p}, i=1,2,
such that q,, q, have the same x,-coordinate.
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We can now prove the proposition. We shall use the same symbols P°,
P°* for projections onto T° X, T°! X for various i, a, k.

1° Assume that YY" p X for some k, i, a;: we shall show that (¥)
doesn’t hold. We assume that the smallest k with the latter property is > 1
(the case k = 1, or, which is the same, k = 0, we leave to the reader). Thus,
for every pe X, we have C,(X) < C,(Y).

Let p=(p, p1»---» Po1) ENZ (X D\Y,YY. By Lemma 1 and the curve
selection lemma there exist germs of analytic maps g,(¢t), q,(t) such that
d1(0) = ,(0) = p, g, (1), G,(t)e Xi’_, ., for t # 0, the x,-coordinates of g, (r),
d, (t) coincide, and

\P3 1 Paol/|@: () =3, ()] is unbounded.

Let g, (t), q,(t) be the images of g, (1), g,(t) under o,¥“0, ... &
by (9), (11)

|Pasio Paol d° ({91 (1), 92(0)}, Y)/lqy () =4 (9)| is unbounded.

Pum1 then,

Clearly, q,(t), q,(t) are tangent at p to C,(X) < C,(Y) and g, (r) and g,(1)
have the same x;-coordinates; further

lim (4; ()/1d; () & {x = O} for j =1, 2.

t—0

Now (12) and (13) imply that
|Pay0 Paml dist (19, (), a2(1)}, Y)/lg,(t)—q2 (1)l is unbounded,

so (#) is not satisfied.

2° Assume that X" < Y,V for all i, g, k, but (%) is not satisfied. Then,
by the curve selection lemma, there exist germs of analytic maps q, (1), g, (r)
such that g,(0) = ¢,(0) = pe X, 9:1(t), q2(t)e X, for £ 0 and

Iqu(l) qu(n|d15t({‘11 (), g, (1)}, )/|Qx (t)—q,(¢)] is unbounded ([1]).
Select one of the coordinate axes, x;, such that, for some a > 0,

% (1im (4, 0/1g, (), {x, = 0}) < 4m—a.

By Lemma 5 we can assume that ¢, (¢), g,(¢) have_ the same x;-coordinate.
Let gt (2), g3%(¢) be the liftings of q,(¢), q,(¢) via a}; then

(18) P2y Pl d®(1g* (1), 43 (1)}, Y5)/lgt () — g3 (1)i is unbounded.

We choose a so that (%)~ '(q¥(r)) are sums of smooth curves I'j; given by
Fig: X =@pp(xy), s=2,...,n

By (9), (11), (18) remains unchanged if we pass from g} (t) to (y°) ' (g} (t)) and
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from X, Yj to X7, Y|°; further it remains unchanged after liftings via the o-
processes. But after a finite number of such liftings the strict transforms of
I';; become disjoint and we get a contradiction.

5. Constructibility of X, and Y, "
First we introduce some notation. If

F(t)y=bo+byt+...+b,_ 1" 141"
we define ([1])

AIF = Z* l_[*(tr_ts)’
a rs

) R Gl' »

where Z* denotes the summation over all a, such that a, # a; for k # j, and
n* the product over all r, s such that r # s and r, s # a; for all j. The ¢, are
of course all the roots of F. We consider 4] as polynomials in by, ..., b,_ ;.
Thus 4§ is the discriminant of F and F has less than n—k distinct roots if
and only if 4 =0 for all i <k.

If F(t) =ap+a,t+ ... +a,t", then we put G =bo+bit+ ... +b,_, " !
+t", where b, = a;/a,, and

Ar(ao’ re an.) = a‘:'(l') AIG(bO, rrey bn—l):
where k(i) is the smallest number such that Af is a polynomial.
LEMMA 6. Let S < CP be algebraic and X < S x C" algebraic. Let n: S
x C" — S be the standard projection, H = {x, = 0} = C"; assume that all the
fibers X, =n"'(s)nX c{s} xC"=~C" are of pure dimension d and

dim X, n H < d. Then there exists an algebraic set S; & S and an algebraic set
Z < SxC" such that Z, = NZ(X,) for all seS\Sy, where Z,=Z ~nn~1(s).

Proof. Assume first that d = n—1. There exists a polynomial F(s, x)
(se C?, xe C") and an algebraic set S; £ S such that

X,={x: F(s,x) =0} for all seS\S,.

For every {e H consider F (s, x+ A{) as a polynomial in one variable A with
s, x, ¢ as parameters; let Af(s, x, £) be its generalised discriminants. Let
Ci=1{(s,&: Af(s,x, &) =0 for all xeH}.

Let j be the smallest number such that (S\S,)xH ¢ C;; put C = C;, 4 = 4].
If A(s, x, &) =) 4,(s, {) x* (xe H), then C is given by 4,(s, &) = 0 for all a.

Let 4,(s, &) =Y 4,5(s) €% put So = §; U {444(s) = O for all a, B). It is easy to
see that NZ(X,) is given (for seS\Sy) by 4,(s, x) =0 for all y, where

A(s, &, x) =Y A, (s, x) &".
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Now suppose that d is arbitrary. Let I c Hx ... xH(n—d—1 times)
= H"" 97! be the set of all a =(ay.;. ..., a,) such that &/dx,, ..., /8x,,,
4443, ---, a, are linearly independent. Every aell determines a projection
[T(a): C"— C**'. There is a Zariski open set 2 = S xIT and an algebraic set
XcSxH" ' xC'""' such that if (s, a)eQ, then X,, =n(a)(X,) and
dim X, ,) = d. Choose a polynomial P(s, x) such that the complement of Q in
SxH" 4! is contained in {P=0}. By the codimension 1 — case there
exists an algebraic set W < S xH" 7! given by Q;(s, a) =0, and an alge-
braic set 3= SxH" 17! xC*"! such that Q ¢ 3 and 3, = NZ(X;,) for
(s, )e Q\W. Let S;=1{5: P(5s,a)=0, Q;(s,a)=0 for all i and for all
acH" 4 ') ¢ 8. Let G(s, a, z) = 0 be the equations of 3 (where ze C¢*").
For seS\S, we have: xeZ (X,) if and only if n(a) x¢ 3., for an open set of
a’s, so NZ(X,) is given by G;(s, a, n(a)x) =0 for all ae H" 47"

CoroLLARY 3. Let S C?, X < 8§ xC" be algebraic such that all the
fibers X are equidimensional. Then
NZ(X)=) ({S} xNZ(Xs))
ses
is constructible.

LEmMMma 7. Let S<CP, X, Y <8 xC" be algebraic. Then there exist
algebraic sets S, €8S and Z < § x C" such that Z;, = X\ Y, for all seS\S,.

Proof. Take any non-zero fel(X), ge€l(Y). After a linear change of
coordinates in C" we can assume that f=a(s)xi+...,g=b(s)x\+ ...,
where ... denote terms of lower degree with respect to x,. Let §,
= s€S: a(s) =0, b(s) =0} €8. Put X, =my(X,), where n,: C* >C"" ! is
the projection parallel to the x,-axis. Note that n,: X, — X is proper for
s¢S, and therefore X; are algebraic for s¢S,. There exist an algebraic set
X* < S xC" ' such that X; = X?* for s¢S,. There exists polynomials (s, x')
and ¢(s, x) (where x' =(xy, ..., x,_4)) such that: 1° 6 does not vanish
identically on X*, 2° for every (s, x)e X*\ {6 = 0} we have

(s, X', x,)e X\Y = (s, x', x,)=0.
Put
X, =X, nn5 ' ({8, = 0PV [X, N (o, = 0}],

where d,(x') =4(s, x) and ¢,(x) = @(s, x). Clearly X\Y, = X.\Y, and
X = [{s} xX,] is algebraic. If X, € X, for some s¢S,, we can repeat the

argument with X replaced by X. If X,=2X, for all s¢S,, then

X\Y, =[X,nng ' ({6, =01\ Y, W [X, nmg * (X¥\ {5, = O})]
and the conclusion of the lemma can be assumed to hold for
[Xsnmg '(16:, = O]\ Y, and X¥\ {5, = 0}.
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CoroLLary 4. | (1s} x X,\ Yi) is constructible.
seS

By induction on k we get now:

COROLLARY 5. Let § = C?, X, Y = 8§ xC" be algebraic and all the fibres
X, are equidimensional. Then, for all i, a, k |J[!s) x(X) ] UUs) (Y]

are constructible ; in particular (putting S = point) X,**, Y,”*® are constructible.

6. Proofs of the corollaries

Proof of Corollary 1. We observe first that Gy, (X) is semialgebraic (if
we consider C" and Gy as real vector spaces). In fact, the function

Xreg xchgB((Ila g,) l—r|P,“ —PQZIER

is semialgebraic (i.e. its graph is semiaigebraic) and similarly the distance
function (q;, q;) —lq; —q,|]. We rewrite the definition of Gy (X):

GKN(X) = {g Je > Ov C> qul’ q: EXregs I‘hl <&, Iqu <€, 3x g1 (x) = 0’
oo gk (x) = 0Py = Pp | < Clq, —g;|/min(g, — x|, |g2—x])};

now our claim follows directly from Tarski’s theorem (e.g. [2]).
Similarly the sets

KEX) = lg: X0 e (G0
are constructible since their definition can be rewritten as
{g: V(p, pl, Tt pk) (p’ pl’ trt pk)EXkAla = (p, pl, sey pk) e(y;)kvuz}

and, because of Corollary 5, the results of [2] can be again used. So the
semialgebraic set Gy (X) is a countable intersection [\ Ki*(X) of construct-

i,a,k

ible sets; this is possible, as is easy to see, only if the intersection stabilises.
Thus, for sufficiently big a, k we have

GKN(X)= ﬂ K;b(X)-

i,b<a,lsk

To prove that Gygy(X) is constructible, we have only to observe that
lgeGgy: dim Y, <r} is constructible for every r; it is easily proved by
induction on n. O

Proof of Corollary 2. We prove as before that L(X, Y) is semialgebraic.
Now for every pe X,,, we put

nia)

X2 p) = Upi, .o PO (P Pry - os P EXS,
kam(p) = {(pls RIS ] pk): (p’ pl’ Tt pk)EYkVia}.
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Again using [2] we prove that the sets
Ll;‘a___{pex . ka\iaCkaia:

sing *
are constructible. By our proposition L(X, Y) is the interior in X of
N Li{?; this implies, as is easy to see, that L(X, Y) is constructible. It follows

i,a,k

that NL(X, Y) is constructible, and, since it is closed, it is algebraic.

7. Examples

We shall use our proposition to give some explicit examples of Lipschitz
stratifications of surfaces in C>.
Let X be the germ at 0 given by

yr=x+z1x2

We shall describe all curves Y satisfying (*). Of course the only interesting
point is the origin. Clearly

Co(X): y=0.

First we find tangents to Y at 0.
a) If we substitute zx for z and zy for y, we get

v =x*z+x.
The only NZ-point is x =0, y = 0, z = 0; it corresponds to the z-axis so the

z-axis must be tangent to a component of Y.
b) If we substitute %z for z and xy for y, we get

yi=x+x2z%
and this surface has no NZ-points.

Thus we can assume that Y is tangent to the z-axis. Now we take any
integer aec N and put

z=1t, x=t""'x,, y=1r"*1y,.

The strict transform of X is
X0 yi=t""1x2" g,
it has only one NZ-point: x, =0, y; =0, t =0. We have to substitute
Xy =1x3, yp =1y;.
The strict transform of X, is

Xy yi=0""1x3r" 24 x,.
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The only NZ-point is again x, =0, y, =0, t =0, so we have to substitute
Xy =1X3, Y3 =1ys,
etc. After a such steps we get
X yi=r12x2(1+x,).
X, has two NZ-points:
I: x,=0,y,=0,t=0,
II: x,=-1,y,=0,t=0.
If we blow-up I, i.e. substitute

xa=txa+la ya=tyn+l’
we get

. 2 2 2
Xor1: Yer1 =tx50 (1 +1x,44)

with the only NZ-point x,,, =0, y,,; =0, t =0, and the same situation
will appear after any number of blowing-ups. So, remembering that for

every k
X = ta+k’ y = ta+lyh z = t‘,

we see that I corresponds to the z-axis, which must be a component Y, of Y.
Now we consider II. We substitute

Xg=—1+1xXa41, Ya=1YVar1;
we get
Xovtt Yaer =17 N =141x0401) Xai 1
the only NZ-point of X,,; is x,4.1 =0, y,+1 =0, t =0. So we substitute
Xa+1 = Xg425  Ya+1 = Vo412,
etc. After 2a such steps we get

X3t Vie=(—1+1%x3.)" x3,;

this surface has no NZ-points, so the procedure stops. Thus Y must contain
a curve Y, on which

x4+t =0 modt**, y=0 modt*.
Such a curve can be of course characterised by
Y,: x+z'=2z% yv=pz*, A, u bounded.
Thus finally any Lipschitz stratification of X is
X o (z-axis)u Y, o {0}).
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As a second example we derive a relation between Lipschitz stratifica-
tions and polar curves. Let X be a surface in C*. Assume that the projection
n: C® — C?, parallel to the z-axis, is proper when restricted to X. For every
£e C? we have the projection n(£): C* — C?, parallel to (&, 1). Let P(&) be
the polar curve determined by n(¢), i.e.

P(&) = the closure of {xe X ,: dn(f): T, X — Tpp), C*
is not a linear isomorphisms}.

There exists an open set Q in C? such that the number of components of
P(¢&) for £e Q2 is independent of &:

P =P (Ju...0P,(),

and the Puiseux expansion of every P,(&) has the form (after introducing x,
=X, X = y)

Pa (5) X = (p:'.z(zl[r, é)
j(i,!j_ 1 . g e
— Z a?j Zir 4 b2 (&) ZJGair 4 g (ZJ(x.a)/r)
j=1
where ¢f are analytic in z, &, a;; = const (independent of &) and b} (&) # const
at least for one i (remark that j(i, «) is finite at least for one i, for every a).

For every « let j(a) = min j(i, «) and
i=1,2
jta) _ _
Yooxo= Y dgiro(@®), =12,
j=1
where, of course, 0(z/®") denotes any function going faster to O than z/@"
We shall prove that for any choice of the “remainders” o(z/®") the curve

Y defined by
Y= X,

sing

vYu...uY,
satisfies ().
It is enough to show that for any two curves q,(t), q,(t), lying in X \Y

for t # 0, such that
ord g, ()~q, (1) > Ordd((h(t), Y),

(x) holds, with C depending maybe on these curves.
So let g,(¢), q,(t) be such curves. Then we remark that there exists a

number ¢ >0 and an open and non-empty set 2, = 2 such that for all
e

d(q,(t), X, P(O) = cd(q,(1), Y) for all ¢ sufficiently close to 0.

We change coordinates. Let X, be any axis such that, for some ¢’ > 0,

« (a/ﬁf, » 41 (014, (1)) < 3n—c.
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Take any &oe Qo such that d/dx, ¢ker m(&,) and let ker (&) be the direction
of the x,-axis. The x,-axis we choose arbitrarily. We can suppose that g, (0)
=4,(0)=0.
We take for H the plane X, = 0 and define T” X, P etc. as before. Thus
we have to prove that
|P.(;),(:)_P22(:)| < Clgy ()—q,()l/d(g, (1), Y).

Let us take an integer N such that if
WXy, X3, X3) = (56';", X2, X3),
then ¢~ '(q;(r)) have branches which can be described by
G =q(x): x;=gMx), j=2,3i=12,
g} analytic, and further

ordd(q, (x,), ¢ ' (Y))=beN.
Put
’—x__fzg‘()”(il)-{_uj'?i’ .’=23 35
where u,, u; are new variables. Thus we have maps
¥
C(Sil"‘Z"'a) _’E'*C3 _’CJ.
Let H = C, ., ., be given by X, =0 and

X* =(oy)" H(XO\H';

let

gt w=h(x), j=2,3;i=12

be the equations of the curves g; in the (X, u;, us)-coordinates.
Now if we take a projection n (&), where £eQ, and ker n(£) contains a
vector a(d/0x,)+ B(9/0x3), a # 0 or B+ 0, then

del

P*(&) = the polar variety of X* defined by the linear projection
whose kernel contains a(d/0u,)+ B(0/0us)

= ()" ' (P(&) = H',

by the choice of b. The set of projections in the C?;l — space for which

the above formula holds, is of course open in the set of all projections
parallel to H' (with one-dimensional kernel). This implies that X* has no
NZ-points. Thus

J42,43)

IP%(:E““ sz(illl < Clgt (x1) — g3 (x,)l,
SO

|P3 = Poyol < Clgy () —qz (0l/jef O

21 Banach Center t. 20
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