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An effective order of Hecke-Landau zeta functions
near the line ¢ = 1, Il (some applications)

by
K. M. Bartz (Poznan)

1. The present paper is a se:,uel to [1] and the notation of that paper is
used throughout. Let K be an algebraic number field of finite degree n and
absolute value of the discriminant d. Denote by | a conductor of a character
x of ideal classes in the “narrow™ sense.

We shall show some applications of effective order of Hecke-Landau
zeta functions (x(o+it, ) near the line ¢ =1, exactly for 1—1/(n+1)
< o < 1, which was given in the preceding note (see [1], th. 1). We first will
prove the following

Tueorem A (compare [1], th. 2 and [2]). There exists a positive constant
¢, > 1, independent of K and y such that in the region
(1) e=1-

A
10* max %log Ni, ¢, n** log?? (j1| + 3) (log log (|1] + 3))”3 max (1' log I:Jg i )}

the function {y(a+it, y) has no zeros except for the hypothetical real simple

- Slogd \"!
zero of lx(s,x1). y1 real, where A, =n'? 'dD and D= (Z(Tgll)
denotes the constant from Siegel's theorem on fundamental system of units (see

(5D).

Remark. Putting f = R, we obtain obviously a zero-free region for the
Dedekind zeta function (in this case Nj=1).

Next, as an application of Theorem A we get an effective version of
Chebotarev density theorem. Let L be a normal extension of K with Galois

denote the

group G = G(L/K). Let P denote a prime ideal of K and

conjugacy class of Frobenius automorphisms corresponding to prime ideals
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B of L, Y| P. For each conjugacy class C of G, we define

n(.'(x! L/K) = z 1.

Punramified in L
Nx;q?%x
|‘£ ’=c

P

Now we can state the following explicit version of Chebotarev density
theorem:

THeoreM B (compare [3], th. 1.3). There exist absolute effectively com-
putable constants €2, €3, C4 and cs such that in the estimate

LS D [ o
'17c(x, L/K )—F“G—’Li Gl = Li(x™)+R(x)

if exp(cyni \/d_,*(logdl_)DL) x < expexplcs ni’ \/_D,_) then we have

(1.2 R(x) < xexp(—cqn;>d; °3 Dy *°log**x(log log x)*/*)
and if x > expexp(csni®./d, D,) then
(1.3) R(x) < xexp(—csng *'log**x(log log x)~*/%).

Bo denotes the hypothetical real zero of Dedekind zeta function {,(s) and the B,
term is present only when B does exist. n; and d; denote degree and absolute
value of discriminant of the field L.

Remark 1. For exp(10n,log?d;) < x < exp(ce nf® di(logd,) Df) the La-
garias—Odlyzko estimate (see [3], th. 1.3) is better than ours. So, we have
then

172 x)

R(x) < xexp(—c;ng "?log
Remark 2. We can estimate f§, using Stark’s bound (see [6], p. 148):

Bo < max(1—(mylogd,) ™", 1—(csd;™)")

where
4 if Lis normal over Q,
16  if there is a sequence of fields
m, = Q=ky < ... ck, = L with each field normal
over the preceding one,
4n;! otherwise.
Throughout this paper c¢;, c,,... will denote effectively computable

positive absolute constants, independent of K and L. The constants implied
by the notation f <g or f = O(g) are also absolute.
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2. The proof of Theorems A and B will rest on the following lemmas:

Lemma 1 (th. 1 in [1]). For 1—-1/(n+1) <0< 1
inequality holds

— )2 _
@21 Kelo+it, 0 < A Nt =or*3 ™ 1og23 14 4, N~ log Nf

t = 1.1 the following

where A, =exp(co \/dDn’), Ay = 14-10° n* (n+2), A, = Jdlog?d -n?".
Lemma 2 (Landau). If F(s) is a function regular in the circle |s—so| <r

< M in this circle, then

F
and satisfying the inequality ‘F{{:}
0

Fn‘
(2.2) —Re—{soj - log M- ReZ———é

where o runs through the zeros of F(s) such that lo—sol <4r (a zero of order
m being counted m times).

Lemma 3 (see [5], Lemma 3). If o > 1, then for the Dedekind zeta
function {g(s) we have

{x 1 1 d i!'l r ( r
(2.3) 0 (0) < + = +2log 22,” 3T 2)+ r,—(o)

where K has r, real and 2r, complex conjugate fields.

LemMA 4 (see [7), Lemma 6). Denoting by N (T, x) the number of roots of
Hecke—Landau zeta function {x (s, x) in the region |t] < T, 0.1 < 0 < 1 we have
the estimate
(24) N(T+1, x)=N(T, ) <log(dNf(/T|+3)")

where | denotes the conductor of the character .

In the following we will use a weighted prime-power-counting function
Yelx, L/K) defined by

Yelx, UK) = E log(Nx,:q P).
Punramifiedin L
Nx;e?"ﬁx

e
Lemma S (see [3], th. 7.1). If x> 2 and T = 2, then

25)  Veld— ':x+S(x, 7

C| |xlogx+T nyxlogxlog T
:GH-—ET-—— logdL+n,_logx+"——T--—
log? x
+log xlogd, +n,x

T
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where

|C| x° 1

S 3 = — —tan =

(o 1) =G 2% (g){ I o2 Q}
limg| <T lel <1/2

and the inner sums are taken over the nontrivial zeros @ of {,(s, x) and ¥ runs
through the irreducible characters of the cyclic group H = (g, where g is a

selected element of C. n, and d, denote degree and absolute value of the
discriminant of L.

3. Proof of Theorem A. Let B+it be a nontrivial root of {x (s, y). Since
Lk (8, ¥) = Cx(s, x) we may restrict our attention to those zeros which lie in
the upper half plane. Moreover we can assume that 7 > e since by Lemmas
8.1 and 8.2 in [3] Theorem A holds for [z < e"’. Denote

M. = it (] N 3.51002/3 13 s log**«
0 x ( log Nf, ¢4y n** log?? t (log log 7)'/3, ¢y, 1 \/EDW,

(log log 7)*? 1

1+

r e = —
O = i ClgP e % 10° M,

and let so = ap+it and sp = &y +i2t. Consider the circles js—so| < r(r) and
|s—sol < r(r). Both circles lie in the region from Lemma 1.
1

For ¢ > 1
. z(p) »
e 00 [I )\““ 1<(; 1)

Hence by Lemma 1 we get for |s—so| <7 ()

{k(s, %) 2312
e N r "'3" 2/3 n
CI(SO, x) < ZAI f T (108 T+108Nf)[103 Mo)
and similarly for |s—sp| < r(7)
{x (s, 2% PR
"-<-.. { i | 2/3 n
L Go D 24, Nf't (log? 1 +log Nf)(10° M,)".
Now applying Lemma 2 we have for f > ay—4r(z) the estimates
(3.1) —Re43 X)) < 6M,— ¢
Ck s 0 ° ao—p
and
(32 Cx
2) = { (50, x) < 6M,.
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For the principal character y = y, we have on real axis the estimate

i

Ck log Np log Np i
—(0» X0) = ), —war . o
Cx( o Xo bom Np™° . E Np™° { s

(]

. r r
and by Lemma 3 since 1 <a, < 1.001, F(%‘l) <0 and F(%) <0 we get

Cx 1.001
(3.3) —a(aos Xo) < g‘_—l-

Now .from the well-known cosinus inequality for ¢ > 1,

Cs(a Xo)— 4R€§—(d’+lf x]—Rei(aHZ!,x) =0,

putting ¢t =7 and ¢ =a, we get by (3.1), (3.2) and (3.3) the estimate

3033 M,— 3 =2 0.
ao—p "
Hence
p<1- : .
10 M,

If B <a,—%r(t) we obtain a similar result. It means that the proof of
Theorem A is complete.

4. Proof of Theorem B. The asymptotic formula ng(x) ~ : ] Li(x) with

an exphcn remainder term is denved by partial summation from that for
Ve(x). We lirst prove

LEmMA 6 (compare [3], th. 9.2). There exist absolute constants c,3, €4,
Cis, Cr6 and ¢y such that if x > expexp(cy3ny®/dy Dy) then

B
Yelx) = llg} x—% o(g)ﬁ—+ (x)
where
@.1) R(x) < xexp(—cyqng ! log¥* x(loglog x)~ /%)
and if exp(c,s ni\/d_L(logdl)DL) < x < expexp(cient”® \/ZD,) then
4.2 R(x) < xexp(—cy7ng *dg %2 D *°log** x(log log x)*/*).

Bo denotes the hypothetical real zero of {,(s) and the Bo term is present
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only when B, does exist. yq is a real character of the cyclic group H = (g for
which {;g(s, xo) has B, as a zero, E is a fixed field of H.

Proof. We have

Il e, X
Vel =g X +ig X @5
le fo

€] X
=~ S(x;
Gi G Ixo(g) B (x, T)

Lemma 5 gives the required estimate for W, and W, we can estimate as
follows

< wc(x) x+S( X, T)

= W1+W2.

Icl x® 1 x’o
W, = L e (T <
o] T 5o 3 ooy
imal <t lel 12
< i |x? " fo. 1 )
IGIZ(M;Z;;z lel |,|§_;,;;(IQI+IQI)+ Bo 1-B,
|lmn|(T
where
TP ey iia

<
1-86 1/log x

and by Lemma 4 and the fact that for ¢ # 1 —f,, |o| = 1/(4logd,) (see [3],

Lemma 8.2) using the conductor-discriminant formula ) log(dg Ngso f(x)

4
= logd,;, we obtain

b3 %\ l+ !l} x\E N [I—l-éx”z{logd,)z

”u Bo e#1-p01@
lel <1/2 lel <1/2
and
x°
Y Y |—|<x’log T(logd, T™)
x lel>1/2
e#Pg
limeg| <T
where by Theorem A for T>3
Iogx.
xf < xexp| — }
p( ¢, ni* log?? T(loglog T)'* max {1, 4,/loglog T )

Hence for loglog T < n}* \«'E; D,,

2/3
W, < xlog T(logd, T™)exp ( _log x(loglog 7) )+ X2 (log d,)?.

5
Cig i \/_ D log?? T
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We now choose

log*’* x(log log x)**

o8 T = o m b g
and then
log®® x(log log x)*/* ) o logx 5 =~
3 - = ¢y hy\ dy Dy,
W, < xexp( cram o3 DY log log x 2Ly 4Lt
g¥'% x (log log x)/3 ) 5 e
W, (vcexp(— c;znid"gas ) ) if Ioglogxagui"\ d, D,.

The estimate (4.2) of Lemma 6 is proved. Now we consider the second
case. Let loglog T > n}* \/d, D,. Then

log x
W, < xlog Tlog(d, T")exp ( - £ )

53 13 log?? T(log log T)'/°
and we choose

log** x (log log x)~'/*

log T = and logx> exp(czs-n}"s \/d.Dy).
cami’
Then
log** x(log log x)~'/*
W, <€ xexp (210glogx— g ( gz.lg ) )
Cag N,
log®® x (log log x) ™ /3 )
< xex (—
P capni!
and

log x
W, < xexp (2 log log T—Czs o Iogf"’ T(log log -nua)

log** x (log log x)~ '/*
A

@xexp(—

and we get the result (4.1) of Lemma 6.
The method of the proof of Theorem B is standard. We first define the
function
HC (x} = Z log NK;'Q P

Punramifiedin L
NK.-'QPG"

]
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and since there are at most ng ideals P™ (P prime) of a given norm in K, we
have

Ye(x) = 0c(x)+ Y, log Ngjg P = 0c(x)+O(nxlog x)

Punramifiedin L
NK;QPmﬁx.m? 2

HE |=c
P
and this shows that the estimates of Lemma 6 hold when y(x) is replaced
by 6c(x).

Theorem B now follows from Lemma 6 by a modified form of partial
summation (see [4], Lemma 7.3).
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On the linear independence of roots of unity over finite
extensions of Q

by

Umperto ZANNIER (Pisa)

The problem we shall treat in the present paper seems to have been first
considered by H. B. Mann.
In [4], among other things, the following theorem is proved:

Let
(1) 0!0+:tlc”+ o +G.*_|g"k_l=0

be an equation, where { is a primitive N-th root of unity, the a; are rational
numbers, such that no proper subsum of its left-hand side vanishes (Mann calls
such an equation “irreducible”).

Then N/(N, ny, ..., n,_,) divides the product of prime numbers up to k.

This result was improved in one direction by Conway and Jones who
showed in [2] that, if p,, ..., p, are the primes dividing N/(N, n,, ..., n, _,)
then

Y(p—2) <k-2.

In another direction Schinzel considered recently the analogous problem
to obtain an estimate for the above quotient assuming the coefficients a; to
be elements of some algebraic extension Lof the rationals. (A particular case
of this had been treated by Loxton [3]: he assumes o, €L, while ;€ Q for
1<j<k-1)

Schinzel proves in [5] that there is some bound for the quotient which
depends only on k and on the degree d =[L:Q].

However his proof uses van der Waerden's Theorem on arithmetic
progressions and so leads to extremely large values for such a bound.

The question arises whether Mann's method (for instance), which is
different from Schinzel's one, can be adapted to obtain a more satisfactory
estimate.

In this paper we show that the answer is to some extent affirmative.

We remark that the problem is simplified if one looks for bounds

6 — Acta Arnithmetica 52.2
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