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1. Introduction

The aim of this paper is to describe the moduli space of plane curve
singularities with a fixed topological type, i.e. of the topological type of
(X0, 0) defined by the zero set of a weighted homogeneous polynomial f with
weights w, and w, and degree d in C?, C the field of complex numbers. If w,
= b and w, = a and a and b are relatively prime, this is the moduli space of
irreducible plane curve singularities with the semi-group {(a, b)>. There was
already an approach by Washburn (cf. [9]) but it turned out to be wrong in
general.

We use the following approach: Let ¥ — $ be a good representative of
the versal p-constant deformation, x4 the Milnor number of (X, 0). Because
of the C*-action $ can be chosen as a Zariski open subset of C" and X a
hypersurface in $ x C2. § already “contains” all singularities we are hunting
for. Along the integral manifolds of the kernel V of the Kodaira-Spencer
map the family X — § is analytically trivial. To obtain 2 moduli space we
have to look for the quotient of $§ by the group G = exp V. Obviously, a good
quotient can only exist on the strata S, of fixed orbit dimension. {S,} turns
out to be the stratification defined by fixing the Tjurina number r, i.c. the
dimension of the base of the versal deformation of the singularity in the
corresponding fibre of the family.

~ Notice that the t-constant stratum in the whole versal deformation of
x?+y" is in general not contained in the p-constant stratum $.

The quotient S,/G always exists in the analytic category (cf. [4]). In the
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case of w, = b and w, = a, a and b being relatively prime, it is the moduli
space of all plane curve singularities with semi-group <{a, b) and Tjurina
number 7. If @ and b are not prime, the corresponding moduli space is a
quotient of &/G by a finite group.

We prove that on the open stratum S, the quotient &, /G in the
sense of Mumford (cf. [5]) does exist and is a quasi-smooth algebraic variety,
ie. locally an open subset of a weighted projective space. For a and b
relatively prime the dimension of this variety has already been computed by
Delorme [2]. We give an algorithm to compute the dimension in general and
some explicite formulas. Except the case a = b and even we prove that the
quotient of &, /G by the action of the finite group is an algebraic variety. In the
exceptional case we do not know wether this finite group acts algebraically.

The other cases of possible weights are treated similarly. It turns out
that t > 1’ implies dim &,/G < dim &,/G, ie. especially dim S, /G = m+1,
—~ i is the modality of x*+ y* with respect to the u-constant stratum, under
the action of the contact group (m the modality with respect to right
equivalence, cf. [1]). We give an example showing that this is not true for
surface singularities in C>. In this example &, may be empty for some t,
T,.m ST < u This is however not possible for curves.

2. The Kodaira-Spencer map of the versal u-comstant family

In this chapter we will study the Kodaira-Spencer map of the versal
p-constant family X — 9 of the germ of the singularity (X,, 0) defined by the
polynomial f = x*+ )%, a < b, in (C?, 0), f is quasi-homogeneous with weights
b, a and degree d = ab. Let B= {m,, ..., m,} be a monomial base of R,
= C[x, y)/4f, Af =(&f/dx, &f/dy) =(x*""', y*™ "), ordered by degree and the
lexicographic order. This order can be realized by changing the degree-
function a little bit:

deg(x*y*) =eb+e'a, dg(x*y*)=e(b—1/z)+e'a

with a suitable z > b such that (zb—1, za) = 1. If (a, b) =1, we could use
dg = deg. We may choose m; =1 and the Hessian m, = x*~2y*~2,

If it does not lead to any confusion we will not distinguish between the
monomials and their exponents.

Denote by (-, -) the bilinear form defined by the coefficient of the
Hessian m, of the product in R,: Let f, geRp dnd fg =a,m + ... +a,m,,
then (f, g):= a,. Denote by B® = {n,, ..., n,} the dual basis with respect to
this bilinear form, i.e. n; = m,/m;. Denote

B, = |ng, ..., n,deg(n) > dl

(notice that for g = ged(a, b), r =(@—3)(b—3)/2+[b/a]l—(g+1)/2 plus 1 if
a =>b and plus O otherwise).
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B,—lml....,m,,»—Bu,
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BO'_ lnr+l"--’nr+s’deg(ni)_d1’

$
Fo=f+ Y tnn and D its discriminant,

i=r+1
s
’: =f+ Z Iin,-
i=1
(notice that r=s and D=1 1n case (a, b) = 1)
H=C[t1,....,ts]D and I'IO=C[[’+1,..., t!]D'

H=SpecH and X =SpecH][x, y]/F.

Because of the C*-action X = $ i1s a good representative of the versal
w-constant deformation of (X,, 0). Obviously, there is a C*-action on $ and
the Lie algebra of derivations Der H defined by

deg(t;) = d—deg(n) and deg(d/dt,) = —deg(r).
The Kodaira--Spencer map is given by the map
g: Der(H)— H[x, yJ(F, AF),

AF = (0F/dx, ¢F/dy), g(dy=cls(dF) (cf. [4]).

We will study the kernel V' = Ker(g) of the Kodaira-Spencer map.

It 1s not difficult to see that V is a graded Lie algebra. Denote by V, the
Lie algebra of all vector fields of V of degree > 0, by V, the Lie algebra
generated (as H,-module) by V, and the Euler vector field of Der H.

ProprosITION 2.1. V, is an Hy-module of finite rank and V, generates V
as an H-module. V. is nilpotent and V, is solvable.

Proof. H[x, y]J/AF =: R is a free H-module generated by the elements
of B. The multiplication by F is an H-linear map. Denote by K = (k;;) the
matrix of this map with respect to the bases B and B’. The image of F is
contained in the submodule generated by the elements of B,. Denote by d;

the vector field ) k; &/;. By the definition of V the vector fields d;. i
i=1

=1. ..., r, generate V; notice that d; = 0 if i > r. By definition, d; is homoge-

neous of degree deg(m), i.e. an element of ¥,. O

For homogenecous vector fields d and 4 we have
deg ([d, d']) > deg (d) +deg (d),

but the degree of a vector field of V, is bounded by deg(m,); notice that the
elements of H have negative degree, ie. V, is nilpotent. Finally, V,
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=[V,.d,], d-d, is the Euler vector field on H and [d,, d] = deg(d/d)d.
Remark 2.2. 1t is not difficult to prove that

[d;, d;] = (deg(d)) —deg (d)d - d,+d

f mym; =m,, d a homogeneous vector field of the submodule generated by
dh+1’ "".dr'

The way to study the kernel of the Kodaira-Spencer map and the action
on H is to study the Lie algebra V¥, and the matrix corresponding to its
generators d;. Because of m{F =0 in R if i >r and the image of the
multiplication by F being contained in the submodule generated by
ny, ..., n, we may consider F to be a map on these submodules.

Denote by M, the submodule of R generated by B, and by M, the
submodule of R generated by B,. For technical reasons we will consider the
map E: M, = M, corresponding to the multiplication by —dF.

Let us denote by C(t) the matrix corresponding to E with respect to the
bases B, and B, and by CL(t) the matrix of the linear terms with respect to t
of C(1).

The following lemma will give some simple properties of these matrices.

LemMma 23. 1) CL(Y) is symmetric,

2) Cy() =0 iff CL;(t) =0;

3) let jy=max{j, C; # 0}, then j; > j.;,;

4) for j < j; there are integers k(i, j) with the following properties: k(i, j)
<k, j+1), k@i, j) <k(@i+1,);

5) if j =i, then CL;;=(deg(my n)—d) .-

Proof. 1) is clear because of the choice of the bases. Now, x¢y* €B, iff
eb+e'a <ab—-2b—2a, 1.e. m;m;eB, imples m;m, eB, for k <j Let j be
maximal such that m;m; e B,. For j < j; define k(i, j) by m;m; = my; ;. Then
we have also m;n; ;, = n;. By the definition of E,

Em; = ) (deg(n)—d)d;n,
j=1
1.€.

Em, = Y (deg(n)—d)t;nym; = Y Cjin,.
ji=1 ji=1
If _] <.’I then nJ = m,-nt(w-), i.e.

CLj = (deg (Mg, — d) lu. -
Suppose now Cj; # 0 for j > j; and choose j maximal with this property; then
0 = Em;m; = C;;n; which is a contradiction.

Remark. 1In the higher dimensional case, B, cannot be characterized
simply by degree. This is the reason why 2) of the lemma fails.
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ProrposiTioN 2.4 (T. Yano). There is a basis By of M, with the following
properties:

1) my = m;+h;, h; homogeneous of degree m; in the submoduie generated
by hivyy ..., hy;

2) the matrix of E with respect to B; is symmetric with lincar part CL{t}.

Proof: Consider, on M, x M,, the pairing (-, -) defined by the coefficient
of the Hessian of the product of two elements of M,, resp. M,. Let h, geR
and hy = ¢, ny+ ... +¢,.n,; then (h, g) = ¢, . (-, ) has the following propertics:

(l) (nli) ni) = 17
(i) (m, m)=0if i+j<r;
(iii) if (m;, n;) # O, then it is homogeneous of degree

deg(m;) +deg(n;)—deg(n,).

Denote by K the matrix of this pairing with respect to the bases B, and
B,. Obviously, the map E induces a symmetric bilinear form on M, defined
by (-, E} with a symmetric matrix G with respect to the basis B;.

Notice that (m;, Em) =0 if m;-m;¢ B! Now

(iv) G =KC({).

This implies that C(t) K~ ! is symmetric. The base change induced by
K~!' on M, has the required properties {because of (i) to {iv}). 0

Remark. A base change in M, corresponds to a choice of other
generators of the kernel of the Kodaira-Speuncer map.

CoroLLARY 2.5. There is a basis B, of M, and an automorphism w of H
with the following properties:

1) w is homogeneous;

2) n= n,-+h1-, h; homogeneous of degree n; in the submodule generated
by ny,...,n_,

3) the matrix of E with respect to B; and B, is CL(w(t)).

Proof. With the nototations of the proposition the base change on M,
induced by K has the required property 2) an the matrix of E with respect to
B, and B’ 1s G. Now (m;, Emj) = O if m; m; is not in B,. On the other hand, if

Z Cin; and mym; =my, k =k{i, ), then (m;, Emj = C,,. But C,,

(deg(n,() djt, + higher order terms and (deg(n)—d)r, is the ij-th clement
in CL(%).
Let us consider the example f = x5+ y!!
B, =1, v, 5%, x,y, xv, y¢, xy2 x2h

_ .3,9 1.7 .2..9 PR .Y 3.5 .2 7 97
B,= x"y", ),xy,Ay,.\_‘/“,x PLOXTyT, Xy, xy7y,
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cl. the corresponding Newton diagram of f:
r=9, u=40,
H=C[t,,...,t].

If we choose a base B; given by the proposition we get the following
symmetric matrix C' =(C}j;) and generators of the kernel of the Kodaira-

d
Spencer map ) Cj—-.
0
23t, 18t, 13¢, 12¢, 8t Tt 3t; 2tg to
18t, 13t;+E Bts+D Ttg+C 3t:+B 2t4+44 0 0 O
13ty 8ts+D 3t,+F 214 0 0 0 00
12t, Ttg+C 24 Iy 0 0 0 00
s 3t,+B 0 0 0 0 0O 0 0|,
Tte 2g+A O 0 0 0 0 00
3, O 0 0 0 0 0 0 0
2ty 0 0 0 0 0 0 00
] toy 0 0 0 0 0 0 00

A= =911, B= =Ttatg/11, C =3tyt3/11,
H = —8tgte/11+2t2313/11,
E= —11Ttgty /11 +16tg t-ts/11 = Ttgtgtste/11 +131413/121,

F=[9!3.
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We are now intrested in the flattening stratifaction of H{x, yl/{F, 4F)
as an H-module. This stratifaction coincides obviously with the stratification
given by the rank of C(t): For te § denote by u(F(t)), resp. z(F(t)), the
Milnor number, resp. the Tjurina number, of the singularity in the fibre X, of
the family.

Remark 2.6. p= p(F(t)) =t(F())+rk(C(1), te H.

Let us denote by &, the reduced flattening stratifaction of §, ie. the
underlying set is the set of all te® with fixed Tjurina number t.

Remark. In general &, is not the 7-constant stratum of the whole versal
deformation of f: The family x*+y'' +1x2y’ +2¢'x* y2 + 1’ x> y* is for small
t # 0 and arbiatrary t' 1-constant (t = 34) but not u-constant (u(t' = 0) = 40,
u(t' # 0) = 39).
In our example we get the following stratification:
Caa: ME-3tgt,—t3ty =1 g #0;
Sis: g=0 and 2t4+A#0 or 3t1;+B# 0 or 4tg(7ts+ C)(8ts+ D)
—to(8ts+ D)2 =3t —tgt,)(Ttg+ C)F =: h #0;

Sae: 23+ A=3t,+B=h=0 and (Tt4+C)2—to(13t3+E)#0 or
11(7tg+C)(8ts+D)—913(13t3+ E) # 0 or (8t5+D) (9o (Tte+C)
—11(8ts+D)) # 0 or (Tt¢+ C)(9o(7t+ C)—11(8t5+ D)) # 0;

€37: the polynomials defining &,, equal to zero and 1y #¥0 or
Tte+C #0 or 8t5+D #0 or 13t3+E # 0;

Sig! lg=...=ts=1ts=1t3=0and 1, # 0 or t, # 0;

Si9! lg=...=t; =0 and t; # 0;

Sh0: log=.=1, =0

Notice that S5, and &5 are smooth.
Especially, &, is not empty for 7, <t < u. We will prove that this is
always true in our situation.

min

Remark. <, may be empty in the surface case:

f = x3+y10+219a H= 3245 Trin = 246’ C5247 = Qa

C,48 1S an open set in a hypersurface in .

Tueorem 27. t(F(1)), te$ takes every possible value between
Trin and U =#(f)

Proof. Because of Corollary 2.5 it is enough to show that for the linear
matrix every rank between 0 and the maximal rank is possible. Any minor
of the linear matrix CL(f) has the form M(f) = (d,; t..;) With
a(i, Jel0, ..., r}. i, j=1,...,m, dy; =deg(ng;)—d if a(i, j)# 0 and d,
= 0. The a(i, j) satisfy the following properties (cf. 2.3):

a(i, ) # 0 implies O # a(i, j—1) <ali,j) and 0 # a(i—1, j) < a(i, ).
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LEmma 2.8. With the notations above, det(M (1)) # 0 iff a(m—i+1)#£0
foralii=1,...,m

Preof. Ifaim—i+1, i) =0 for some i, then, because of the properties of
the a(i,j), det(M(t)) vanishes. Assume that a(m—i+1, ) is not zero for
ali 1. Use induction cn the number of non vanishing a(i,j). Let s
= max {a(}, j). a(i, j) # 0} and assume that det(M(t, t, = 0)) = 0. By induc-
tion hypothesis, M (t, t;, = 0) has an antidiagonal element a'(m—i+1, j) = 0.
This implies that det(M (8)) = d,t,det(A)det(B):

%
A
%*
«...x dit, 0 0
0 0 0 |m-i+1
-
0 0 0
By induction hypothesis det(A) # 0 and det(B) # 0. O

As a corollary of this lemma we get the following result.

Remark 2.9. Denoie any string of elements of the matrix CL(t) parallel
to the antidiagonal also by a antidiagonal. Then the rank of CL(1) is the
iength of the maximal antidiagonal containing no zeros, i.e. with the nota-
tions of 2.3.

rk(CL(#)} = minj;+i—1.

Now we prove Theorem 2.7, using induction on 7. Consider the maximal
antidiagonal of the linear matrix containing no zeros. Among the k(i, j) for
which 1, ;, occur on the corresponding antidiagonal of CL(1), let k(iy, j,)
:= k be maximai, I =1, ..., p. On the subset defined by ¢, = ... =1, =0 the
rank has decreased by 1. Now we apply the induction hypothesis to prove
Theorem 2.7.

in the next chapter we are looking for moduli spaces of germs of plane
curve singularities having the same topological type as (X,, 0), i.c. we look
for the quotient of $ under the action of the kernel of the Kodaira-Spencer
map V. Such a quotient can only exist on the strata of the flattening
stratification | &) of $. The quotient always exists in the analytic category
(cl. [4]). Let us denote the dimension of this moduli space &/V by m(/, 1).
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Then
m(f, 1) = dim & —rk (C(t| S)).

Denote by m(f) = max m(f, 1}} the modality of f with respect to the
p-constant stratum, under the action of the contact group.

Tueorem 2.10. 1) m{f) =dim H4 1., —y;
2) 1< implies m(§, 1) =2 m(f, 7).

Proof. We have to prove 2). Analysing the proof of Theorem 2.7, it is
enough to prove the following lemma for any linear mateix similar to CL(1):

Lemma 211, For i, j=1,....m let a(i, el0, ..., ! satisfying the
property. a(m—i+1,i)#0 for i=1,...,m and a(i,j)#0 implies 0 #
a(i—1,j) <a(,j) and 0 #£ ali, j—1} <ali, j).

Let d,; ;,€C such that do =0 and d,; ; # 0 if a(i, ) # 0. Ler I, be the
ideal generated by the (p+ 1)-minors of the matrix M(t) : = (d; ) tai. ;). Then

dmC[t,, ..., /I, <r—m+p.

Proof. Use induction on m and on the number of different t,; ;s
contained in the matrix. If p+1 =m, the assumption 1s true, because
det{M () # 0 (Lemma 2.8).

Let s = max {a(i, j), a(i, j) # 0} and let U be a component of the zero
set of I,.

- Case 1. U is contained in the hypersurface defined by r, = 0. Consider
the matrix M’'(t) obtained from M(t) by deleting the last row and the last
column. By the definition of s and the properties of the a(i, j}, the matrix
M'(t, t; = 0) satisfies the properties required in the lemma and we may apply
the induction hypothesis.

Case 2. U is not contained in the hypersurface defined by t,. Suppose
t, occurs [ times in the matrix M (1). Then, on the open set defined by ¢, # 0
the rank of M(t) is at least /. In particular, this imphes ! < p. Consider the
matrix M’(1) obtained by deleting the rows and columns in which ¢, occurs.
For t, # 0 it is easy to see that rk(M (1)) = rk(M’(t))+], therefore

(t, rk(M() < p} = it, rk(M () < p-1}.

Now M’(1) satisfies the properties required in the lemma and does not
contain ¢,. We can apply the induction hypotheses, and the lemma is proved.

Remark., Theorem 2.10 fails also in the case of surface singularities.
Consider the same example as before: /' = x>+ y!°+2!°, m(f, 246) = 88 and
m( f, 248) = 8§9.

We will describe the open set S,  more precisely in terms of the matrix
C. A decreasing filtration F* = FP M, on M, is introduced, induced by a
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filtration of the monomial base B compatible with the dual filtration on M,
(The dual filtration F* on M, is defined by:

meF*M, iff neF'"?M).
l.et us denote the matrix corresponding to
gr,E: gr, M, —»gr, M,

by C” and the radical of the ideal generated by the maximal minors of C” by
1

p-
Lenma 212, There is a fltration F* of M, satisfying the following
properties:
) FPM, =M, o2FM,2F*"'"M,2FM,=0:
) meF"M, implies nje FPM, if j <i;
3) rk(gr,M) <rkigr,M,) if 2p<I+1 (rk as H-module):
4) the elements of CP are invariant with respect to the action of V..
5 IP=1"7 for all p;
6y I"<I”" Y or IFCIP 2 if 2p <+,
7y me FP implies m; mjeF"+1 if mym;e B,;
8) m; €F? implies m;-n;€F?.
9) S, is the open set defined by 1, or I, 01, _,, ' : = [(1+1)/2]

min

Consider the example x’+y'!. In this case, F* is the (x, y)-adic filtra-
tion:
gro M, is generated by x
gr; M, 1s generated by x
gr, M, is generated by x
gry M, is generated by x° y°;
gr, M, 1s gencrated by x°y°.
For the graded pieces C? of the matrix we get:

C® = (tg. 2tg, 3t5),
C'=(A'",B), A =24+A, B :=3t;+B,
e-linb e} [
‘ - 9
Io =1, =(t5, tg, t9),
I, =1, = (4, B).
I, =ty A =1y B,
1. =34 and 35, defined by g A"—tyB' # 0.
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Construction of a suitable filtration of the monomial base:

LeMmA 2.13. There is a map dh: B — N having the following properties:

1) dh is injective;

2) if e, ¢;€M, (resp. M,) and deg(e¢,) < deg(e,), then dh{e,) <dh(e¢,);

3) for ¢, €B, and ¢, €B, we have: if for a suitahle ¢; €B, with dh(¢;)
=dh(e¢;)+dh(e,), then we have ¢3 = ¢; +¢5.

4) dh()+dh(c®) =dh(n,) =:d,,

Sy Let k, := dh((0, 1)), then

0< #Bndh ' (k+1,..., k+k,)) <a—1
if k+k, <d,.
6) 5) also holds for B,.

Proof. Define
(e : = {:-dg(c) if deg(c) < ab,

z-dg(¢)—a(zb—=1) if deg(e) = ab.

1) It is not difficult to see that dh has an obvious extension to a
bijection
dh': 1, ...,za—-1} x|1,...,2b=2} = {1, ..., za(zb—1)}
defined by
dh'(e, €) : = (zb—1)e+zae’ modza(zb—1).
Hence
dh' (ze, ze') = z-dh(e, €').

2) 1s clear by definition.

3) Suppose ¢, €B; ¢,, ¢;€B, and dh(¢;y) =dh(¢;)+dh(c,), then we
have dh(¢y) =dh(c;+¢;) and degce; =deg(e, +¢,) and this implies ¢y =
e+ e,

4) is a consequence of 3).

5) For a fixed number [/ we regard the following sequence of mono-
mials (I, 0), (I, 1),...,(l,t) from B, then the values of dh on the se-
quence increase by k, =dh(0, 1} = za as long as deg(l, 1) < ab. Suppose
deg(({, r+ 1)) > d: then dh(/, t+1) is smaller than k,. Therefore exactly one
monomial (0, ry) €B,, exactly one monomial (¢—2,!,_,)eB, and at most
one monomial (/, t,), 0 <! <a—2, belong to I,

L : = dh ' (k+1. ..., k+k,)). O

Lemma 214, If k <(d, —k,)/2, then
#B,NnL < #B,nI,.
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Proof. Suppose B, NI, contains | monomials, which necessarily are of
the form (0, to), (1, ¢,), ..., (I—1, t,—). Then B, n I, contains either a—{—1
monomials (I, t),...,(@a—2,t,_,) or a—-I—2 monomials {I+1,1t,,),....
(a_ 2’ ta—Z)'

The second case occurs iff k < dh(l, b—1) < k+k,. Hence the statement
of the lemma is equivalent to the inequality:

dh([a/2], b—1) > (d, +k,)/2.

A direct computation shows that

2:dh((a/2], b~1)—-d, -k, =z(b—a)+a—-1>0,

if ais odd (resp. z(2b—a)+a—2> 0 ii a is even). O
Let
c(¢) : = # {beB,, dh(h) < dh(0)} — # {heB,, dh(h) < dh(e)},

then c(e¢) = c(¢%)+1 if ee B,. Let ¢ = maxc(¢): then a maximal anti-diagonal
of C(t) containing no zeros has length r—c; hence rank C(t) =r—c.

Choose ¢, € B, with dh(e,) <d,/2, such that ¢ = c(e,) and dh(e,) maxi-
mal. Let e,e B, such that dh(e;) > dh(e¢,) and dh(cp) minimal

Lemma 2.15. dh(ed)—dh(ey) <k,.

Proof. Let I := dh™'(idh(co), ..., dh(co)+r,—1}) and suppose dh(ey)
< (d,—k,)/2; then, by Lemma 2.14, we have

#B,nI< #B,nI.

Let bheB,nI maximal; then c(h)=c¢, and hence dh{h)>d,/2
ie. dh(h®) <d,/2 and c(h°) = c—1 for the dual K°

Let boe B, be maximal with dh(by) <dh(b); then c(h$) =c, hence
dh(h3) < dh(c,) and dh(h°) < dh(co). We get

dh(eo) +k, > dh(l) = dh(ed)
and
dh(e§)—dh(eo) <k,. =

Let us illustrate this construction by ancther example, which does not
lead to the (x, y)-adic filtration:

f =x>+y'%; take z = 10. There is a unique exponent (g, ¢'), such that
q(zb—1) =1 mod(za) and ¢'(za) =1 mod(zb—1); ¢ =29, ¢ = 50. Then,
for a monomial (e, ¢’) we have:

dh(e, ) =n/10 iff (ze, ze') = (ng mod (za), ng’ mod(zb—1))
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i n, J m; cle, e) dh(e, &)
1 0, 0) -1 0
10 3,9 0 12
9 (1, 10) 1 24
8 2,8 2 43
2 0, 1 50
7 (3, 6) 2 62
6 2,9 k] 93
k} {0, 2) 2 100
5 3.7 3 112
4 (1, 0) 2 119
4 (2, 10) 3 143
5 0, 3) 2 150
3 (3, 8) 3 162
6 1, i) 2 169
7 0. 4 1 200
2 3,9 2 212
R (1,2 1 219
9 2, 0 0 238
10 (0, 5) -1 250
1 (3, 10 0 262

c=3; k,=50; ¢,=03,7: ¢, =(1,0, ¢3=(0,3); g =(2,10).

We are now ready to construct the filtration. We start with a filtration
on B. Let

5= dh= ' ({dh(eo)—iky, ..., dh(<) — ik,
and
R = dh~ ({dh(Q=(i+ Dk, — 1., ..., dh(co)— ik, —11).
Because of (S9° = S° and (R%° = R! we get

(59°=S8"" and (R)®°=R!"}
Notice that it is possible that

& =0cy te §=0 foralli,
or
) =¢,+(0,1), ie R =0 for all i.
In these cases we will get the (x, y)-adic filtration on M,.
Denote by ¥* B the filtration defined by §' and R’ as follows: F°8

: = B, suppose F B is defined and the minimal element heF' B belongs to S/
(resp. to RY), j <0, then

F+l. o F-s, if R"*'nB, # @ and K'*! nB, # O,
T JF—-S8'—Ri*'  otherwise:
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(resp.
Fri. F— R/, if S~nB,# @ and S’ B, £ 0,
' F—R/—S/, otherwise).

To obtain symmetry we define for j =0
F*':=F—-8° (resp. F—R"
and if j >0
Firl F—S/, if "B, # @ and $'~ B, =0,
" |F—-S'—R/*!  otherwise

for he R’ it is defined in a similar way. Let /! be minimal such that F' =0,
then, because of the duality B = B,, we have

(FB)°=B-F"

F* induces filtrations on B, and B, and by duality we have (F'B)°
= B'— F’_l B[.
To illustrate the filtration F* let us consider the following example:

SO = "lm4ﬂ n4}s RO = jlm3’ n5}s
S™' =1ne}, R~ ' ={m,, n,},
S_2= {nﬁ’nQ}’ R—2={m1’n10}'

groF = {mu Rig, g, "s}»
gry F = {my, n;, ne},
gro F = {m3, ns},

gry F = imy, n4},

gry F = {ms, ny!,

grs F = \mg, m,, "2},

greF = {msa Mg, Myg, Ny}.

Let us denote the induced filtration on M, and M, also by F*. This
filtration has the properties required in Lemma 2.12.

Proof of Lemma 2.12. 1) and 2) are obvious.

3) gr, M, is generated by {x°y*, dh(e, ¢) egr,B,} (similarly for gr, M,).
But gr, B, is S "B, or R” n B, or (§ U R)nB, or (§ U R'*") N B, for some
j. similarly for gr,B,. Now, by definition

#8°nB,=#S°~"B, and #R°nB,> #R°nB,.
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Using Lemma 2.13 we have
#SnB,>#SnB, #RnB,=2#R B, ifj<0.
4) holds because of the fact that
dh(ey)—dh(ey) <k,

for any two elements ¢, and ¢, of gr, B and that r, is invariant under the
action of V, if ¢ > j, (Lemma 2.4): if an element of C” depends on ¢, with
dh(n,) > k, (we may assume the linear part to depend on t,) and this element
is in the ith column and the jth row of C(t), then

m,-n. = n;

ity ; and my, megr, B

but then
dh(n) = dh(n)—dh(m;) <k,!

5) is a consequence of the duality and the fact that the change of the
matrix C(1) to the symmetric matrix does not change I,_,.

6) is a consequence of Lemma 2.13: Suppose gr,B =S§’, j <0, and
gr,_, B =571 then

(i) gr,-.B,=1e—(0,1). cegr,B,j UL, L is empty or contains just
one element: '

(iiy gr,-,B;=1e—(0,1), cegr,B,}\T T is empty or contains just one
element.

Furthermore

#gr,B, > #gr,B =:4d,.

I,_, is the radical of the ideal generated by the d,_,-minors of the
matrix C?~ % Let my,,, ..., My, generate gr,— 2 M,. Suppose I,_, vanishes
at a point t; then the leading forms of my,, E, ..., my,_, E with respect to
the graduation, ie. in gr,_, M,, are dependent.

Now, because of (ii) the leading forms of ym,, E, ..., ym;,., E define
rows of the matrix CP. By (i} they depend on t, too. This implies that the
corresponding d,_,-minors of C? vanish at t. But d, = d,_, imples that [,
vanishes at t. All the other cases are similar.

7) and 8) are obvious by the definition of F*.

9) By the choice of ¢, ¢(¢,) = ¢, the matrix C(1) has a maximal rank
r—c at a general point. The rank decreases if the rank of a graded piece
decreases. Because of 5) and 6), S, is defined by I, n 1, -, if §°# @ and
ROAB, #@ or by I, if S°#@ or R°nB, =0 (I': = [(I+1)/2]).
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In the example x>+ y'? we get the follewing linear matrix:

— —

260, 211, 1615 14t, 1lts g 6t 4tg 2ty tyo: C°
21r, 16t5 1lts 9tq 61, 4tg L) C

16ty Llts 6t, 4tg i, C?

141, 9ty 413 2t5) C*

1ts 61, 1,0 C*

Oty 4dig } cs
6{‘.- tl(]

4t
’n } -
Io.

I, =(to), 13 =1(260—3t34/5);

S, . is the open set defined by t,0(2ts—31{o/5).
From the last results one can obtain formulas for the maximal rank of
the matrix C(t). If (a, b) = 1, we represent

b

—=[r,..onl=r+
a

i
r3+

r2+

as a continued fraction, then define /; and ¢, inductively:

[k = 0, th = 1.
i-y=L+tr, and t;_;, =0 1if t; =1 and |, even;
r; = | otherwise.

t

Cororrary (cf. [2]).
rank C(t) =(a—=2)(b—2)/4—(lo—2)/4+¢t,(r,+1,—2)/2.
If, for instance, b =r-a+1, we get

, _ Na—2)(b-3)/4, a even,
rank 1) = {(a— )(b—r—3)/4, a odd.

CoroLLARY (Hergy). If (a, b) =q and q even

K Clt) = @-2b—2yd—gr+{ T4=%
rk—max C(f) = (a—=2)(b=2/4~q 0 otherwise.

In the cases not covered by these formulas the defimtion of the function
c(¢) and the construction of ¢, in Lemma 2.15 gives an algorithm to
compute the maximal rank.
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3. Moduli of irreducible plane curve singularities with semi-group <{a. b>

We shall now construct the moduli space of irreducible plane curve singular-
ities with the semi-group I' = {a, b)> and minima! Tjurina number r.

There was already an approach by Washburn (cf. [9]) but his construc-
tion 1s wrong in general, also his dimension formula. He uses as filtration F*
the (x, y)-adic filtration on M, and M,. But the corresponding graduation
is not compatible with the multiplication E: M, = M,. This is true only in
very special cases (cf. Lemma 2.13), not true for a=35, b =12

THeOREM 3.1. Let I' = {a, b), (a, b) =1, be a semi-group. There exists
a fine moduli space with universal family n: X,’l'“jn — T,‘;n . parametrizing all
plane cuive singularities with the semi-greup i and minimal Tjurina number t_, .

i) T,’;n _is a quasi-smooth scheme, ie. lccally an open subset in a weighted
projective space of dimension (a—4)(b—4)/4+1o/4+(2—1t)(r; —2)/2—1t,t,/2.

2) X,rn .. is an algebraic space and there is an affine covering \U,} of T,’;mn
such that n~' (U;) are affine schemes.

Proof. Suppose a < b. For short, let t : = 1_,.. Let (X,, 0) be 2 germ of
a plane curve with singularity at O, having I' as semi-group. Consider X — $
to be the versal pu-constant deformation of the singularity defined by x*+ .
There is a te$ such that (Xy, 0) ~ (X, 0) (cf. [1]).

Lemma 3.2, If for t', P e$ (X1, 0) ~ (X2, 0), then t' and £ are in an
analytically trivial subfamily of X —» 9.

Proof. The C*-action induces a canonical filtration on the automor-
phism group E of C[[x, y]]:

E = {pcE, deg(@(x)—x) = I+a, deg (o (y)—y) = {+b},
deg(p) :=1 ff o¢@eE—E,,.

Suppose (X,:, 0) ~ (X2, 0), i.e. there is an @ €E and a unit ueC[[x, y]]
such that

F(x,y, t') = u(x, ¥ F(p(x), o), t?).

We will prove that deg o = 0.

If this is true t', {* are in an analytically trivial subfamily of X — §
induced by the C*-action. Consider the map induced by ¢ and the corre-
sponding map ¢ of the normahzations.

e:CllylZF (xy,t") —= Cllx,y11/F [xy.t2)

C [+« higher order,t”+.. . 1) ——=CI[#° .., i*+ 1]
nt ni
g: Cllt)) —cli ]}

ey=t-h(t), h() a umt in C[[t]].
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Then it 1s clear that deg ¢ = 0.

Using the lemma, we get T.' = £/V, &, the open stratum in the flattening
stratification of $ with respect to the kernel of the Kodaira—Spencer map V.
By gencral results,

X =T'=C/V

cxists in the category of algebraic spaces (cf. [4], [6]).

We wili prove that Z/V is locally an open subsei in a weighted
projective space. V is a graded Lie algebra generated as an H-module by the
elements d;, degd, = degm, (cf. Proposition 2.1). It is enough to study &,/V,
=(&,/V,)/C* (expV, is a normal subgroup in expV, and exp Vy/exp V.
= C¥).

LemMma 33, Let R be a commutative algebra over a field k.
di,....d,eDer, A with the following properties:

(i) [d;,d;]=0 for all i,

(1) d; nilpotent, ie. for all ac R thereis an n(a) such that d™*(a) = 0;

() there are z,, ..., z,€ R such that d;z; is invariant with respect to the
action of the Lie algebra ) d;k = : L and det(d;z)) is invertible in R.

Then R*[z,,....,z,] = R and SpecR —Spec R" is a geometric quotient.

We will prove Lemma 3.3 at the end of this section.

Now we study the action of V, on §,. Using 4), 6) and 9) of Lemma
2.12, we can cover S, by invaniant affine open sets defined by the product
of suitable minors of C?, p<!I'=[(I+1)/2]. Let U =SpecC[t],, h=
h,...h, be one of these open sets, h minors of C'. Let
L=y, oo by ooos Byt 1o -0 By2ys ---» by define the  columns  and
fis o osdsitys -0 Jsy the rows of C(1) corresponding to these minors, (/)
=s{)=pu—1-1=rkC(t)—1. Because of Lemma 2.12 7) and 3) and Re-

mark 2.2, [dj}_“_), d.] is in the C[t],-module generated by dfsmn’ ey d}-s“).
Starting with djs(l—1)+l’ djs(l)’ we apply Lemma 3.3 | times and get

CUI " [ty - on 11, ] = CLHD,.

We may choose homogeneous invariant functions Jivys 10 - Fi, eC[t]
generating C[t]:+ determined by g, /h =1, mod(t; ., ...,

115 ll“)):

U/ V+ = SPCC C [gi,(')+ L1s voes giq]h'

X+ Y gi/h-n; is the corresponding family.
i~
U/V, 1s the open set defined by h in the corresponding weighted
projective space.
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Now it is clear that the quotients of the invariant affine open sets
covering S, by V, glue to a quasi-smooth scheme T'. The corresponding
tamilies glue in the etal topology.

Let us consider our example x>+ y!!: For shortness let A’ = 2ty + 4 and
B'=3t;+B. S, =SpecC[t] 4 -rgp- Let us consider U defined by h
=15 A'(tg A'—tsB). Then i, =v, v=1, ..., 4, is = 6.

C[t]:+ = C[th t85 [73 A'IS_BIIG:]h
with  the corresponding family x3+y" ' +rgxy® +1gx2y” +1,x3y* +
+(ts—ts B'/A") x3 y®.

Similarly we get the invariants on the other open sets. S,/V is the open
set D,(tgA —13B) in P}.3.40 =:ProjClie,ts,t,,w). TS =8/V, is
covered by the open sets U, =D, (A)nT and U, =D, (B)nT'. On U,,
resp. U,, we have the universal families x>+ y!' +19x)° +15x% y" +1, x> y*
+w/A'x*yS, resp. x>+ yt g xy® ity x2y 41, %7 yS +w/B x2 )5,

Proof of Lemma 33. We assume that d;z; =6

5.2 (b if i =j,
Yl0, i i

ijo

Otherwise, let Z =(z;;) be the inverse of the matrix (d;z;). The z; are
invariant under the action of L. Let z; =) z;z;; then
i

d; (Zj) = 5:‘;‘-
Denote by

R,={y,d{V ... dj?y =0, if n(1)+... +n(g) = n};

5

R, = R' and yeR, imply d;yeR,_;.
Assume now R,_, = R*[z,,...,z.] and let yeR,. Then

dy= 5 K.z

n(1)+ ...+ @) Sn—1
with e R". d,d;y = d;d, y implies
n(k) hiv(l),_..,n(i)— L..8g) — n(i)h‘y:u),...,n(u)—x ..... wq)
for all i, n(i) < n If n is given, n() <n and n(k) > 0, then let

h, = h:;(l)...n(k)—l....n(q)/n(k)
and

. n(1) n(@)
y =) hziV. .., 9
n

Then y—y'e R%

18 — Banach Ceater . 20)
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4. Moduli of reducible plane curve singularities of quasi-homogeneous type

We will give an idea of construction of the moduli space of all plane curve
singularities having the topological type of a quasi-homogeneous plane curve
singularity, more precisely connected by a topologically trivial family to a
singularity defined by a non-degenerated quasi-homogeneous polynomial of
degree d with respect to the weights w,, w,. The following three cases will
occur:

' (i) k branches with semigroup I = {ag, bo); (aq, bo) =1; (a, b)
=k (aO’ bO)

w, = d/ka,, wp =dlkby; f=x°+)";
(i) k branches with semigroup I' and one smooth branch:
w, =dfkay, wy=(d—w)lkbs; [ =x"+x)";
(i) k branches with semigroup I' and two smooth branches:
wy =(d—wylfkag, wy=(d—w)kbo; f=x"y+x)’.

The set of non-degenerated quasi-homogeneous (qh) polynomials of type
(w,, w,; d) is represented by the points of an affine open set $Ho(w;, w,; d) in
an alfine (k+ 1)-space (the open set in the space of coefficients defined by
D # 0, D the discriminant of the generic gh-polynomial).

Two qh-singularities of the same type are isomorphic iff there is a gh-
coordinate change x— p(x,y), y—p'(x,y), p and p' gh-polynomials of
degree w,, resp. w,, transforming the associated equations. Denote by &, the
group of there coordinate changes. The gh-coordinate changes form the
following algebraic groups:

Glz if aozb():l:
C* xC* if ay, by > 1,
C*xC*xC if ap or by = 1.

The first two groups are reductive and the geometric quotient H,
= 9o/ ®, therefore exists as an affine scheme, and is a coarse moduli space. In
the third case this is also true although the group is not reductive. In general
(for more than two variables) a geometric quotient §, probably exists only
in the category of algebraic spaces.

Choose gh-polynomials B, = {n,, ..., n,} of degree >d and linearly
independent in C[x, y}/4f for all f €Yy (w,, w,; d).

We will restrict ourselves to the case (i). The other cases are treated in a
similar way. Denote by

. . .
Fo = Z u; xa_mo ylbo
i=0
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a generic non-degenerated gh-form whose ceofficients belong to
$o = Spec Clup, ..., )p, D =discr(Fy).

(In case 1 = a, < b, any non-degenerated qh-form is represeted in the family
k-2
Fo=x"+xP+ Y wx*'y

ibg

Two functions f, g in the family &, define isomorphic singularities iff there is
a coordinate change ¢: x —>cx, y—c'ysuch that f(p) =g, c* =1, *-c® = 1.
These transformations form a finite group denoted by &, too, hence the
geometric quotient £o/®, exists as an affine scheme).

Now the family F = Fo+) t;n; is a versal p-constant family at every

Bll
point ae$H, and any singularity being topological of this gh-type is repre-
sented in that family.

Lemma 4.1, The action of the group &, on 9, lifts to a rational action
on the parameter space H = 9o x A" of the family F.

Proof. In case (5, is finite or C* x C*, this is clear because the element
of ®, are represented by diagonal matrices. We have to consider the
homogeneous case more carefully: Given a homogeneous coordinate trans-
formation x — h;(x, ), ¥ — hy(x, y), then, by induction on the degree, one
gets a unique representation

F(hy, hy))—Fo(hy, hy) = Z‘L‘ n; mod (x, ,V)ZAFs g; € Do [ t].

On the other hand, there is an action of the algebraic group exp ¥, on $
and the orbits are the maximal integral submanifolds of V, the kernel of the
Kodaira—Spencer map.

Similar to the irreducible case we have:

LemMa 4.2, The geometric quotient & /exp V, exists as an algebraic space.
For t = 1, this is locally an open set in a weighted projective space (a quasi-
smooth scheme).

To get a coarse moduli space for all singularities of a fixed gh-
topological type we have to factor $ by the equivalence relation induced by
the contact equivaience of functions:

(u, ) ~(u, t) i F(x,y, v, t) =c(x, o (F(x, y, u, t),

c¢(x, y) a unit and ¢ and automorphism of C[[x, y]].

We want to show that the group ®, the subgroup of Aut($) generated
by exp V,, and the automorphisms of the lifted action of the qh-coordinate
transformation ®,, induces the equivalence relation on $.
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Lemma 4.3. Two functions in the family F are contact equivalent iff the
associated points in © belong to the same (-orbit.

Proof. Let F(x, y, (', ) =cF (e, u, t), e Aut(C{[x, y]]) and suppose
that ¢(0, 0) = 1; then by Lemma 3.2 the automorphism ¢ has positive degree
and the gh-leading form ¢, of ¢ defines an element ge®, because
F(x,y, W,0 = F(¢q, u,0). Let t, =gt be the image of t by the lifted
action of g. Then F(x, y, v, t;) and F(x, y, v, t) belong to an analytical

trivial family defined by c(A"' x, i*%y) F(g;, u, t),

o(x) =@, 00 =52,
Puilx, y) = (A7 x, AT yYAY, i=1,2,
¢ = 9(x), @2:= @(y.

CoroLLARY 44. Let w, = w, = 1 (homogeneous case) and suppose that d
is odd, then &, /® exists as an affine scheme.

Proof. expV, is a normal subgroup of & and G/expV, = 6, = Gl,.
Furthermore, 6,min is affine, because it is defined by the non-vanishing of
exactly one minor given by C“” 32 The geometric quotient of the affine
variety &, fexpV, by Gl exists because Gl, is reductive. O

Now let us state the general result:

THEorEM 4.5. Fix the quasi-homogeneous type (w; d) and the Tjurina
number 1; then a coarse moduli space T4, of all plane curve singularities with
that qh-topological type and Tjurina number 7 exists in the category of
algebraic spaces. For 1 = 1, the moduli space T is a scheme (except may be in
the homogeneous case, i.e. w, =w, =d, if d is even).

Idea of proof. We have to look for a geometric quotient of (3,/exp V,)
by G/exp V, . If that group is finite the statement is obvious by Lemma 4.2.
This is fullfilled in the case 1 =a, <b,, where G/expV, = B, is finite. It
works similarly in the case aq, by > 1, if we take

k-1
Fo:=x"+y"+ ) ux0y0,
i=1
which also represents all classes of gh-functions. On the parameter space £,
= Spec C[u,y, ..., 4,_,]p the corresponding group &, is the finite group of
ab-th roots of unity.

In the homogeneous case ®/exp V, = Sl, and the quotient exists in the
case d is odd (Lemma 4.4). If 4 is even, it is not clear if there exists an affine
invariant covering in &/exp V, with respect to the action of Sl,. There is a
more general construction which also in the homogeneous case reduces the
problem to an action of a finit group ®, (this works in higher dimensions
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too), but the action of that finite group is only defined in the category of
algebraic spaces.

Some remarks on the homogeneous case: A homogeneous form of
degree d can be transformed into

Fo=xy(xX 24u; X 3 y+ . +u_xy 34473

=xy(x—v, ) ...(x=v4_3)), ;... 0-,=1.

$ = SpecC[vy,...,v,_3]p is an etal covering of §H,:=
Spec C[uy, ..., u;-3]p induced by the elementary symmetric functions in v,
On m: Hy — Ho acts the group of d(d—2)th-roots of unity by

x=[nfdd-2)]x, y-[-Ed-Dn/dd-2)]y,

here [n/m] := exp(2ni(n/m)).

We take the quotient according to this finite group action and denote it
by the same letters for simplicity.

Now homogeneous coordinate changes from Gl, applied to elements of

the family F, induce equivalence relations on 9, and on $,, denoted by R’
and R.

We want to realize these equivalence relations by the action of a finite
group .

LeMma 4.6. There is a rational action of a finite group ®y on $

inducing the equivalence relation R'.

Idea of proof. Let Gl := SpecC[U, V, S, Tlyr-vs- Let Z be the
zero set of the equations

Fo(U, V) =0,
Fo(S, T)=0,

UGFo/0x(S, t)+ VoF/dy(S, T) =1,
SOFo/8,(U, V)+ ToFy/oy(U, V) = 1

in Gl; x $5. We have two maps pr, and o from Gl, x H; to the affine space
of all homogeneous d-forms in x, y: pr, the projection onto the second factor
and o the orbit map. The image of Z by pr, xo is in $, x Hp (resp. in
$Ho x Ho) and coincides by construction with the geometric realizations R’ (resp.
‘R) of the equivalence relations. Now the main step is to prove that ‘R’ sphts
into irreducible components Z; isomorphic to §, via pr,. On the set of the
sections ¢; of pr, restricted to ‘R’ we define a group structure by

gi*q; - = 4;pry 4;,

which 1s again a section.
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This group, denoted by (,, acts on H;, by

4;: v— pr,q;(v)
and this action induces R’.

ExampLE. For d =4 we have (), = Z/3.
But already in this simple case the action of 5, is not compatible with
m, l.e. gives no rational action on $, (only an action in the category of

algebraic spaces), i.e. R does not split completely into irreducible components
isomorphic to §,.
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