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Many phenomena in complex analytic geometry have been understood in
terms of semicontinuity of local invariants of coherent sheaves. Neither real
analytic sets nor the images of (real or complex) analytic mappings are, in
general, coherent. The central theme of this article is that, nevertheless,
certain natural discrete invariants (like the Hilbert-Samuel function) which
are associated to an analytic mapping at each point of its source are upper
semicontinuous (in the analytic Zariski topology). Semicontinuity provides
both a. unified point of view and explicit new techniques for many problems
In singularity theory: geometric problems on the images of mappings
(semianalytic or subanalytic sets), and analytic problems concerning the
singularitics of differentiable functions (in particular, the classical division,
composition and extension problems of differential analysis).

This article is an exposition of some of our recent results [3], [4], [5]
and related questions. We are grateful to the organizers of the Semester on
Singularities for the opportunity to present this work, as well as for a very
enjoyable meeting.

1. Semicontinuity of the Hilbert-Samuel function

Our main problem is introduced here in a general setting; in Section 2
below, it will be reformulated locally in terms of the solution of certain
systems of equations.

Let K=Ror C. Let X and Y be analytic spaces over K, and let ¢: X
— Y be a morphism. Let ¢*: O, — Oy denote the induced homomorphism of
the structure sheaves. Suppose that & and ¥ are coherent (- and (-
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modules, respectively, and that ¥: 4 — # is a module homomorphism over
the ring homomorphism ¢*.

Let aeX. Then ¢* determines a homomorphism of local rings ¢J:
Cy o — Ox, and ¥ determines a module homomorphism ¥,: %, — #,
over ¢F. We write (), = Oy ,, etc, when there is no possibility of confusion.
Let ¢¥: (4, — @, and v, %ya — F, denote the induced homomorphisms
of the completions.

Our main objective is to understand the way that the module of formal
relations '

R, =Ker ¥,
varies with respect to ae X. For this purpose, we study associated discrete

invariants, such as the Hilbert—-Samuel function H, of f?,(,)lﬂ,,:

&
H,(k) = dim Lall
l'ﬂ + :‘ﬂ(:)l g&(a)

(where my,,, denotes the maximal ideal of Uy).

Consecture. The Hilbert-Samuel function H, is (analytic) Zariski
(upper) semicontinuous on X.

Zariski semicontinuity of H, means: (1) There are only finitely many
distinct H, for a in a compact subset of X, and (2) given a,€ X, the points a
such that H,(k) > H, (k), for all k, form a closed analytic subset of X.

Zariski semicontinuity of the Hilbert-Samuel function in the coherent
case (the special case that X = Y and ¢ = identity) is known classically. In

general, the module %, does not vary in a coherent way. Nevertheless, we
have:

TheoreM 1 ([3, Thm. C]). The Hilbert—Samuel function H, is Zariski
semicontinuous in each of the following cases:

(1) In the algebraic category. (Here we can use the (algebraic) Zariski
topology.)

(2) If X is Cohen-Macauley (in particular, if X is smooth) and ¢ is
locally finite; i.e, for all aeX, @, is a finite Cy,-module via the homomor-
phism ¢¥.

(3) If X is smooth, ¥ = ¢*. "y — Oy, and ¢ is regular in the sense of
Gabrielov [9]; i.e., the Krull dimension of Cy,/Ker ¢} is locally constant on X.

Case (2) includes the coherent case. The case ¥ = ¢* is relevant to the
geometry of the image ¢(X): In general, if be Y, put

gtb = m 'Qa'
acp ™ L(v)

Suppose ¥ = ¢*. Let ae X and let b = ¢(a). Then R, is the (formal) local
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ideal of ¢(X) at b. If X and Y are smooth, then (with respect to local
coordinates x near a and y =(y,,..., y,) near b) 2, identifies with the
ideal of formal power series relations among the Taylor expansions d?,.',,
at a of the components of ¢ =(¢,,..., ¢): R, = [G(y,, ..., y) eK[[y1}:
G(é1,0(x), ..., bna(x)) = 0}. Examples (2) and (3) below show why it may be less
convenient to study ¢(X) using its local ideals #,, directly, rather than using
the ideals of formal relations #,:

ExaMpLEs ([3], Rmk. 23]). (1) If K= C and ¢ is proper, then the
Hilbert-Samuel function H, of f?,,/g,, is Zariski semicontinuous on Y.

(2) On the other hand, if K = R and ¢ is finite (i.e., proper and locally
finite), the Hilbert-Samuel function H,, need not be Zariski semicontinuous,
even as a function of ae X. For example, take X = R% Y = R® and define ¢
by @(x;, x3) ={x1, X3(x3+x; x3), x3+x; x;). Let ¥ =¢*: O — Ox. Then
the Hilbert-Samuel function H,, is constant on the half-lines {x, =0,
x; >0} and {x, =0, x; <0} but has different values on the two half-lines
(Figure 1). _

(3) If ¢ is not proper, the Hilbert—Samuel function H,,, need not even
be topologically semicontinuous. For example, with K =R or C, define
¢: K—{0} = K* by ¢(r) =(cost, sint+sin(l/r)) and take ¥ = ¢*.

Fig 1.y = xy, y2 = x; (03 +x, x3), y3 = x3+x; X;.

If ¢ is proper, then, for ali be Y, there exists a', ..., e ¢~ !(b) such that
Ry = ) A ([3, Prop. 11.1]). Moreover, locally in Y, there is a bound s
i=1

which is uniform with respect to b ([3, Cor. 11.6]). Because of this,
semicontinuity of the Hilbert-Samuel function H, applies also to the
variation of the #,,: Let X} denote the s-fold fiber product

X, =la=(a', ..., a)eX" p(a)=...=d(a).

There is a morphism ¢: X3 — Y induced by ¢. If ae X5, a = (a', ..., &), put
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A, = () A, and let H, denote the Hilbert-Samuel function of .‘?“,,/97,. We
i=1

can prove that H, is Zariski semicontinuous on X§, for a given positive integer
s, if and only if H, is Zariski semicontinuous on X ([3, Prop. 9.6]).

Many geometric properties of semialgebraic (respectively, subanalytic)
sets Z are simple consequences of semicontinuity of the Hilbert-Samuel
function (or of other local invariants; see Section 3 below) in the case ¥
= ¢* where K=R and ¢: X - Y i1s a proper algebraic (respoctively,
analytic) mapping such that X is smooth and ¢(X) = Z. For example: The
set of smooth points of a semialgebraic (respectively, subanalytic) set is
semialgebraic (respectively, subanalytic) (Lojasiewicz [18, § 17, Thm. 4],
Tamm [30]). The points of a subanalytic set which admit semianalytic
neighborhoods form a subanalytic subset (Pawlucki [26]). The points where
a real algebraic set is not coherent form a semialgebraic subset (Galbiati
10]).

Assume that X is smooth. Let ac X. Let r, (a) denote the generic rank of
¢ near a. Put ry(a) =dim 675‘4,(,,,/](er $* and r;(a) = dim C 40/ Ker @} (Where
dim denotes the Krull dimension). Then r,(a) < r,(a) < ry(a). The formal
rank r,(a) is the degree of the Hilbert—-Samuel polynomial of @'¢,a,/Kcr $*. In
particular, if the Hilbert-Samuel function 1s Zariski semicontinuous, then so
is ry(a).

We say that ¢ is regular at a if r,(a) = ry(a) (as in Theorem I (3)). If ¢ is
algebraic, then it is regular at every point ¢, by a theorem of Lojasiewicz [18,
§ 17, Prop. 7]. On the other hand, consider the classical example of Osgood:

X =K% Y=K and ¢ is defined by ¢(x,, x3) = (x;, X; X3, X; X, ¢ ). If
ac ix, =0}, then r;(a) =2 but ry(a) =r3(a) = 3. Thus r,(a) (or H,) detects
differences between algebraic and general analytic behavior.

Description of a subanalytic set. Although the module of formal
relations #, does not, in general, vary in a coherent way, semicontinuity of
the Hilbert—-Samuel function provides substitute analytical tools:

Recall that a real algebraic set (or a semialgebraic set) Z, though not
necessarily coherent, can be described by Nash functions: Z admits a
semialgebraic stratification with the property that, for-every stratum X, there
are finitely many Nash functions which generate the local ideal of Z at each
point of X. For example, the real algebraic set z* —x? y? = 0 is not coherent ;
the Nash function z—x*"y is needed to generate its local ideals at nonzero
points P of the x-axis (Figure 2).

The images of proper real analytic mappings which are regular at every
point form the class of Nash subanalytic sets [2], [6]. Every semianalytic set
is Nash (by Lojasiewicz [18, § 17, Prop. 7]). Nash subanalytic sets are
described by functions which are Nash analytic (in the sense of Merrien
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Fig. 2. 22— x?y* = 0.

[22]), in the same way that semialgebraic sets are described by Nash
functions ([6, Thm. 5.1.1]).

Semicontinuity of the Hilbert-Samuel function H, provides an
analogous description of the formal local ideals of a closed subanalytic set,
or of the modules of formal relations #,, in general ([4, Thm. 1.3]): Suppose
that Y is an open subset of K" and that ¢ is proper. If the Hilbert—Samuel
function H, is Zariski semicontinuous, then there is se N (at least locally in
Y) and a locally finite partition {X,},v of Xj such that, for each pu:

(1) X, is a relatively compact connected smooth semianalytic subset of

é
(2) X.u_XM — AU X5
<H
(3) ¢l X, has constant rank;
(4 Let Y,=¢(U X;). Then, for all aecX,—¢ '(Y,_,), 4,
A€
= (\ A, where b= l:j)(a);
asp” 1)

(5) For all aeX,, there are “special generators” Gl,..., G, of
A, < K[[ y]]* whose coefficients, as functions of a, are analytic on X, and
meromorphic through its frontier. If ae X, — ¢~ '(Y,_,), then the G, depend
only on b = ¢(a); say G, = G,. The G, moreover, are induced by functions
which are analytic in the variables of ¥,—Y,_, and formal with respect to
the variables in the normal direction.

2. Differentiable functions

The question of whether the Hilbert—-Samuel function H, is semicontinuous is
local in X. Using a local embedding of Y in affine space and a local
presentation (§ — % — 0 of %, we can replace Y by an open subspace of K"
and ¢ by (4. Thus, we can assume that the homomorphism ¥: ¥ — # is
given as follows:
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Let X and Y be smooth analytic spaces (i.e, analytic manifolds). Let A
and B be pxq and p xr matrices, respectively, whose entries are analytic
functions on X. Then multiplication by A or B induces ('y-homomorphisms
A: O = 0% or B: Oy = 0%. Let @: 0§ — (% denote the homomorphism over
¢*: ¢, — Oy which is induced by A. Put 4= (§, # = CokerB, and let ¥: 4
— F be the ¢*-homomorphism induced by ¢. (Locally, any ¢*-
homomorphism from (4 to a coherent ()y-module has this form.)

If aeX, then O, (respectively, @,) identifies with the ring of convergent
(respectively, formal) power series K {x| (respectively, K[[x]]), where x
= (x4, ..., X,,) are local coordinates near a. Let A, and B, denote the
matrices of elements of (¢, induced by 4 and B, respectively. If G
=(Gy, ..., G)elh,,, we write God, for (#*(G,), ..., #*(G,). (In local
coordinates, G o @, is the formal composition of G with the Taylor expansion é.
of ¢ at a) Then

#,=Ker ¥, = {Ge i, A,"(God,)+B,-H =0, for some He ().

Our problems, {rom this point of view, concern the solution of a system of
equations of the form

f(x) = A(x)g(o(x)+ B(x)-h(x),

where f = (f}, ..., f,) is given and g = (g,, ..., g;) and h = (h, ..., h) are the
unknown functions.

Semicontinuity of the Hilbert—-Samuel function has striking applications
to the solution of such systems involving differentiable functions. Suppose
that X and Y are smooth real analytic spaces. Then ¢: X =Y induces a
homomorphism ¢*: €*(Y)— €°(X) between the rings of infinitely
differentiable functions. Let &: %€™(Y)? - €*(X)’ denote the module
homomorphism over ¢* defined by ®(g)(x) = A(x)-g(¢(x)), where g
=(g1, .-+, )€ €T (Y)Y, and let B-: €*(X)" — $™(X)? denote the ¥*(X)-
homomorphism induced by multiplication by the matrix B. Let
O: ¢(Y)YRE°(X) =% (X)” denote the “mixed homomorphism” @ (g, h)
= P(g)+B-h, where gc ¢*(Y)? and he €™ (X).

For every ac X, there is a Taylor series homomorphism f —f, from
% (X)? onto f”f. Let (Im®) denote the elements of 4®(X)? which formally
belong to Im©; ie., |f €% (X)?: for all b e (X), there exists G, € &¥ such that
f.—®,(G,) elmB,, for all aed'(b)}. Then (Im ©)  is a closed subspace of
%< (X)?, in the ¥ topology ([4, Prop. 3.1]), and Im® c(Im®) .

TueoreM II ([3, Thm. D; 4, Thm. 1.1]). Assume that ¢ is proper. If the
Hilberi-Samuel function H, is Zariski semicontinuous on X, then:
(1) If fe(Im®) , then there exist g€ (Y)? and he6$™(X) such that

(*) f(x)=A(x)-g(¢(x)+B(x) h(x).

In particular. Im@ is a closed subspace of %™ (X)?.
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(2) There is a continuous linear mapping Im@ — € (Y)Y D€* (XY
taking elements feIm @ into solutions (g, h) of (»).

THeoreM IIT ([3, Rmks. 4.3)). If the Hilbert-Samuel function H, is
Zariski semicontinuous on X, then every formal relation Ge #, is the formal
Taylor expansion at ¢ (a) of some “€ relation” g; 1.e., of some ge €*(Y)? such
that A-(go¢)+B-h =0, where he € (X)'.

Remark. Gabrielov [9] proved that if r,(a) =r,(a) (see Section 1
above), then (1) r,(a) = r3(a), so that ¢ is regular at @, and (2) @, nqﬁ:(f’)“,,)
= 3 (U4,). These assertions are analogues for convergent power series of
Theorems III and II (1), respectively (in the case A = 1, B = 0). Gabrielov’s
assertion (2), however, unlike II (1), actually implies that ¢ is regular at a

([1], [23D).

Theorem II reduces the main problems of differential analysis, including
their functional analytic aspects, to questions of semicontinuity of local
invariants in analytic geometry. For example, by Theorem I (1), the
conclusions of Theorem II are true if ¢: X — Y is a proper morphism of
Nash manifolds and A, B are matrices of Nash functions on X. This is the
first general results on “modules over a ring of composite differentiable
functions”. From Theorems I and II, we also recover all previous results on
the classical division, composition and extension problems for ¢ functions:

Division theorems. In the coherent case X =Y, ¢ =identity, B =0,
Theorem 11 (1) becomes Malgrange’s division theorem: A-%*(X)* is closed
in €*(X)” ([19], Ch. VI]). The canonical surjection $*(X)? —» A -6~ (X)
admits a continuous linear splitting, according to [6, Thm. 0.1.1]; this is the
assertion of II (2).

The Malgrange-Mather division theorem [20] is equivalent to the
assertions (1) and (2) of Theorem II in the special case that X = Y = R"*¢
¢: X =Y is the mapping

G(x,t, Ayy oy Ag) =0, A, ooy Agmys —r“—:z:: A7),
where x =(x,...,x,), B=0 and A(x,¢t, 4, ..., 44-1) is the 1 xd matrix
(14~ 142 ... 1): Let P(t, 4) denote the polynomial ¢!+ zd: A;r*~J with generic
coefficients A =(4;,...,4;). Then, given f(x, t)J; ié”“", there exists
gl(x, A)e%"“(R"“)" g =1(4y, ..., 9q), Such that f=A-(go¢) if and only if
f(x Z t'7ig;(x, A) divided by '+ Z LTI+l =P, ) is a €~

functlon ll (1) applies because fe(% c“}(R"J“’)") by the formal Weierstrass
division theorem. Semicontinuity of the Hilbert-Samuel function in this case
is provided by either (1) or (2) of Theorem I.
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Composition theorems. When A =1 and B =0, II (1) reduces to the
composition conjecture ¢* 4 *(Y) =(¢p* % *(Y))", established in [2] when ¢
is semiproper and ¢(X) is Nash subanalytic; this result follows from
Theorems I (3) and II. Special cases include Glaeser’s classical theorem
([13])), Schwarz’s and Luna’s theorems on differentiable invariants ([17],
[28]), and Tougeron’s result ([31]).

Extension theorems. Suppose A =1 and B =0. If Z = ¢ (X), then II (1)
asserts that ¢*(Z) (the restrictions to Z ol ¥ ™ functions) embeds as the
closed subspace ¢* ¢ (Y) of € (X). Thus Il (2) provides a continuous linear
extension operator 4% (Z) — ¢*(Y). In particular, Theorems I (3) and II
prove the existence of extension operators for Nash subanalytic sets, first
presented in [6] using [2]. Special cases include the classical extension
theorem of Mityagin [24] and Seeley [29] for the half-line, and Mather’s
splitting theorem for differentiable invariants ([21]).

3. Local invariants

A part of our strategy is to exploit the relationships among various
conditions on the variation of the module of formal relations #,. Zariski
semicontinuity of the Hilbert-Samuel function is equivalent to two other
important conditions ({3, Thm. A]):

(1) A uniform version of a lemma of Chevalley [8]. This is interesting
even in the coherent case, where it translates into a uniform version of the
Artin—Rees theorem in commutative algebra.

(2) Zariski semicontinuity of a “diagram of initial exponents”™ N(#,)
associated to #,. This diagram gives a combinatorial picture of the module
of formal relations, in the spirit of the classical Newton diagram of a formal
power series.

Chevalley’s lemma estimates the order of vanishing of an element
Ge f?,,,(a,, modulo 4,, in terms of the order of vanishing of ¥,(G). In precise
terms:

LemMmA. Let ae X. For each ke N, there exists le N such that ifGeGW,
and V,(G)eml*'- F  then GeA,+mi.! 9,.,.

Let ac X. For each ke N, we let I(k, a) denote the smallest le N
satisfying the conclusion of the lemma.

The diagram of initial exponents. Let y =(y,,..., y,) and let R be a
submodule of K([[ y]]%. The diagram of inmitial exponents N(R), introduced
by Hironaka (cf. [7], [11]) is a subset of N" x {1, ..., q}, defined as follows:

If B=(B....., B)eN", put |B|=p8,+ ... +8,- The lexicographic
ordering on (n+2)-tuples (|fl,j, B, ..., B.), where (B,j)eN"x:1,...,4q!,
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induces a total ordering of N"x{l,...,q}. Let GeK[[y]]% say G
=(Gy, ..., G,), where each G; =) g, ;)*. Let suppG = {(f, j): g;; # 0} and
let v(G) denote the smallest element of suppG. Then N(R) is defined as
\v(G): GeR)}.

Clearly, N(R)+ N" = N(R), where addition is defined by (8, ))+7y =
(B+7, i), (B, NeN"x 1, ..., q), yeN" It follows that there is a smallest finite
subset V(N(R)) of N(R) such that N(R) = V(N(R))+ N".

The “vertices” V(N) can be used to totally order the set & = (N < N"
xi1, ..., q}: N+ N"= N} ([3; § 1]): To each Ne &, associate the sequence
v(N) obtained by listing the vertices of N in ascending order and completing
this list to an infinite sequence by using oo for all the remaining terms. If N!,
NZe %, we say that N! < N? provided that v(N') < v(N?) with respect to
the lexicographic ordering on the set of such sequences.

Clearly, if N' > N2, then N! < N2,

Now, to our module #, we can associate a diagram N, which depends
on a choice of local coordinates in a neighborhood of ¢ (a): Assume that Y is
an open subset of K" and that ¥ = ¢4. If be Y, then (, identifies with the
ring of formal power series K[[ y]] in the coordinates y = (y,, ..., y,) of K"
If ae X, we put

N, = N(Z,).

Then it makes sense to talk about Zariski semicontinuity of N, with respect
to the total ordering of the set of diagrams &.

TueoreMm IV. The following conditions are equivalent:

(1) The Hilbert—Samuel function H, of .‘2,,,(,,,/.%, is Zariski semicontinuous
on X.

(2) Uniform Chevalley estimate: Let K be a compact subset of X. Then,
for every ke N, there exists | = I(k, K)e N such that I(k, a) <! for all acK.

(3) (Assuming that Y is an open subset of K" and 4 = (%}.) The diagram
of initial exponents N, = N(HA,) is Zariski semicontinuous on X.

Again consider a submodule R of K[[y]]% where y=(y,, ..., y,)-
Hironaka’s formal division algorithm (cf. [7], [11], [14]) asserts that

K[[y])? = R®{G: suppGNN(R) = Q.

Clearly, {G: suppGNN(R)=@)] is stable with respect to formal
differentiation; this plays an important part, for example, in the way we use
Theorem IV (3) above to prove Theorem II.

Let H denote the Hitbert—Samuel function of K[[ y]]%R. It follows from
the formal division algorithm that H (k) is the number of pairs (B, j) such that
(B, )¢N(R) and |B| < k. Thus, (3) immediately tmplies (1) in Theorem 1V.
The relationship between H and N(R) also shows why the Hilbert—Samuel
function H (k) coincides with a polynomial in k, for k sufficiently large.
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Let (B, ), i=1, ..., t, denote the vertices of N(R). It follows from the
formal division algorithm that R has a unique set of generators G', ..., G'

such that supp(G' — ") AN(R) = @, where y*"i denotes the g-tuple with

y’i in the j-th place and zeros elsewhere. We call G, ..., G' the standard
basis of R.

Let X be an irreducible (germ of a) closed analytic subset of X. If N, is
Zariski semicontinuous, then there is a proper closed analytic subset T of X
such that N, is constant on 2 — T. The standard bases of #,, ac X2 — T, form
the “special generators” we referred to in Section 1 above.

In general, there is a “generic diagram of initial exponents” Nj
associated to X, with the following properties: (1) for all aeZ, N; < N,;
(2) N, = N; outside a countable union U = |J T, of proper closed analytic
subsets T, of X [3, § 8]. The T, come from finite order Taylor expansions of
our data. To prove our semicontinuity conjecture in general, we need a
stabilization result showing that U is, in fact, analytic. An equivalent
approach is to prove that if acX—U, then any formal relation Ge %,
extends to a formal relation outside a proper analytic subset of X (in the
sense that its coefficients extend analytically).

Remark. For certain parametrized families of modules which generalize
the coherent case (and include, for example, Tougeron’s “familles
neothériennes” [32]), it is easy to prove directly that the diagram of initial
exponents is Zariski semicontinuous [3, § 7] (cf. [27]). On the other hand, if
N, = N(4,) is Zariski semicontinuous, then the properties of the special
generators show that the modules #, form such a parametrized family [3,

§ 9]

An invariant diagram. The diagram of initial exponents N, depends on
a choice of local coordinates near ¢(a). However, there is an invariant
diagram G, (cf. [14]): Write R* to indicate the effect of a coordinate change
2 on a submodule R of K[[¥]]%, vy =(y,, ..., y,). Clearly, N(R* depends
only on the linear part of A, so we can assume that 1 GL(n, K). Then N(R%
is Zariski semicontinuous on GL{(n, K), according to the preceding remark.
Let

G (R) = min N(RY).
a

Then G(R) = N(R* for a generic coordinate system A.
Put G, = G(#4,). If N, is Zariski semicontinuous, then so is G, ([5]).
The special generators arising from the generic diagram G, are
particularly nice. For example, they are Nash functions in the algebraic case,
by a Henselian version of the formal division algorithm ([15]). Thus, for
instance, the stratification of semialgebraic sets by Nash [unctions is a special
case of our general description of subanalytic sets in Section 1 above.
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4. An application to ideals of holomorphic
functions with ¥~ boundary values

Because our techniques are so explicit, they can be used to give natural
sufficient conditions for the conclusions of Theorem II to hold on closed sets
which are not necessarily even subanalytic. For example:

Let U be an open subset of K" and let X be a closed subset of U. Let A
be a p xq matrix with entries in ¢(U) and let .o/ = ¢}, denote the sheaf of
submodules generated by the columns of A. The generic diagram G,
= G(A,), ac U, is Zariski semicontinuous, by the coherent case. Thus there
is a unique locally finite filtration of U by closed analytic subsets,

U=2%o(H) 2L (H)>L(H)> ...,

such that (1) G, is constant on each X, —Z%,,,, where Z, = Z, (%), and (2)
G, <G, when aeZ, and beX,,,. If each X, is regularly situated with
respect to X (in the sense of Lojasiewicz [18, § 18]), then A-&(X; ) is a
closed submodule of &(X; K)* ([5])). (£(X; K) denotes the K-valued Whitney
€™ functions on X.)

There are interesting consequences in several complex variables:
Suppose K = C. Let o *(Q) denote the space of holomorphic functions with
%™ boundary values on a pseudoconvex domain 2 with smooth boundary in
C™. Assume Q c U. If Q is bounded, then

A A = AP N A-EQ; O,

by exactness of the J-complex [16] (cf. [25]). It follows that if each Z, is
regularly situated with respect to ©Q, then A4/ *(Q) is a closed submodule
of #*(Q)". (For special cases obtained previously, see [12] and its
bibliography.) Assume, moreover, that Q is bounded and strictly
pseudoconvex. Let # — (%} denote the sheaf of relations among the columns
of A. If each Z, (o) and X,(9) is regularly situated with respect to Q, then
the canonical surjection o®(Q) —» A- 4 *(Q)? admits a continuous linear

splitting ([5]).
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