MATHEMATICAL PROBLEMS IN COMPUTATION THEORY
BANACH CENTER PUBLICATIONS, YVOLUME 21

PWN - POLISH SCIENTIFIC PUBLISHERS
WARSAW (988

SYNCHRONOUS PARALLELIZATIONS OF SERIAL
COMPUTER PROGRAMS

K. CULIK

Computer Science Dept., Wayne Srate University, Detroit, Michigan, U.S.A.

1. Motivation (Supercomputer and Parallelization)

The Supercomputing Research Center sponsored a Workshop on Parallel
Architectures and Algorithms in July 1985 [11], where about ten various
supercomputers and candidates of supercomputers were described,. advertized
and discussed. All of them were multiprocessors, 1.e. parallel computers, and
the number of processors varied between 4 and 64000. The point is that all
designers found necessary to exploit a parallelization of algorithms to utilize
all (or many) processors available to achieve very high speed (a supercompu-
ter is just a very fast computer) a very schort execution time of programs.

A programming of a supercomputer is such a programming of a parallel
computer with N > 1 processors which leads to an algorithm having the
shortest execution time, eTy, possible (with N processors), or the greatest
speedup, Sy = eTy/eT,, where eT; is the execution time using one single
processor. The processor efficiency i1s defined by Ey = Sy/N [8].

The superprogramming is expected to be more difficult than a usual
serial programming because of the additional requirement concerning the
minimal execution time which is often called an execution efficiency. There-
fore 'a conflict between the readability and the execution efficiency [7] is
revived. Here the execution efficiency must not be sacrificed to the readabili-
ty as a structured programming methodology admits [13].

A crucial question is how powerful one processor is. The CONNEC-
TION machine (T. Knight from MIT, and Thinking Machines Corp) has
64000 bit processors.

Thée BUTTERFLY (BBN Lab) and the HYPERCUBE (J. Fox from Cal
Tech, and Intel) computers have 128 and 64, processors, respectively. Each
processor (as a serial computer) consists of a cluster of basic processors for
the execution of basic algorithms (of arithmetics and propositional logic)

206 K. CULIK

together with the local memory. Therefore any coordination among particu-
lar clusters must be done through message passing, and the programming
language C is used. Behind these architectures is a new VLSI technology
(microcomputers).

The ULTRA computer (J. Schwartz from NYU, and IBM RP3) contains
many basic processors, and a shared (global) memory is assumed. It is an
architecture reflecting the classical concept of MIMD (multiple instruction
multiple data).

The HEP system (B. Smith from Denelcor) has five clusters.

The DATAFLOW machine (J. Gurd from Manchester Univ., UK.) has
twenty processing units and one ring, etc.

There are two different ways how to design algorithms suitable for
paradlel computers and supercomputers. A programmer himself should design
it using a suitable programming language. It can be an extension of a serial
language (e.g. HEP-FORTRAN or CRAY-FORTRAN) or a concurrent pro-
gramming language (R. Gehani from Bell Lab. is designing CONCURRENT
C), or SISAL (Stream Iteration Single Assignment Language), a functional
language developed by Livermore Lab. (J. McGraw) and Manchester Univer-
sity, UK. (J. Gurd) [10] for parallel computers.

In the following an usual (serial) algorithm, Alg (or a serial program) is
assumed and the ultimate goal consists of designing a parallelizing compiler
which should detect whether or not the given algorithm is parallelizable at
all, and if it is then such parallelization of Alg will be found for a prescribed
N that eTy(Alg) is minimal with respects to a defined set of parallelizations
of Alg.

On one hand side a parallelizing compiler may be an alternative for the
case that new programming languages mentioned above will not be accepted
by the programmer community.

On the other hand side the two ways, parallel languages and parallel-
izing compilers, are, in fact, complementary, as a programmer wants to
consider a parallelizm in a procedure level (close to the problem solving) and
should not be bothered by a parallelizm in an insrruction level (concerning
actual execution).

In Section 2 basic concepts and notation are introduced concerning
control flow algorithms, and their representation by usual (serial) control
graphs.

Section 3 presents a generalization of serial instructions to parallel
instructions of a given width (saying how many processors are needed). The
concept of control graph with parallel instructions is introduced.

Section 4 contains four elementary parallelizing construction which are
studied and used to transform a serial control graph into a control graph
with parallel instructions when preserving serial (synchronous) mode of
execution.

SYNCHRONOUS PARALLELIZATIONS OF SERIAL COMPUTER PROGRAMS 207

Further in Section 3 several types (weak, strong, full) of parallelization of
a serial control graph are defined and studied. The main source of parallel-
ization is found in the fact that we are often using functions (and predicates)
with arity > 1, 1.e. with two or more arguments.

Section 6 presents some conclusions. Two measures of execution times
of control graphs (without loops) with serial and .parallel instructions are
introduced and clarified on some examples. Several topics [or futher research
are presented.

2. Basic concepts and notation

No computer program in a higher level programming language like PL/I,
Pascal, ADA, C, etc., is executed itself. It must be translated into a machine
code by a compiler. The compilation is usually done via a lower level
programming language, called an intermediate code, which is (almost) inde-
pendent on any source language on one side and, on the other side, it does
not reflect any special hardware features of a particular machine. A crucial
_ point is that the execution meaning (and the verilication also) of a higher
level program is defined by its intermediate code (in which no nested
statements or expressions are admitted).

An intermediate code is a sequence of instructions of a few types, the
conditional and unconditional jumps are instructions needed only because of
the linear form, in which each instruction has at most one successor and
predecessor. One can give up the linear form and use ordered pairs of
instructions, called control edges, to represent the order of execution (in a
pair {a, b) the instruction a is supposed to be executed sooner than b). Then
one abstracted from a computer program a concept ol a computer algorithm,
called a control flow algorithm, with respect to a given set of instructions,
Instr. It is a prescription concerning a finite multiset of instructions saying:
(1) which instruction should be executed in the next step (and with which
augment values) at the start; and, inductively, in the next step (2) if an
instruction has been executed and it is not a stop instruction, then it is
prescribed uniquely which is the next instruction to be executed (and with
which argument values).)

It is a mathematical concept of a computer algorithm (introduced by a
language independent definition) with respect to Instr, where, obviously,
instructions themselves are also computer algorithms but basic ones (the
concept of a set in set theory is introduced similarly).

The concept of control flow algorithm was introduced tn [5] and very
conveniently represented by a directed graph CG =(V,C,r,s), C = VxV
with the start re V and the stop se V, together with two labelings &: V- |s)
— Instr, and I': C — the set of truth values T and F. CG was called a flow
diagram originally, but it will be called a conrrol graph here (as it is necessary
to differentiate also a flow of data and to introduce a data graph).

208 K CULIK

Each instruction from Instr is determined by a name of a basic
algorithm from Basis and by some variables chosen from a set of all
variables Var (as individual names of its inputs and outputs). E.g. + belongs
to Basis and if X, Y, ZeVar, then X: = Y+2Z belongs to Instr, etc. It is
always assumed that + 1is interpreted (obviously as the algorithm of addition
of arithmetics).

The basis is assumed to contain all basic algorithms of arithmetics
corresponding to arithmetic operations and to arithmetic relations, all propo-
sitional logic operations and relations, some monoid operations (e.g. concate-
nation) and relations (e.g. to be a substring of characters), etc, in full
accordance to the usual basic data types.

Then a computer is a finite many sorted algorithmic structure by which
an usual many sorted (relational) structure is determined as it is assumed
that by each basic algorithm the corresponding partial operation (a function)
or relation (a predicate) 1s determined when the algorithm is executed.

In this context the set Var is viewed as the memory of such computer,
as a naming of a value-object by a variable is conceptually the same thing as
a storing that value at the variable viewed as a memory location.

There are all together only five different types of instructions: (1) an
assignment (X:= Y+Z); (2) an input instruction (X:=), (3) an output
instruction (: = Y), (4) a procedure call (CALL SUB(Z, Y; X, W)) where Z
and Y are input arguments while X, W are output arguments; and (5) a test
(Y <2).

Each occurrence of X and W in the previous instruction examples is
called a defining occurrence while each occurrence of Y and Z is called an
applied occurrence. In words: each variable occurring either on the lefi-hand
side of an assignment, or in an input instruction, or as an output in a call s
called a defining occurrence while occurrences eilsewhere in instructions are
called applied occurrences.

A variable X e Var is called an input variable of CG =<V, C,r, s> if

(2.1) (1) either there exists a path (v, =r, vy, ..., v,), n 2 1, in CG such that
there is an applied occurrence of X in &(v,), and if n > 1, then there
1s no defining occurrence of X in @(v;) for i=2,...,n—1;

(i) or X occurs in an input instruction ¢(w) and after removing w the
X would satisfy (2.1) (i).

A variable YeVar is called an output variable of CG if

(2.2) (i) either there exists a we Vsuch that Y has its defining occurrence in
®(w) and for each path (v, =w, vy, ..., v, =3), m=2, in CG the
following holds: Y has no applied occurrence in @(v;) for each
i=2,3....,m—1;

SYNCHRONOUS PARALLELIZATIONS OF SERIAL COMPUTER PROGRAMS 209

(i) or Y occurs in an output instruction ¢(v) and after removing v the
Y would satisfy (2.2) (1).

CoOROLLARY 2.1. A vertex Le V from (2.2) (i) does not belong to any strong
component of CG.

Let Inpcs, Outpcg be the set of all input, output variables of CG,
respectively.

It is assumed that all input and output variables of a CG are determined
either by requirements (2.1) (i) and (2.2) (i) (when procedures are concerned)
or by requirements (2.1) (ii) and (2.2) (i1) (when main procedure, i.e., program,
i1s concerned). ,

If the original computer program contains some procedures, then the
corresponding control flow algorithm is represented by several control
graphs (only one corresponds to the main procedure and all remaining ones
represent the procedures). Obviously we are interested to parallelize each
procedure as well.

Let an applied occurrence of a variable which satisfies (2.1) (i) be called
its input occurrence, and, similarly, let a defining occurrence of a variable
which satisfies (2.2) (i) be called its output occurrence.

Let Fo; be a function computed by CG = (V, C, r, s, @, I'> (under an
assumed interpretation) and let Dom F¢g = Dy xD; x ... xD, be its domain
when Inpce = (X, X5, ..., X,}, p 21, and D; are assumed sets of values
fori=1,2,...,p.

By the following requirement we want to exclude (semantically) super-
fluous vertices (and their instructions) and edges, which are those which either
are never executed, or their new values are never exploited (notice that in
another interpretation of the same CG different semantically superfluous
instructions may be concerned):

(2.3) (1) for each v eV—{s} there exists an initialization Init of CG such that
(Init(X,), ..., Init(X,))eDom F¢¢, and the path (v, = v, v,, ..., v, = 5)
which underlies the execution sequence ExSeq (CG, Init) satisfies:

(a) there is an i, 1 <i <n, such that v; =v, and therefore ®(v) is
executed:

(b} if Z 1s a variable which has a defining occurrence in @(v), then there
exists j, i <j <n, such that Z has its applied occurrence in ®(v)),
and there is no defining occurrence of Z in ®(v,), where i < h <j
except ZeOutpeg, and Z has in & (v) its output occurrence.

(1) for each (v, w) eC, where w # s, there exists an initialization Init of
CG such that (Init(X,), ..., Init(X,))eDomF¢;, and the path

14 — Banach Center 21

210 K. CULIK

(v, =r,v,y,...,v,=5) which underhes the execution sequence
EXSeq (CG, Init) satisfies: there exists i, 1 €i <n—1, such that
v; = v and v;,, = w, and therefore both ®(v) and ®(w) are executed.

3. Serial control flow algorithm with parallel instructions

Considering an instruction level parallelization of a (serial) control flow
algorithm represented by its (serial) control graph CG one is instrested in
another (serial) control graph CG’ which has the same input variables and
the same output variables as the CG has, and which is function equivalent
with CG and admits an execution of several instructions simultaneously (in
parallel) on various processors in one step (synchronously), when a MIMD
machine with global memory, GM, is assumed.

Two questions arise: (A) which serial instructions can be executed in
parallel and when, or what are parallel instructions, and (B) which control
graphs CG’ with parallel instructions can be viewed as parallelizations of a
given CG. Then the problem is to find such parallelization of CG which has
the shortest execution time.

(A) If Instr is a set of all instructions determined by a Basis and by a set
of all variables, from GM, one says that two instructions a €eInstr and b eInstr
are compatible (for parallel execution) if

(3.1) (i) either a = b, ie. they are equal as character strings;

(i) or a# b, and they are not assigning a value to the same variable
from GM, or, in other words, they do not contain a defining
occurrence of the same variable.

None of the following instructions X := A+ B, GET LIST(X), X:= A4
—B, CALL SUB(A, B; X, Y) is compatible with any other. On the other
hand each test and each output instruction is compatible with any other
instruction.

A multiset [a,, a,, ..., a,] of mutually compatible instructions from
Instr where k = 1 is called a parallel instruction of the width k, or, a k-step.
Let Parlnstr be the set of all parallel instructions of arbitrary width, and let
ParInsttWMT be the set of all parallel instructions which contain at most
one test. Thus Instr < ParlnsttWMT < Parlnstr.

Eg. [X <Y, Y<Z, X:=A+B]eParlnstr-ParInstrWMT and it is a
3-step while [X < Y, X := A+ B] eParlnstrWMT and it is a 2-step assuming
the tests X <Y, Y <Z and the assignment statement X := A+ B belong
to Instr.

One says that a CG = (V, C, r, s, &, I') represents a (serial) control flow
algorithm with parallel instructions (from Parlnstr) if

SYNCHRONOUS PARALLELIZATIONS OF SERIAL COMPUTER PROGRAMS 211

(3.2) (i) veV—!s} = & (v)eParlnstr;
(i) ®(v)=[ay,...,a,] and a,, ..., a, are all tests from @ (v), where
1 €k <n = there are m successors w,, ..., w, of v in CG and
r: v, w), ..., (v, w,)} —partition of {T, F}* into m > 1 (not emp-
ty) classes, is a one-to-one mapping.

A Boolean function of a,, ..., a, assumed in (3.2) (i) for an arbitrary
large k seems to be not directly suitable for hardware realization. Therefore
the ParlnstrWMT has been differentiated, and often the requirement (3.2)
will be simplified to

(3.3) ve V—{s} = &(v)e ParlnstrWMT.

(B) In answering the second question one has to notice that the
requirement of function equivalence of a given serial CG and its paralleliza-
tion CG’ with parallel instructions is necessary but it is not sufficient.

A stronger requirement is needed such that the structure of CG and its
execution meaning would be reflected. The execution equivalence of CG and
CG’ preserves the execution time and therefore it is too strong [2], [3].

We proposed here a constructive answer. Various elementary parallel-
izing constructions, EPCs, will be defined, and a parallelization CG’ of CG
will be a (serial) control graph with parallel instructions which is obtained
from CG by finite number of applications of these EPCs.

4. Elementary parallelizing constructions

An elementary parallelizing construction, EPC, concerns

(1) a control graph CG = (V,C,r,s, ®, I'> with parallel (or serial)
instructions;

(2) one control edge (v, wye C such that w # s and idgc;(w) =1; and

(3) the parallel instructions @(v)=[a,...,a,] and P(w)=
[by, ..., b;, ..., b,], where 1<pand 1 <j<gq.

An EPC consists of constructing a new CG' = V', C', r, s, &', ") by
eliminating b; from @(w) and adding it to @(v), and, also, eventually, of some
other changes.

According to whether or not b; is a test and whether or not there is a
test among a,, ..., a, one differentiates four types of EPC as follows: nn-type
means b; is not a test and there is no test in @(v); nt-type means b; is not a
test but there is a test in ®(v); tn-type means that b; is a test but there is no
test in @ (v); and finally, tt-type means that b; is a test and there is a test in
@ (v). Obviously the tt-type is excluded when only ParlnstrWMT are con-
sidered.

212 K. CULIK

A nn-construction consists of the following change of a CG to a CG’
presented in Fig. 4.1. On the left is case when g > 1 and on the right g = 1.

v‘a,,...,ap‘ |a1,.,.,ap,bjlv vla”...,apl Ia,,...,ap,b1|v

\y \y L

9 -b1 ’ wlo] =

L1

Y
if g>1 ules e [e)

it g=1

Fig. 4.1

It can be described formally as foillows: if ¢ > 1 then V', (', r, s>
=V, C,r,s), & =& except &'(v) = P(v)uU b}, ¢ (w) =P (w)—{b;}, and
I"=T;ifg=1then V' =V—Iiw}, C' =(C—!(v, w), (w,))U (v,)}, r =r,
s=5 & = except P(v)=P(w)u'b,), and I"'=T.

LeMMA 4.1. Let CG’ be a control graph with parallel instructions obtained
Jrom a CG by a nn-EPC assuming (1-{3). If CG satisfes:

(4.1) (1) if A, is a variable which has its defining occurrence in g;, 1 <i < p,
then A; has no applied occurrence in b;;
(1) b; is compatible with a; for each i=1,2, ..., p;

(iii) if B; is a variable which has its defining occurrence in b;, then B; has
no applied occurrence in any b,, where h#j and i< h< g,

then Inpcg: = Inpeg, Outpeg = Outpeg, and CG' and CG are function equiva-
lent.

Proof (a sketch). According to definition (2.1) and (2.2), and with respect
to requirement (4.1) a nn-EPC does not change input and output vanables.
Therefore one may consider both CG and CG’ being initialized by the same
initialization and executed. The initial segments of the two underlying paths
are identical and the vertex v either belongs to both or to none. In the
second case it is same path and therefore the same execution sequence. H it is
infinite then it is undefined, and if it terminates in a stop vertex the
resultation is determined.

In the first case two possibilities are to be differentiated:

(a) Let g > 1. The two paths are identical and therefore their execution
sequences differ only in ®(v) =[ay, ..., a,], ®(w)=[b, ..., b,] and &' (v)
=[ay,...,ap, b;], W) =[by,....0j_y,bjiy,...., b]. Let Q, R, S and Q’,
R’, §' be the corresponding sequences of states of memory.

SYNCHRONOUS PARALLELIZATIONS OF SERIAL COMPUTER PROGRAMS 213

Obviously @ = Q' which is the state before the execution of ¢(v) and
@’ (v). Alter their execution the only changes of states concern variables
A,,..., A, and B;, and R(4,) = R'(4;) for each i =1, 2, ..., p. Therefore,
eventually, R(B;) = R'(B;). Now after the execution of ®(w) and ¢'(w)
consider S(B,) and S'(B,) for h=1, 2, ..., g, assuming B, ts the variable
having its defining occurrence in b,.

If h # j then in virtue of (4.1) (iii) S(B,) = §'(By) for h #j, 1 < h<gq, and
in virtue of (4.1) (i) S(Bj) = R'(B;) = S'(B}), which means § = §'. Therefore,
further, the same execution sequence and the same sequence of states are
concerned. '

(b) Let g = 1. Then the activities concerned are the sequences Q, @ (v), R,
®(w), S, @(u) and Q', ?'(v), R, ¢ (u). A similar argument as in (a) leads to
the conclusion that from Q = Q' follows S = R’, which completes the proof.

A tn-EPC consists of the following change of CG to a CG' which 1is
shown in Fig. 4.2 and 4.3.

Fig. 4.2 1s the case when b; is the single test in @(w) while in Fig. 4.3 is
the case when there are two tests in @(w), b; and b,, and therefore the edges
leaving w are labeled by a pair of truth values, and one concrete case is

214 K. CULIK

considered when odg(w) = 3. In general case there are k > 1 tests in & (w)
and edges leaving w are labeled by k tuples of truth value, odg(w) < 2*. Then
one of the tests, b;, is removed from @(w) and the vertex w is split into two
vertices wy, wy which both are labeled by the same @'(w), and the edges
leaving them terminate in successors of w, and are labeled by (k—1)-tuples of
truth values accordingly.

LemMMa 4.2 Let CG’ be a control graph with parallel instructions obtained
from a CG by a tn-EPC assuming (1)3). If CG satisfies (4.1) (i), then Inp.¢
= Inpeg:, Outpeg = Outpeg, and CG' and CG are function equivalent.

Proof. Let b,, ..., b, be all tests in @ (w), where k > 1 and let wy, ..., w,
be all successors-of w, where 2 < m < 2% and let b, be removed from @ (w)
and added to @(v). A tn-construction does not change input and output
variables. Assuming the same initalization of CG and CG’ one determines
paths with the same initial segments differing only as follows: v, w, w, in CG
and v, wr, w; or v, we, w; in CG’. As only one test has been moved the
‘states of memory are without any change at all. Therefore it remains to show
that all the tests are executed with the same result truth values. But it is
clear. If the execution of w in CG leads to a k-tuple (tv,, ..., tv,), thus
r'w,w)=(vy,...,ty), then either tv; =T and I''(v,w) =T, I'(w,, w;)
=(tvy, ..., tvy) is choosen, or tvy=F and I'(v,wg)=F, I'(wg, w)
= (tv,, ..., tv,) 1s choosen, which completes the proof.

A nt-construction consists of the following change of CG to a CG’ which
are presented in Fig. 44 and 4.5.

Fig. 44

In Fig. 4.4 there is only one test among the instruction from &(v) while
in Fig. 4.5 there are two tests in ¢(v) and one particular way of a
distribution of pairs of truth values among the edges leaving v. In both figures
q > 1 is assumed. If g = 1 then the corresponding vertex w disappears in CG’
and the corresponding edge leaving v terminates in u directly. The general

SYNCHRONOUS PARALLELIZATIONS OF SERIAL COMPUTER PROGRAMS 215

v({9,=1a,, bj
(T,7)
(F,F] {1,F] (F,F)
= (F,T) '
d , wlb,, W0 B LA | d,,
NY
. i
Fig. 4.5
case when there are k> 1 tests in & (v) and I'(v, w) = (tvy, ..., tv,) is de-

scribed in a similar way.

LEMMA 4.3. Ler CG' be a control graph with parallel instructions obtained
from a CG by a ni-construction assuming (1}(3). If either the (4.1) (1)iii)
together with (4.1} (iv) is satisfied, where

(4.1) (iv) if there is a defining occurrence of a variable B; in b;, then each path
(v, v3, ..., Uy =5) such that v, is a successor of v and v # w
satisfies the following requirement: either B; does not occur in any
dw)fori=1,2,....m—1,oritdoesand if h, 1 <h <m—1,is the
smallest index such that B; occurs in ®(v,), then there is no applied
occurrence of B; in @ (v,) (it means that the previous value of B; will
not be used in the execution sequence ®{v,), ..., ®(v,-) at all), or
b; is an output instruction and (4.1) (i) is satisfied,

then Inpcg = Inpeg, Outpeg = Outpeg, and CG is function equivalent with
CcG'.

If (4.1) (iv) is not satisfied, then there exists an interpretation of CG and
CG’ (viewed as schemes) such that CG and CG’ are not function equivalent.

Proof. If b; is an output instruction, then the assertion follows immedia-
tely from definition (2.2) and from the properties of a nt-construction. If b; is
not an output instruction (and it is not a test), then a nt-construction
preserves input and output variables and therefore we can consider an
initialization of both CG and CG’ by the same values of input variables. The
corresponding paths are identical (except the case when g=1 and w is
omitted in CG’) and the concerned segment is v, w. If Q, R, S are three
consecutive states in CG, and Q’, R, §' in CG’, then one assumes Q = ('
After the execution of @®(v) and of &'(v) one has R(4;,) = R'(A4;) for i
=1,2,..., p, but R(B)) and R'(B;} may differ. As I'(v, w}) = I''(v, w) accord-
ing to (4.1) (i) and (iii) S(B) =S'(B) for h=1,2,...,q and h # j. Further
S(B) = R'(B;) = §'(B)) and therefore S = §". '

Now consider another initialization such that the concerned sequence is
v, w, where w' # w and w’ is a successor of v.

216 K. CULIK

If (v, w =v{,v,,..., v, =s5)is a path considered in (4.1) (iv) and h is the
index concerned then let Sg, S, ..., S, be a corresponding sequence of states
inn CG and Sg, S5, ..., S, in CG'. Assuming S, = S, one executes ®(v) and
¢'(v) to obtain S, (4;) = S1(A)fori=1,2,..., p, but §,(B;) may differ from

1 (B)). In virtue of (4.1} (iv) S, = §’ except, eventually, S, (B;) may differ from
S5 (B;) but the value-B; is not used at any time until it is changed to S;(B))
after the execution of @'(v,) in CG'. Therefore although S;# S; for
=1,...,h—1, it is §, = S,, which completes the proof of the functional
equivalence.

If (4.1) (iv) is not satisfied, then in Fig. 4.6 is an example showing that
CG and CG’ are not function equivalent. It complets the proof of Lemma 4.3.

al bl 4 0
\ﬂ' Y:i=3sX Y
Gisodd,)(:::hD Y is odd Gisodd, x:v@
T F <= T F > T F
\
Y:=YaY X:=Y+ Y.=YsY X:=Yd
Z:=X+Y

*0
.
-

LX)

Fig. 4.6

If a serial CG in Fig. 4.6 (b) is initialized by X = 3 the result is Z = 19,
and Fig. 4.6 (c) isthe result of a nt-construction applied to Fig. 4.6 (b) which
does not satisfy (4.1) (iv). If Fig. 4.6 (c) is initialized by X = 3 the result is
Z = 163. Similarly Fig. 4.6 (a) is obtained by a nt-construction from
Fig. 4.6 (b). If X =2 is the initialization, then the results Z =38 and
Z = 43 show again that the function equivalence is not preserved.

There is another important fact concerning a nt-construction, namely,

SYNCHRONOUS PARALLELIZATIONS OF SERIAL COMPUTER PROGRAMS 217

that the instruction b; (which has been moved to a test) will be executed
unnecessarilly for some truth values of the test. Theoretically it is necessary
to differentiate a parallelization which excludes unnecessary execution of some
instructions (the nn-type and tn-type) and which requires unnecessary execu-
tion (the nr-type).

A tt-construction consists of the following change of a CG into CG’
described in Fig. 4.7 and 48:

(1] et

(£v) yeeny 1Y F)

(tv,yenestyy,)

Fig. 4.8

There are k > 1 tests in ¢(v) in Fig. 4.7, ¢ > 1 and only test, b;, in ¢ (w),
while in Fig. 4.8 the case g = 1 (thus b, is the test) is assumed. In general
case when there are k > 1 tests in ¢(v) and h > 1 tests in P (w) the labelings
of edges leaving v and w should be changed accordingly. An example when h
=2 and b, is the test to be moved is presented in Fig. 4.9.

LeMMma 4.4. Let CG’ be a control graph with parallel instructions obtained
from a CG by a tt-construction assuming (1}+3). If (4.1) (i) holds, then Inpcg-
= Inpcg, Outpeg = Outpeg, and CG' is function equivalent with CG.

218 K. CULIK

{tv,, ...

Fig. 4.9

Proof. As only a test is concerned the states of memory need not to be
investigated as they are not changed by a rr-construction. It remains to check
the order of execution of the non-tests but it follows from the transforma-
tions of the edge labeling immediately.

A rt-construction (similarly as a nr-construction) requires unnecessary
execution of the test b; in all cases when @'(v) is executed, with the result
(re*, ..., tof, tof,) different from either (rv,, ..., ty,, T)or (try, ..., ty, F). It
is reflected by the fact that always the concerned edge is labeled by both (k
+ 1)-tuples (¢tvf, ..., tv¥, T) and (10}, ..., tof, F).

5. Parallelization and parallelizability of serial control graphs

A control graph with parallel instructions is said to be excluding unnecessary
execution if its execution does not require unnecessary execution of any
(serial) instruction (see nf- and ft-construction in Section 4).

A control graph CG’ with parallel instructions is called a full paralleliza-
tion of a (serial) CG il
(5.1) there exists a finite sequence CG = CG,, CG,, ..., CG, = CG', of con-

trol graphs with parallel (or serial) instructions such that each CG;

where 1 <i<n is obtained from CG;,_, by one of the following

constructions:

(1) a splitting of a vertex;

(i) a nn-construction satisfying (4.1) (i)}(iii);

(iii) a tn-construction satisfying (4.1) (i);

(iv) a nt-construction satisfying (4.1) (i)iv);

(v) a tt-construction satisfying (4.1) (i);

when at least one of elementary parallelizing constructions (ii}(v) is
used.

SYNCHRONOUS PARALLELIZATIONS OF SERIAL COMPUTER PROGRAMS 219

If any rt-construction of (v) is not used, then CG’ is called a srrong
parallelization of CG, and if both r1- and nr-constructions of {v) and (iv) are
not permitted then CG’ is called a weak parallelization of CG.

LeMMa 5.1. Each weak parallelization CG’ of a serial control graph CG is
a control graph with parallel instructions which excludes unnecessary execution,
and each parallel instruction of which belongs to ParlnstrWMT. Further
Inpeg: = Inpeg, Outpeg = Outprg and CG' and CG are function equivalent.

The proof follows from definition (5.1) and Lemma 4.1 and 4.2 immedia-
tely.

A (serial) control graph is called weakly parallelizable if there exists at
least one its weak parallelization.

THeoOREM 5.2. If a serial control graph CG = (V, C,r, s, ®, I'> without
1/0-instructions satisfies:

(5.2) there exists a control edge (v, w)eCG where v, weV— |s} such that ®(v)
is not a test, and if X is a variable which has a defining occurrence in
@ (v) then X does not have an applied occurrence in ®(w).

then CG is weakly parallelizable for each interpretation of CG.

If (5.2) is not satisfied then CG need not to be weakly parallelizable and
there exists such interpretation of CG in which CG is not weakly parallelizable.

Proof. If (5.2) is satisfied and idgq¢(w) = 1, then requirement (4.1) (i}{iii)
is satisfied (as @(v) and & (w) are just serial instructions). Therefore, accord-
ing to whether @(w) is not a test or it is a test a CG’ obtained from CG by
Lemma 4.1 or 4.2, respectively, is a weak parallelization of CG.

If idg.g (w) > 1 then one can split the vertex w into w’ and w" such that
idgcg- (W) = 1, idgcg-(w") = idgcg(W)— 1, where CG* is the result of the
splitting. It reduces the situation to the previous case (as the splitting i1s a
legal step to get a weak parallelization according to (5.1)).

As above there is no use of any interpretation the assertion holds for
each interpretation (the same one for CG and CG').

If (5.2) is not satisfied let us c¢onsider an arbitrary (v, wye C, where
v, we V—{s} and @ (v) is not a test, thus it assigns to a variable X, and let X
have its applied occurrence in @ (w). If ®(w) assigns to a variable B (thus a
nn-construction is concerned), then in any free (Herbrand) interpretation CG
and CG’ are not function equivalent (as if ®(v) =,X:= f(Y, Z) and &(w)
=4B:=9g(X, A), then g(X, A) # g(F(Y, Z), A). If ®(w) is a test (a tn-
construction is concerned) and, e.g. ®(w) =, p(X, A), then one can interpret
p in such a way that intp(X, A) # intp(f (Y, Z), A), which completes the
proof.

LeEmMMA 53. Let CG =<V, C,r,s, D, I'> be a serial control graph with
®: V—{s} — Instr(Basis, Var) but without I/0-instructions, procedures and
arrays, which satisfies (2.3) and |Inpqg] = |Outpegl = 1.

220 K. CULIK

(@) If CG is weakly parallelizable and there are no tests in Basis, then
there exists at least one basic algorithm in Basis which computes a function
with the arity > 1.

(b) There exist weakly parallelizable CGs such that all the basic algo-
rithms from Basis compute either unary functions or unary predicates (and at
least one basic algortihm is a test).

Proof. (a) By Theorem 5.2 there exists a (v, w)e C, where w # s such that
(according to the assumptions) ®(v) and @ (w) are assignments. According to
(2.3) there exists a path (v, =r, v;, ..., 0, =0, 0,4,y =W, ..., Uy, Upsy =5) in
CG and [@(v), #(w)] will be a parallel instruction in CG' (when a nn-
construction is applied). Let us assume that all basic algorithms from Basis
compute unary functions, and let us derive a contradiction from such
assumption. Then ®(v) =4A4;:= f;(B) for j=1,2,...,n—1, where n>2
and f; are the unary functions.

If Xelnpeg and YeOutpe; then B, = X and 4, = Y (according to the
assumption), and the occurrence of Y tn &(v,) is the only output occurrence
of Y in CG. Therefore in virtue of (2.3) (i) (b) Aje{(Bjsy, ..., By} for j
=1,...,n—1, where {(B;,,, ..., B,))} is a multiset, which means 4,_, = B,
Considering A4,_,€{B,-,, A,-,} one has to exclude A, , = A4,_, in virtue
of (2.3) (i) (b) (as after the execution of ®(v,.,) the value assigned to A,_,
would not be exploited), and therefore 4,_, = B,_,. By an induction one
shows A;e{Bj., Ajsy, ..., Ay-1} and 4; =By, for j=1,2,...,n-1.

It contradicts assumption (5.1) that the instructions ®(v) =, A;: = f;(B)),
D (W) =4 Aivi - =fi+:(B,+,) satisfy A; # B, ., which completes the proof of (a).

(b) Fig. 5.1(a) is an example of a weakly parallelizable CG with one
single test, where f,, ..., f, are arbitrary unary functions and p is a predicate
(obviously they are supposed to be interpreted accordingly). Fig. 5.1(b) is
a weak parallelization of Fig. 5.1(a) obtained by a nn-construction applied to

b) /e
A=f(X), Bist,lx1
y
plA)
T F
Y:=f3(B) Y:=IA(B)

Fig. 5.1 (a), (b)

SYNCHRONOUS PARALLELIZATIONS OF SERIAL COMPUTER PROGRAMS 221

(v, w), where v =1 and w =2, while Fig. 5.1(c) is a weak parallelization
of Fig. 5.1(a) obtained by a tn-construction applied to (v, w) when v = 2 and
w=3

The control flow algorithm of Fig. 5.1(a) can be represented in a
functional programming language as follows:

If p(f, (X)) THEN f3(f,(X)) ELSE f,(/,(X)) which shows that f,(X) had
to be computed twice.

A (serial) control graph is called strongly (fully) parallelizable if there
exists at least one its strong parallelization which is not a weak paralleliza-
tion (if there exists at least one its parallelization which is not a strong
parallelization).

Neither Fig. 5.1(b) nor Fig. 5.1(c) is weakly parallelizable but Fig. 5.1(b)
is strongly parallelizable (which follows from Lemma 4.3 when v =3 and w
=4) while Fig. 5.1(c) is not strongly parallelizable. Fig. 5.2 is a strong
parallelization of Fig. 5.1(a) and of Fig. 5.1(b) but it is itself no more strongly
parallelizable (which follows from Lemma 4.3 immediately).

c)

A=f (Xx) Azt (X) | B:i=f(X]

L
y N
@:fz()() , p(AD @1 , Yi=1,(8)

T x

v:= £48) | ZIALL v:=f18)

[s7* |

Fig. 5.1(c) Fig. 5.2

Strong and full parallelizations and parallelizability can be investigated
in a similar way as weak parallelization and parallelizability. Intuitively one
expects that the desirable parallelizations of serial control graphs will be
those which are no more parallelizable. It would be useful to find efficient
algorithms to construct unparallelizable parallelizations of given serial con-
trol graphs in general, and in particular when some important problems are
concerned (and procedures, arrays and 7/0-instructions are admitted) which
are needed in numerical applications or in 4I applications.

6. Conclusions and further research

All the concepts introduced in Sections 3-5 and assertions with their proofs
in Sections 4-5 show that the study of control flow algorithms must be

222 K. CULIK

extended to data flow analysis, a special one [2], not necessarily in all
generality [1].

Empirical observation that a very important and often source of parallel-
izm is the fact that we are using operations and relations with anity > 1 is
supported theoretically at least partly (Lemma 5.3).

Another observation can be made from Lemmata 4.2-4.4, namely, that
very often tests are suitable for parallelization. In fact the concept of parallel
instruction (assuming a synchronous mode of execution of a machine) is a
generalization of parallel assignments admitted in {9].

Assuming the execution time eT(a) > 0 for each (serial) instruction
ac Instr(Basis, Var) is given one can define the execution time of a serial CG
in several ways [4] in all generality.

Let us consider two cases concerning CGs without strongly connected
subgraphs but with tests: a Worest case, WeT(CG), and an Average case,
AveT(CG), which are defined using the concept of a path br =
(vy =r,vy,...,0, V.41 =5), called a branch of CG.

If eT(br) =4 Y, eT(P(v)) is the execution time of br and Br¢g is the set
=1
of all branches of CG (eventually only those which actually are determined
by some executions), then

(6.1) WeT(CG) = max eT(br);
breBrc
and
(6.2) AveT(CG)={ Y eT(br))/|Breg.
breBrcg

If [a,, ..., a;]e Parlnstr, then

(6.3) eT{a,, ..., a] = max eT(q,).
1si<k

Considering Fig. 5.1 and assuming eT(ij)=1foreachi=1,2,..., 5, one
obtains WeT, (Fig. 5.1(a)) = AveT, (Fig. 5.1(a)) =4 while WeT, (Fig. 5.1(b))
= AveT, (Fig. 5.1(b)) = WeT, (Fig. 5.1(c)) = AveT, (Fig. 5.1(c)) = 3 and WeT,
(Fig. 5.2) =3 > AveT, (Fig. 5.2) = 2.5, where the index k of WeT, or AveT,
means the maximal width of a parallel instruction in the corresponding
control graph.

If we admit (more adequately than in [8]) that different types of
instructions may have different execution times then considering again Fig.
5.1 once can assume, eg., eT(i)) =ifori=1,2,...,5 Then WeT, (Fig. 5.1(a))
=11, AveT; (Fig. 5.1(a)) = 10.5, WeT, (Fig. 5.1(b)) = 10, AveT, (Fig. 5.1(b))
= 9.5, WeT, (Fig. 5.1(c)) =9, AveT, (Fig. 5.1(c)) = 8.5, WeT, (Fig. 5.2) =11,
and AveT, (Fig. 5.2) =8.5.

It makes good sense to compare the previous execution times only

SYNCHRONQUS PARALLELIZATIONS OF SERIAL COMPUTER PROGRAMS 223

because they concern parallelizations of the same serial control graph. Only
under these assumptions it is meaningful to ask the question which paralleliz-
ation (weak, strong of full) of a given serial control graph is optimal, i.e., it
has the shortest execution time for a prescribed width of parallel instructions.
E.g. if the width is 2 one is looking for optimal 2-parallelizations of the given
serial control graph, CG, and only if it is a 2-parallelization CG’ of CG one
may compute the speedup WS,(CG) = WeT, (CG)/WeT,(CG’) or AvS,(CG)
= AveT, (CG)/AveT, (CG’), and the efficiency WE,(CG) = W5,(CG)/2 or
AvE, (CG) = AvS,(CG)/2.

All these questions should be investigated to get sufficient insight about
parallelizations of serial control graphs.

A crucial answer about allocation of particular processors to particular
serial instructions a; from a parallel one [a,, a,, ..., @] is straightforward
(assuming k < N where N is the number of all available processors): allocate
a processor P; to g; (fori=1, 2, ..., kK (in any permutation) as the synchro-
nous execution rule requires that the execution of all ;s must be completed
before the next parallel instruction may be started (similarly as the execution
of a parallel statement in [6]). It 1s the synchronization requirement.

The allocation of P;s to a;s does not reflect any intutitive processes
detected during the problem solving, as it is assumed in [6], and in other
concurrent programming languages.

If asynchronous mode of execution of processors is assumed then it is
desirable to allocate processors to larger parts of a given serial program
which is extended to a new parallel flow of control (fork vertex and
synchronization vertex [3]). It requires a further information about synchro-
nization concerning the communication among the processors in the instruc-
tion level which is not specified in [6].

The arity > 1 of basic algorithms (being the main source of parallelizm)
indicates that the classical computation theory based on lambda calculus and
on the reduction of n-ary functions to only unary ones cannot be a possible
conceptual framework to study parallelizability [12]. Therefore the previous
investigations based on the concept of computer algorithm (control flow
algorithm) is a contribution to a computer computation theory.

References

{11 A. V. Aho, J. D. Ullman, Principles of Compiler Design, Addison-Wesley, 1979.

[2] K. Culik, Towards a theory of control-flow and data-flow algorithms, Proceedings of 1985
Int. Conf. on Parallel Processing, Aug. 1985, 341-348.

[3] —. N. K. Tsao, Programming of Supercomputers, Computer Science Dept, Wayne State
University, Detroit, Proposal, Dec. 1985, 10 p.

[4] — and R. G. Trenary, Paralielizability Degree of Synchronous and Asynchronous Parallel
Programs, Proc. of Conf. on Robotics, Oakland University, Rochester, Mi., 1984, 237-
243,

224 K. CULIK

[5] H. H. Goldstine and J. von Neumann, Planning and Coding programs for an electronic
computer instrument, Pergamon Press 1963, 80-235.

[6] C. A. R. Hoare, Communicating Sequential process, Comm. ACM 21 (1978), 666-677.

{71 D. E. Knuth, Structured Programming with GOTO Statements, ACM Computing Sur-
veys, Vol. 6, No. 4, Dec. 1974, 261-301.

8] D. J. Kuck, A4 Survey of Parallel Machine Organization and Programming, ACM
Computing Survey, Vol. 9 1977, 29-59.

[9] Z. Manna, Mathematical Theory of Computation, McGraw-Hill, 1974.

[10] J. McGraw et al, SISAL: Streams and Iteration in a Single Assignment Language, Language
Reference Manual, Version 1.2, Jan. 1985, Livermore WNat. Lab. and University
of Manchester, M — 160.

[11] Workshop on Parallel Architectures and Algorithms, sponsored by the Supercomputing
Research Center in Washington, D. C, July 1985,

[12] M. Schénfinkel, Uber die Bausteine der mathematischen Logik, Math. Ann. (1924), Vol.
92, p- 305.

[13] N. Wirth, On the Composition of Well-Structured Programs, ACM Computing Surveys,
Vol. 6, No. 4, Dec. 1974, 247-259.

Presented to the semester
Mathematical Problems in Computation Theory
September 16-December 14, 1985

