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1. Introduction

Let H =(f, g): C* - C* be a polynomial mapping satisfying the condition
#H '(0) < oc. We shall show that, for such a mapping, the set N(H)
={veR:34>0, 3B>0, V|z| > B, Ajz]'<|H(z)}} is nonempty and
bounded from above. In this case, by the exponent of growth of the mapping
H we mean the number y(H) = sup N (H).

It can be easily seen that if y (H) > 0, then the mapping H is proper. The
converse is also true, i.e. if H is proper, then y(H) > 0 ([10], Ch. 9, § 6, cf.
[5]). So, the condition x(H) > 0 is equivalent to saying that H is proper.
Properness plays an important part in the theory of polynomial mappings.
For instance, the famous Keller's conjecture posed in 1938 (see [6]) can be
formulated as follows: “Is a mapping H with a constant nonzero Jacobian
proper?”.

From the point of view of properness, even to estimate y (H) from below
is interesting. In [2] such an estimate was given in terms of the geometric
degree of H and the degrees of its components. Next, Ploski in [8]
generalized this result to the multidimensional case.

The aim of the present paper is to show that in the two-dimensional
case one can give an exact formula for the exponent of growth of H. Namely,
x(H) is equal to the minimal order of growth of H on the branches of the
curves f =0 and g = 0 in a neighbourhood of infinity. From this fact we
immediately obtain the above-mentioned results and an eflective way of
calculating y(H). An especially interesting corollary from the basic result is
the assertion that H is proper if H~!(0) is not empty and each of the curves
f =0, g =0 has only one branch at infinity.

The proof of the basic result will be carried out according to the “horn
neighbourhoods” method used by Kuo and Lu (see [7], <f. [3])).
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2. Notation and basic definitions

If z=(x, y)e C?% then |z = max(x|, | y)).

By a neighbourhood of infinity in C*> we mean the complement of a
compact set in C2.

Let X = {teC: |t] > E}. A function h: X — C is called meromorphic at
infinity (meromorphic at o) if it can be represented as a Laurent series of
the form

h(y)=cay+ ... +cote_; (1/y)+ ..

convergent in X. If & # 0, then the greatest index i such that ¢; # 0 is called
the degree of h and denoted by degh. f h =0, we put degh = — 0.

Let ¥ =(¥,, ¢¥,) be a pair of functions defined, as above, in X and
meromorphic at co. Then the mapping ¥ is called meromorphic at infinity. By
the degree of ¥ we mean the number max(degy,, degy,) and we denote it
by deg ¥. A mapping ¥ meromorphic at o is said to have a pole ar « if at
least one of the functions ¥,, ¥, has a pole at co.

Let H =(f,g): C*— C? be a polynomial mapping and let H '(0)
= {z,, ..., z,}. Denote by u(f, g; z;) the intersection multiplicity of the curves
S =0, g=0 at the point z;, i=1,...,n (see eg. [11], Ch. 4, §5). The
number p(f, g; z,)+ ... +u(/f, g; z,) is called the geometric degree of H and
denoted by o(H). If the curves f =0, g = 0 have no zeros in common, we
put additionally o(H) =

3. The basic results

ProrosITION 3.1. Let h: C? — C be a nonconstant polynomial function
and T = {(x, y)e C*: h(x, y)=0). Then there exists a neighbourhood Y of
infinity in C? such that:

(1) the portion of I' in Y is the union of r components, each of them being
homeomorphic to some set X = {reC: |t| > g); the homeomorphism is defined
by a mapping ¥W: X =Y meromorphic at o and having a pole there;

(i) ¥if Y <Y is a neighbourhood of infinity in C* and the portion of I in
Y’ is the union of r' components having the same properties as in (i), then r = r’
and, for the corresponding components of the sets 'Y and 'Y and the
homeomorphisms ¥, ¥ associated with them, the mapping ¥~ 'o¥' s
conformal and has a simple pole at co.

Furthermore, if (hy, hy): C?> — C? is a polynomial mapping, and h,, h, are
not constant, then the neighbourhood Y can be chosen for both h, and h,.

The components of the set ' N Y’ will be called branches of the curve h
=0 in the neighbourhood Y' of infinity, (X', ¥, Y') being their
parametrizations. The number r is called the number of branches of the curve
h =0 at infinity.
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Let H=(fg): C>—>C? be a polynomial mapping satisfying two
conditions: 1° f and g are not constant, 2° #H '(0) <oo. Let I, i
=1,...,r, be the branches of the curve f =0 in a neighbourhood Y of
infinity and, respectively, let (X;, ¥, Y), i=1,....,r, be their
parametrizations. Analogously, let I';, i=r+1, ..., r+s, be the branches of
the curve g=0 in Y, and let (X;, ¥,Y), i=r+1l,...,r+s be their
parametrizations.

MaiN THEOREM. Under the above assumptions,

() x(H) = min(deg Ho¥,/deg ¥);
i=1

() x(H)e N(H).

The number deg Ho ¥W,/deg ¥, is called the order of growth of the
mapping H on the branch I'; in Y. It is easy to see that it depends only on [,
and that

deg HWi/deg ¥;

IH) ~ 2| when |z| -, z €Tl

From the above theorem we easily obtain subsequent corollaries and
propositions.

CoroLLARY 3.2 (see [4], cf. [8]). If H: C* — C? is a polynomial mapping
and #H ™ '(0) < oo, then y(H) is a rational number.

CoroLLARY 3.3 (cf. [10], Ch. 9, § 6). A polynomial mapping H: C* — C?
is proper if and only if there exist constants A, B, v > 0 such that

|H(z)] = Alz|* for |z| > B.
ProposiTiON 3.4 (see [2]). If H: C?* - C? is a polynomial mapping and
#H 1(0) < o0, then
(i) x(H) > min(degf, degg)+o(H)—deg/f degy;
(i) x(H) < o(H)/max(deg/, degg).
Prorosition 3.5. If H=(f,g): C*— C* is a polynomial mapping,

#H ™ '(0) < o and each of the curves f =0, g =0 has only one branch at
infinity, then

¥ (H) = o (H)/max (degf, degg).
If, additionally, #H™'(0) > 0, then the mapping H is proper.

CoroLLary 3.6 (see [8]). If H is a polynomial automorphism of C?,
then y(H) = 1/max(degf, degg).

The proof of Proposition 3.1 will be given in the next section, that of the
Main Theorem in Section 5 and those of the remaining propositions in
Section 7.
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4. Auxiliary results

By .# we denote the field of germs of meromorphic functions of one
complex variable at oo, i.e. the field of Laurent series centred at oo, with
finite principal part, convergent in a neighbourhood of infinity. If h is a
meromorphic function at o, then we denote by A the germ from .#
generated by h.

By .#[x] we denote the ring of polynomials in a variable x with
coefficients in .. It is obvious that .#[x] is a unique factorization domain.
If his a polynomial in x with coefficients defined in a neighbourhood 4 of
infinity in C and meromorphic at oc, then we denote by h the corresponding
element in .4 [x]. If the polynomial h is of the form

h(x,y)=x"+a, ()x"" 1+ ... +a,(y), m=1,

we say that his a monic polynomial with respect to x. The number m is called
the degree of h with respect to x and denoted by deg.h. The number
m"zlxx(m—i+dcg g;), where a, =1, is called the degree of h and denoted by
i=0
degh. If h is a polynomial in two variables, then deg h is identical with the
usual degree of h.

Let now h: C?> — C be a polynomial function. Assume that h is monic

with respect to x and deg, h = degh. Furthermore, let h=h!...h" bea

factorization of A into irreducible factors in .#[x]), and let h = h;' ... b in
Wx, »eC?: |yl > E}.

Let us introduce the notation: [ = {(x, y)eC* h(x,y) =0},
r=roix.neC |¥>el, It=1xneC |y>0 Hhix, ¥ =0
m =deg h, Ut ={teC: Jt|>0 ™), Ur=U¢for i=1,...,r o o*2E

Lemma 4.1. (a) There exists a number ¢* > E such that, for each
i€!l, ....r), there exists a mapping ®¥: U¥ 3t i—(@¥ (1), t™') e C* meromorphic
at 20 and such that deg @F = m;. Moreover, for any ¢ > o*, the sets I'§, ..., I'®
are components of the set I'?, I®*=TI%0v ... uI? and the mappings &
= @* | U? are nomeomorphisms of U? onto I't. Furthermore, there exists a
number w = g, depending only on g, such that in the neighbourhood of infinity
We = (x, »eC? |x]>w or |y >0 we have I'®* =T " We,

(b) Suppose that Y' is a neighbourhood of infinity in C* such that T nY’
=Tyu ... T, where I'\. ..., I, are components of this set. and for each
i=1,...,r7; let Yi: X{=\teC: |t! > g} =Y be a mapping meromorphic at
infinity, having a pole there, which is a homeomorphism of X{ onto I
additionally, suppose that Y < W? for some ¢ > 0*. Then r =r’ and there
exists u permutation & of {1, ..., r| such that, for each ie (1, ..., r}, we have
[ =T% 0Y and the composition 1, =(®%;,) '0¥; is a conformal mapping
having a simple pole at oc.
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Proof. (a) Since h,,....h are irreducible and relatively prime in
.#[x], we can choose a sufficiently large ¢* > E such that in the set { ye C:
|y] > o*}: 1° the polynomials h; have no multiple roots, 2° the polynomials
h;, h;, i #j, have no common zeros (see [9], Ch. 6, § 13).

Let 9M* be the analytic function (cf. [9], Ch. 6) in the set |yeC:
| y| > o*}, satisfying the equation h;(x, y) = 0. It follows from 1° that J* is
arbitrarily continuable and strictly m;-valued in this set, so (see [9], Ch. &,
§ 9), there exists a function ¢ defined in U? and meromorphic at oo, such
that o*(™/y) = M*. It is easily seen that the mapping &} Uket
—(@¥ (1), t ') €C? is injective. Moreover, from the fact that deg, k; = degh,,
which is easy to check, we get deg o} < m;.

From 2° 1t follows that, for any ¢ > po*, the sets I, ..., I"? are nonvoid
pairwise disjoint and I =rI%yv ... ul? Moreover. the set equality Y
= @?(U¥% implies the connectedness of I'?. We easily verify that (®#9)~': I'?
— U? is a continuous function. Then &¢: U? — ¢ is a homeomorphism.

Since h is monic, therefore, for any ¢ > ¢*, there exists v = ¢ such that
h(x, y) # 0 in the set {(x, y)e C?: |x| > v, | }] < ¢}. Denote by w the infimum
of the set of numbers v with this property and put W° = {(x. y)e C*: |x| > @
or |v| > g}. Then I =T We

(b) By the assumption, there exists g >¢* such that Y < We
Hence I'nY = nY)u...u(l®nY)=I1v ... uTl, where the sets
reny,. ..., lreny’ are nonvoid and pairwise disjoint. So, r > r.
Analogously, choosing ¢’ > ¢* such that W¢ < Y’, we show that r’ < r. Thus
r = r’. In consequence, there exists a permutation ¢ of the set {1, ,..., r} such
that I'; = I'f;, ~ Y'. The function 7;, by (a), is continuous and

m; i’ 4
T, =(m094,)ot = 0¥, on X,

X;, and thus a holomorphic function. So, 7; is a conformal mapping. Since
7;(t) > o0 as t — 20, 7; has a pole at oo, of course, a simple one.
This ends the proof of the lemma. O

The parametrizations (U¢, @f, W9, i=1,...,r, of I'?, the branches of
the curve h = 0 in the neighbourhood of infinity We¢, ¢ > o*, will be called
canonical.

Proof of Proposition 3.1. Let us first suppose that h satisfies the
assumptions of Lemma 4.1. In the notation introduced in the lemma let us
take an arbitrary ¢ > ¢*. Put Y = W¢ Then it is seen that conditions (i), (ii)
of the proposition are in this case a simple consequence of Lemma 4.1.

Given two functions h,, h,, we find g,, ¢,, respectively. Put ¢
= max(g;, ¢z)- Next, we choose w,, w, to h;, h, and we put w
= max(w,, w;), W= {(x,y)eC* |x|>w or |y >g). Then Y =W is
appropriate for both h; and h,.
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It is easy to notice that Proposition 3.1 is invariant with respect to
linear automorphisms of CZ2. So, if h, h,, h, are polynomial functions as in
Proposition 3.1, then there exist a linear automorphism L: C*— C? and
constants ¢;, ¢, # 0, such that hoL, ¢, h,oL, ¢, h,oL satisfy the assumptions
of Lemma 4.1. Hence, in view of the fact that h, and ¢, h; have identical
zeros (the same concerns h, and c, h,), we get the proposition in the general
case.

This ends the proof of Proposition 3.1. O

Let H = (f, g) be a polynomial mapping satisfying the assumptions: 1° f,
g are not constant, 2° #H™'(0) < o0, 3° f, g are monic polynomials with
respect to x, 4° deg,f = degf, deg,.g = degg.

Let / =fA1yl LS g = gfi‘ g;’s be a factorization ofﬁ g into irreducible
factors in .#[x], and let f=f'...f" g=4g3 ...g% in {x, yeC:
| y| > E}. Moreover, according to Lemma 4.1, let (U%/, ¢/ W), i=1,...,r,
be canonical parametrizations of the branches of the curve f = 0 in W¢, and
let (U39, §%9, We), j =1, ..., s, be canonical parametrizations of the branches
of the curve g = 0 in W¢, Let us fix ¢ for further considerations and write, for
simplicity, W = We, U¥ = U/, ¢f = d¢/ i=1,...,r and U* = U¢¥, o3*
=@, j=1,...,s. Further, write m=degf, n=degg, m =degf;, n;
=degg;, i=1,...,r,j=1,...,s. Let D be the least common multiple of
my, ..., My, Ay, ..., N

LemMa 4.2 (cf. [1], Ch. 2, § 5). Under the above assumptions, we have
the following statements:

(a) in the set Q = {(x, e C%: || > o'/P)

m

fix, t?) = H (x_ak(t)),

k=1

g(x, ) = [] (x—Bu(0)
=1

(4.1)

where a,, B, are functions defined in {te C: |t| > o'/}, meromorphic at o, and

dega, < D, deg B, < D;
(b) for anv k, there exists i such that

(4.2) deg(oy — ;) = Ddeggod/deg P}
j=1
and, for any i, there exists k such that (4.2) holds;
(c) for any I, there exists j such that
(4.3) deg(fi— o) = DdegfodF*/deg PF*
=1

=

and, for any j, there exists | such that (4.3) holds.
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Proof. 1t suffices to notice that

m;
m;

fite, ") = ] (x=of €fn)  for I >e™,

n; " 1/m;
gi(x, Y =[] (x—e¥*(nin) for jt| >¢ "7,
g=1

where ¢;, n; are the m;-th and ni-th primitive roots of unity, respectively.
Hence

fGe, 1) = TT (T (x— ¥ e ™))",

(4.4) o ":j‘
g(x, 1) = [T (TT (x—or* 3™ ™)",

j=1 g=1

which gives (4.1). Lemma 4.1(a) implies deg ¢} < m;, deg @}* < n;. Hence
dega, < D, degf; < D. From (4.1) and (4.4) it follows that, for any k, there

exist i, p such that a, (1) = @¥(e! 2 ™) and vice versa. Hence we get (b). (c) is
proved in an analogous way.

Now we formulate and prove a lemma playing a key part in the proof
of the Main Theorem. The proof will be carried out by means of the “horn
neighbourhoods”™ method.

Suppose that the assumptions of Lemma 4.2 are satisfied and that (4.1)
holds in Q. Enlarging ¢, if necessary, we can assume that there exist numbers
¢, d > 0 such that in the set {teC: |t] > ¢'P! we have

(4.5) T < ()= B o)) < Y

fori=1,...,m j=1,...,n and

(4.6) B0 — B (0l < d |

for [, j =1, ..., n such that f; # B;. Let w be a positive number with w <c.

Again enlarging o, if necessary, we can assume that ¢'? > 2d/w. As in
Lemma 4.2, let (U¥, ®f, W), i=1,...,r, and (UF*, &¥* W), j=1,... s be
canonical parametrizations of the branches of the curves f=0 and g =0 in
W, respectively.

Let us denote

v = min n;in(deg godY/deg dF, degfod**/deg OF*).

i=1 j=1

Lemma 4.3. There exists a constant Ay > 0 such that

(4.7) |H(x, %) = A tI"®  for (x, DeQ.
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Proof. We first show that (4.7) holds in the horn neighbourhood F; of
the curve x = a,(1), |t| > ¢'/?, where

Fo=(x,0€Q: Ix—ap(t)] < wlitl™]
with 3, = mindeg(x,—8)) for k=1, ..., m. From the definition of F, and
j
from (4.5} we have

¥ - g -89
x—B; (00 = el ™70 —wi™ > (c—w) "

Hence and from (4.1) we get
. _f deg(zy — 67
lg (x, )] = (¢ —wy™|e’™ !

By Lemma 4.2(b), there exists i such that

* 3
lg (x, tD)].; (c—w)" |t|DdeEQO¢;/deg¢| .

Hence and from the definition of v we get (4.7) in F,, where A, = (c—w)™
For any I, gell, ..., n! such that B, # B,. we now put

deg(B;— B
Fiqo=x,0)eQ: [x—=B@) < wl S
and

-~

F’,q =Fl‘q—kyl Fk—pL)ka'k

where p, k run through all indices such that F,, is a proper subset of F; .
We now show that (4.7) holds in any F,,. Fix ie {1, ..., m}. Three cases can
occur. In the first one, if

deg (B, —a) = x;,
we have the inequality
(48) x— o (O] > wlt "=,
In the second case, if

deg (B, —a;) = deg (B, —B,).

from the definition of F,‘q and from (4.5) we get
(49) x a0 > e R

> (e—w)e P,
In the third case, if

% = deg(f, —a;) < deg(f,—a;) < deg(Bi—f,),
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we easily check that F,, = Fy,. In fact, if (x, t)e F,;, then

deg(f,~ Bp
Ix—B () <wlef 7

pl>

Hence and from (4.6) we have in this case
=B < (w7 < wie R
that is to say, (x, t)e F;,. In consequence, from (4.5) we have
(4.10) x—a, (t)i > wr[ 0P _ g iy
> (w/2) e
Combining (4.8), (4.9) and (4.10), we find that, for (x, t)e F,,q.
Ix —o ()] = A, [t 4, = min(w/2, c—w).

and so,

D ,;fl"“&(ﬁl_“i)
1/ Cx, £9) = AZIT
By Lemma 4.2(c), there exists j such that

TR s

Hence and from the definition of v we get (4.7) in F,.q, where A, = A’;‘
The fact that the estimate (4.7) is true in F,  for any I, g implies that it is

also satisfied in | Fi,.
lLag
To complete the proof, it suffices to prove (4.7) in the complement of

UF.ulJF,, Take ie {1, ..., m}. We distinguish two cases. In the first one,
k I
if
x; = mindeg(f; —a;) = maxdeg(,—a,),
! !

we have

. max deg(ﬂl— a'-)
(4.11) Ix—o; () = wlt| ' =wlt| |

In the second case, if
»; = deg (ﬂp_ai) < maxdeg(f;—a;) = deg (ﬂq —),
!
we have

(412) Ix_a.- (t)l >w Itldeg(ﬁp'ﬂq) —d |t|dcg(ﬂp— ;)

max deg(f — ;)

= (w/2) !
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From (4.11) and (4.12) we get in the general case

max deg(f; —a;)
=@ 020

and so,

m
Y maxdeg(f;—a;)

If (%, 7) 2 (w/2™ el !

m;lx :Z" deg(ﬂl-ai)
= (w/2™e] ¢

Further, from Lemma 4.2(c) we have

max Ddegfo ¢_';::1/deg d.'ij;n

S Cx. eP) = (w/2)™ ]

Hence and from the definition of v we get (4.7) also in this case, where 4,
= (w/2)™
This concludes the proof of the lemma. O

5. Proof of the Main Theorem

It is easy to see that if H = (cf, dg) where ¢, de C— {0}, then y(H) = ¥ (H).
Moreover, the exponent of growth y(H), the numbers r, s and the ratio
degHoV¥;/deg¥;, i =1...., r+s, are invariants of linear automorphisms of
C2. Therefore, without loss of generality, we may assume that f and g are
monic polynomials with respect to x, and that deg,f = deg/f, deg,g = degg.
So, the mapping H = (f, g) satisfies the assumptions of Lemma 4.2. From
condition (a) of that lemma it follows that there exists a constant e > 0 such
that, for any iell, ..., m},

(5.1) le(0)l < elt]®  for |f >o'P.

Let us consider the mapping H in the set P = {(x, y)€C?: |y| > g!. Two
cases can now occur. In the first one, if |x| < (e+ 1)|y|, then by putting ? = y
in Lemma 4.3 we obtain

(5.2) |H(2)| = Alz|"

where 4 = A,/(e+1)". In the second case. if |x| = (e+1){y], we put y =P
and then, by Lemma 4.2 and (5.1), we get

L (x, £2) = (IxI/(e+ D)™ = (Ixl/(e + D).

Hence, in this case we also obtain (5.2), where 4 = 1/{(e+1)". To sum up,
there exists 4 > 0 such that (5.2) holds in P.

Since f is a monic polynomial, there exist numbers 4, >0 and v = o
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such that |f(x, y)| = A2|x|™ in the set T = {(x, y)eC*: |x| > v, |y <o}
Hence we also obtain (5.2) in T, where 4 = A,.

Consequently, there exist a constant A and a neighbourhood V of
infinity in C? of the form V = {(x, y)€C?%: |x| > v or |yl > ¢! in which (5.2)
holds. Hence v < x(H).

Let W<V and let (U;, &;,, W) be canonical parametrizations of the
branches I'; of the curve f =0m W, i =1, ..., r, and (U,, $,, W) be canonical
parametrizations of the branches I'; of the curve g =0in W, i=r+1, ..., r
+s. It is easy to see that, fori =1, ..., r, we have deg Ho®; = deggo®; and,
similarly, for i=r+1, ..., r+s, we have deg Ho®; = degfo®,. Then there
exists jell,...,r+s} such that v=degHod,/deg®;. Enlarging o, if
necessary, we may assume that there exist positive constants c,, c, such that

|8;(0)] 2 ¢ 1%,

[Ho®;(1)] < c, |t

dchod)j

for |t| > o. Hence
(5.3) H(z)| < clz|* for zeT},

where ¢ = ¢;/c,. From Lemma 4.1 1t follows that the set I'; has points in
common with any neighbourhood of infinity in C?. Hence, from the
definition of y(H) and (5.3) we get y(H) < v. In consequence, x(H) = v, and
the proof of (i) is completed.

Condition (ii) is obvious.

This concludes the proof of the Main Theorem. O

6. Properties of the geometric degree

Let h: C> — C be a nonconstant polynomial function, Y a neighbourhood of
infinity in C? and (X,, ¥,, Y), i =1, ..., r, parametrizations of the branches
I;,i=1,...,r, of the curve h=0 in Y. Then, for any ie{l, ..., r}, there
exists a unique (up to a constant factor) linear function 4;: C* — C such that
deg 4;,0¥; < deg ¥,;. The line 4; = 0 is called the asymptote of the branch I';. If
Y’ is any other neighbourhood of infinity in C? and (X, ¥}, Y), i=1,...,r,
are parametrizations of the branches I, of h=01in Y, i=1, ..., r, then by
Proposition 3.1 there exists a permutation ¢ of the set {1, ..., r} such that
Agy =0, ..., g,y = 0 are the asymptotes of these branches, respectively. The
lines 1, =0, ..., 4, =0 are called the asymptotes of the curve h =0.

Remark. Let h* be the homogenization of the polynomial h and let
A{x, y) =a;x+b;y. Then, to any asymptote 4; = 0 of the curve h = 0 there
corresponds a point (a;, b;, 0) of the projective space P2. It is easy to see that
h*(a;, b;, 0) = 0. So, the points (a;, b;, 0), i =1, ..., r, are zeros of the curve
h* =0 on the line at infinity.
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ProperTY 6.1. Let H =(f, g): C* = C? be a polynomial mapping and
#H '(0) < 0. Then:

(a) o(H) < degfdegg:

(b) equality in (a) holds if and only if the curves f=0, g =0 have no
asymptotes in common.

Proof. This property is a simple consequence of the Bezout Theorem
(cf. [11], Ch. 4, §5) and the remark given above. O

ProrerTY 6.2. Under the same assumptions and notation as in Lemma
4.2, we have

(6.1) m=) ydeg®!, n=) &;degdr*
i=1 i=1
and -
6.2) 6(H) =) 7,deggodf = ) ;degfod}*.
i=1 i=1

Proof. From Lemma 4.1 we have deg ®F = m;, deg #T* = n;. Hence
and from the form of the factorizations of f and g we get (6.1).
Let
S, )y =x"+a (X" 1+ L +a, (),
g(x, y) = x"+b (M) x"""+ ... +b,(y),

and let R(y) be the resultant of these polynomials. It is known (see [11],
Ch. 4, §5) that

(6.3) degR = o (H).

On the other hand, from a property of the resultant and from Lemma 4.2(a)

we have, for |{| > o'/P,

R(t?) = ﬁ [] (@ () — B;(1)).

i=1 j=1

‘Hence and from Lemma 4.2(b), (¢) we obtain

(6.4) DdegR =D ). y,deggodf =D
i=1

d;degfod¥*.
=1

J
By (6.3) and (6.4), we get (6.2).
This ends the proof. O

7. Proofs of the corollaries from the Main Theorem

Corollaries 3.2 and 3.3 are obvious.

Proof of Proposition 3.4. Since y(H), o (H), degf, degg are invariants of
linear automorphisms L: C* — C?, L(0) = 0, we may assume, without loss of
generality, that the assumptions of Lemma 4.2 are satisfied.
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(i) Let us first assume that y(H) = deggo®}y/deg 3. Then, with the
same notation as in Lemma 4.2, we have

#(H)—min(m, n) > (deggoP;/deg ¢3)—n
> deg g o®* — ndeg &%

> ) (y:deggo®f — ny, deg &F).
i=1

Hence and from Property 6.2 we get (1). We show (i) in an analogous way if
x{H) = degfody*/deg 7*.
(i) Let m = max(m, n). From Property 6.2 we have
x(H) < ), yi(deggodf/m) = o(H)/m.
=1

This concludes the proof of the proposition. O
From Proposition 3.4 and Property 6.1 we easily obtain

CoroLLary 7.1. Let H =(f, g): C*>— C? be a polynomial mapping and
#H ™' (0) < oo. Then:

(@) x(H) < min(degf, degg);

(b) eguality in (a) holds if and only if the curves f =0, g =0 have no
asymptotes in comnion.

Proof of Proposition 3.5. Since x(H), o(H), degf, degg and the number
of the branches of the curves f = 0, g = 0 at infinity are invariants of linear
automorphisms, we may suppose, as before, that the assumptions of Lemma
4.2 are satisfied with r =s = 1. Then, by Property 6.2, we obtain

o (H)/m = deggo®?}/deg &t}
and
o (H)/n = degfodt*/deg P1*.
So, from the Main Theorem we have
«(H) = o (H){max(m, n).

If, additionally, #H !'(0)>0, then o¢(H)>0 and, by the above,
¢ (H) > 0. Hence, by Corollarv 3.4, the mapping H is proper.
This ends the proof of the proposition. d

8. Examples

We shall give here two simple examples of polynomial mappings in order to
illustrate the methods for calculating the exponent of growth and deciding
whether a mapping is proper.

Let W={zeC?* |z| >2), U={teC: |t| > 2}, H=(/, g).
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ExampLE 8.1, Let H(x,y) =(xy+x—y, x*—y). It is easy to see that
the curve f = 0 has two branches in W and the curve g = 0 has one branch
in W. These branches have parametrizations in W of the form (U, ¥;, W), i
=1, 2, 3. For f =0, we have ¥,(1) =(1—=(1/+(1/)2— ..., 1), P,(1) =
(t, =1—=(1/—(/*— ..). For g=0, we have W¥,(1)=( t?). Hence
we easily calculate that degHoV¥,/deg¥, =1, degHoW¥,/deg¥, =2,
deg Ho¥,/deg ¥3 = 3/2. Then y(H) = | and, in consequence, the mapping H
IS proper.

ExampLe 8.2. Let H(x,y)=(xy+x—y, x*). The curve f =0 is the
same as in the preceding example, so it has the same branches in W. The
curve g =0 has one branch in W whose parametrization is of the form
(U, ¥4, W) where ¥,(t) = (0, t). We easily verify that deg Ho¥W,/deg ¥, =0,
deg HoW,/deg ¥, =2, degHoW¥;/deg¥;=1. Hence x(H)=0 and,
consequently, the mapping H is not proper.
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