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1. Introduction. Let p be an odd prime, and let D be a non-power integer
with D > 1 and p ¥ D. Toyoizumi [12] considered the integer solutions of the
equation

(1) x*+D"=p", m>0,n>0,x>0
for some fixed D and p. In this paper, we prove the following

THEOREM. Let a, r be positive integers. If max(D,p)>M
= expexpexp 1000, then we have:
(i) When D = 3a*+1, p = 4a*+1, (1) has at most three integer solutions

(m, n, X) = (l; l, ﬂ), (la 3’ 803+3ﬂ), (ml‘n "3'! x3)
where 2|mj.
(i) When D=2, p=2*+1, (1) has exactly two integer solutions

@ (m,n,x) = (2,1, 1), +2,2,27~1).

(iii) Excepting the above cases, (1) has at most two integer solutions.
Further, if these are

(my, ny, xy), Mz, Nz, X3),
then my # m;(mod 2).
From the Theorem, we immediately deduce the following

CoROLLARY. If max(D, p) > M and p = 3(mod 4), then (1) has at most one
“integer solution (m, n, x).

Clearly, these results are good upper bounds for the numbet of solutions
of (1) except for a finite number of D and p.

2. Preliminaries. .
LemMMma 1 (van der Poorten and Loxton [10]). Let «,, ..., a, be algebraic
numbers, and let H, (i =1, ..., s) denote the height of a;, A; = max(4, H). If



256 M. Le

A <...< A, <A, and
A=b,loga;+ ... +b,loga, # 0
for some integers b,, ..., b,, then

|4] > exp(—2°1¢*47 5105 4195* 10 (1og B) (log log 4, ,) [ log 4;),

i=1
where d is the degree of the field Q(ay, ...,a,), B =max(4, |b], ..., |bg). m

LeMMma 2‘ (Baker [1]). Let k be a positive integer, and let f(x, y) be a
hfamogeneous irreducible polynomial of degree r >3 and with integer coeffi-
cients. The integer solutions (x, y) of the equation ‘

S(x,y) =k
satisfy
max (|x], |y)) <exp((rH)**"° +(log k> *?),
where H is the height of f(x, y). m
Lemma 3 (Cohn [6]). The equation
4x*—5y = +1, x>0,y>0
has the only integer solution (x, y)=(1, 1). =

I.:EMMA 4 (Nagell [9]). Let d be a square free positive integer. If the
equation

1+dx*=y", n>0,x>0,y>0
has an integer solution (n, x, y) with 2 ty, then n|h(—d), where h(—d) is the
class number of the field Q(./—d). »

Lemma 5 (Le [7]). Let D’ be a positive integer with D' > 1 and p ¥D'. If
the equation :

&) X24D'Y?=p%, gad(X,Y)=1,Z>0

has an integer solution (X, Y, Z), then there exists a unique integer solution
(X, Y, Z2) =(X,, Y, Z,) which satisfies X, >0, Y, >0 and Z, < Z, where Z
runs over all integer solutions of (3). Such (X,, Y, Z,) is* called the least
solution of (3). Further, every integer solution (X, Y, Z) of (3) can be expressed
as

Z =Zl t,
X+Y\E—D’=11(X]+A.2Yl\f_D‘)I, ;»1=j:1, 112=j:1,

where t is a positive integer. w
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LemMA 6 (Bender and Herzberg [2]). If max(D', p) > 7, then (3) has at
most one integer solution (X, Y,Z) with X =1and Y >0. u

Lemma 7 (Le [8]). If max(D', p) > M, then (3) has at most one integer
solution (X, Y, Z) with X >0 and Y=1 except when

4) D' =3a*+1, p=4a’+1,
where a is a positive integer; in this case (3) exactly has two integer solutions
(X, Y, 2)=(a, 1,1), 8a*+3a,1,3)
with X >0 and Y=1. =
Lemma 8 (Cao [4]). The equation
x242"=y" m>0,n>0, x>0, y>0,
has only integer solutions
(m,n, x,y) =(2+2,2,2¢-1,2+1)
with n>1, y>5 and 2 )}y, where r is a positive integer. m
Lemma 9 (Brown [3]). The equation
x2+3"=y", m>0,n>0,x>0, y>0,

has no integer solution (m, n, x, y) with 2 fm, n>1, 2 tn and y > 7. =

3. Further preliminary lemmas.
Lemma 10. Let (X, Y, Z) be an integer solution of (3) and let

(5) . e=X+Y/-D, E=X-Y/-D.
If
(6) tle—2 =g —¢

for some positive integer t, then t < 22?7,

Proof. From the proof of Lemma 3 in [11],
)] log |¢' — &'| > tlog|e| +log rlog%—klog(—l),

where k is an integer with |k| < 2t. From (3) and (5), &/e is a root of the
equation
PPz =2(X*-D'Y)z+p* =0.

Hence, &/¢ is not a root of unity and its degree d =2 and the height
H = max(p?, 2|1X*=D' Y?)) <2p°.
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It follows that
A= Hogf~klog(-—l) £0.

Further, by Lemma 1, we have
4] > exp(—2"% d*(log 2r) (log 2p?) (log 4) (log log 4))
> exp(—2%'8(log 2¢) (log 2p%)).
Substituting it into (7), we obtain
8) ' log e’ — &'| > tlog |e] —2%'® (log 2t) (log 2p?).
Note that p > 3. From (3) and (5),

el = P72, le—2 = 2|¥| /D' <2p7? < p22,
Hence, if (6) holds, then from (8) we deduce
3+2logt+2%%%log 2t >1t,

whence we conclude that r < 2227, 4

LemMa 11. Under the assumption of Lemma 10, let q,, q,, ..., q, be odd
primes which satisfy q; <q, <...<gq, and q|D' (i=1,2,...,5s). If

g—¢
E—¢E

r1..r2 Ts

=4y 497 -..q5

©)

for some positive integers t and ry,r,, ..., r, with 2 ¥t, then
ry rt o,

(109) t=4qy'q7...4°t

where ry,ry, ..., r, and t' are positive integers satisfying

<ry,, ¢,=3and 3||D'Y?
11 ’ 1 e
@b l{=?‘n otherwise; rp=r =208

Proof. If (9) holds, then t > 1, and from (5) we have
(- 1)2

(X1 t X2 DYy =gt g2 an

et 3, (o)) (=D Y| =q}'q7...q,

s;:_lce q;JD' (i=1,2,...,5) and g; ¥ X from (3), we see that g;]|t. If ¢'||D’' Y2,
gi'llt, g ll(21+1) (I=1, ..., (t—1)/2), then

e log(21+1)

i S <l j = - _&
Li og g, I<ol, i=1,2,..,s 1=1,.., (-1)2,

where all “<” can be replaced by “=" if and only if g, =3, 0, = 1 and | = 1.
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Hence

(m:’l )Xr—ll—l(_Df }12)!

_n v
=I(I_I)(_£QXI—ZI—I EO(mOdq;i+ ),

2/ 20+1
i=1,2,..,s5 1=1,...,(0-1)/2
except when g; =3, o; =1 and ! = 1. This proves the lemma. u
LEMMA 12. When max (D', p) > M, if (9) holds, then s =1 and g, = 3.
Proof. By Lemma 11, if (9) holds, then r satisfies (10) and (11). Let

1 -1 5 L S
ot P Ay 4t — =y it
gy =¢, & =&, g=¢! 1 =g 7T =2 5.

By Lemma 5, we have

g=X+Y /=D, =X-Y./=-D, i=12,..,5,
where X, Y' (i=1, 2, ..., s) are integers satisfying
XP+D'Y?2=p", ged(Xy, Y)=1,

r .
1T

i Ji=1.
XP+D Y2 mpt U tY ged(X), Y =1, [=2,...8

'By Waring’s formula that for any positive integer ¢+ and complex numbers

o, f
1t/2]

+f =3 (=1 ()@t B @h,
1=0
where

\  (t=1=1)'t
(- -0t

are positive integers, we see that

a4
&y —E &' — & ; '
‘l—_l and ﬁ‘, ki=1,...,r;,l=1, 2,...,3,
E—E qil _qil
& — &

are positive integers satisfying

ﬂki -—Jiki
£ ¥ == g i
: ¥ ‘ = 0(mod g;).
LT gt
sil =y 8‘"
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Since we know from (10) that

Substitute it into (9): from (11) we deduce that if g, > 3 then

e3—E" w2 ~1)2-1
1) g=E|=t T (p)Edep gy
8_,—8_., i=o 2

Note that g, is an odd prime and

(3)= 1 (qlq_'l)= 95> s

By Eisenstein’s theorem

(gs—1)/2
W\ g ag= 121
= X

is a homogeneous irreducible polynomial of degree (g,— 1)/2 and with integer
coefficients. From (12) we have

(13) f(X;zs =D }?2] = {;.

Since
-1
max (q') 238,
1=0,....(q5— 1)/2 \2

by Lemma 2, we see from (13) that if g, > 7 then
(14) $max (D', p) <max(X;?, D' Y,?)
<exp(2 % (g, = 1" +(log )" "),

On the other hand, by Lemma 10, if (12) holds then g, < 22?7, Substituting it
into (14), we conclude that max(D’, p) <M. Thus g, <7.
If g, =5, then from (12) we have

a2 N2
4x;‘—s(x;2—D o ) = %1,

(;) I=1,...,(g—1)/2.

5
Since 5|D’, by Lemma 3, we get X;> = Y;>=1 and D’ = 10 < M, whence p
= 11 < M. This completes the proof. = .

4. The proof of the Theorem. By Lemma 8, we see that the theorem
holds for D = 2. We proceed now to prove that the theorem holds for D = 3.
By Lemma 9, if p > 7, then the equation

(15) xz-'|-3"'=p", m>0,n>0, x>0
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has no integer solution (m, n, x) with 2 ym, n>1 and 2 tn. If (15) has an
integer solution (m, n, x) with 2 Ym and 2|n, then

pt—x=1, pP4x=3"
whence

2 =2p"? = 143" = 0(mod 4),

which is a contradiction. Hence, (15) has at most one integer solution
(m, n, x) with 2 ym.

If (15) has an integer solution (m, n, x) with 2|m, then (X, Y, Z)
=(x, 3™2~1 n) is an integer solution of
(16) X249Y2 =p?, ged(X,Y)=1, Z>0.

Let (X, Y, Z) =(X,, Y, Z,) be the least solution of (16). By Lemma 5, we
have

(17 n=2Zt,
(18) x+3m"2-l‘f’_9=111(X1+/12},1\J'_9)‘, j‘l il /{2 il,

where t is a positive integer. We see from (18) that 2 ft and

(t=1y2 t
(19) = LLY, 3 (ﬂﬂ)x';z*—l(—wlz)'.
Hence ~
Y3721, Y, =3 (O<r<m2-1).

If r <m/2—1, then from (19) we obtain 3|t. Let

X+Y /=9 =, (X,+4 Y, /=9
By Lemma 5, we see from (15), (17) and (18) that X', Y’ are integers satisfying
X249y? = A1 =p",  ged(X', Y) =1
and
(20) 3m2-1 = 3Y"(X'2 -3Y"?).
From (20) we get |Y'| =3™2"2 and
—3Y?2=X2-3""3= +1.
It implies from [5] that m =4, X’ = +2 and p = 13. Hence, if p > M, then r
=m/2—1 and Y; = 3™?"!, Recalling that the least solution of (16) is unique,
it follows that m is fixed for every integer solution (m, n, x) of (15) with 2|m.

Therefore, by Lemma 7, if p > M then (15) has at most one integer solution
(m, n, x) with 2|m. Thus the theorem holds for D =3. We obtain the
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following:
ConcLusion 1. The theorem holds for D =2 and 3.

For the genera_] D, if (1) has an integer solution (m, n, x) with 2 /m, then
(X,Y,Z)=(x,D"™ Y2 n) is an integer solution of (3). Let (X, Y, 2)
=(X,, Y, Z,) be the least solution of (3). By Lemma 5,

n =Zl L,
(21) x+D{m‘— l};‘:\; _D =;{l (Xl +/12 Yl a/ _D)I, 111 = il, Az = il.

where t is a positive integer
If 4z, let

22) X'+Y' /=D =(X,+4, Y, /=Dy,
X"+Y"/=D=(X,+4, Y, /D).

Then, by Lemma 5, X', Y’, X", Y” are integers satisfying
X24+DY? =p " =t ged(X', V) =1,

(23) 2442
X724 Dy"2 = p"1 = 2, ged (X", ¥) = |
and '
(249) X"=X?-DY?, Y'=2X'Y.
From (21) and (22), we have
(25) D=0z =00 XO Y,
Since p ¥D and ged(D, X”) = 1, from (25j we get
(m=1)/2
(26) IX"1=1, Y - 3
Further, from (24) and (26) we obtain |X'| =1, |Y'| = D™~ /?/4 and
Dlll
1=X"={1-—
X" T

whence we deduce that D=2, m=5 and p=3. H i
e p . Hence, if max(D, p) > M,

Ift =2t,, 2 fty, let X", Y satisfy (22). Then from (22) and (26) we have

(m=1)/2.

(27) A3+ 5

V=D =(X,+4Y, \/_.—D)'l, As=+1, A, = +1.

If t; > 1, then

(ty—1y2

:|:1=X t 1-2-1 L i
DR () -,
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whence X, = 1. Hence, we see from (23) that (3) has two integer solutions
(X! Y$ Z) = (19 Ylv zl), (l, D{m—i),‘?./z‘ n/2]

with X =1 and Y > 0. By Lemma 6, it is impossible when max(D, p) > 7.
Therefore, if 2|t then t =2 and the least solution of (3) is

(X1, Yy, Zy) = (1, D™= V22, n/2).

In this case, we see from the above analysis that if (1) has another integer
solution (m, n, x) = (m', n’, X') with 2 ym', then from Lemma 5 we have

n
n: - Err‘

X +D™ V2 /7D = A, (1+4,(D™?/2) /= DY,
. ) }.1=i1. 2’2= il.

where t' is an integer with ¢’ > 1 and 2 ft". It follows that

D'm- 12 (' —1)/2 ¢ )(Dm )l
2 1=0 2+1 4 ’

(28) . D™-W2 =] 12,
Since 2 ¥p, 8|D™ and
w=1)2 ¢ pm 1
24 ,;0 (2:+|)(T)’
from (28) we deduce that m' =m—2, 2||D and D has no odd prime factor.
Hence D =2 and

14272 = p¥2.
Note that 2 ¥m. We have m =3 and p = 3. Thus we obtain the following:"

ConcLusiON 2. When max(D, p) > 7, if (1) has an integer solution
(m, n, x) with 2 Ym and 2|t in (21), then (1) has only one solution with 2 fm.

If 24t let
e=A4(X+4 Y \,f'-——D), t=4(X—-4 Y \/:3]-
From (21), we get

g—z

Yl \ = D{m— mz'

E—E

Since 2 ¥p and X?+DY? = p’!, one and only one of X{ and DY is even.
Hence (&' — 8")/(e—8) is odd since 4

& —gt u—mz( t

= )yt (= DYy’

E—E =0 ‘2i+1
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By Lemma 12, if max(D, p) > M, then D™~ 1/2/y, =3 for some r > 0.
Suppose there are two integer solutions (m, n, x) = (m,, Ny, Xy), (M3, ny, X5)
with 2 ¥m, and 2 ¥m, for which 2 }t in (21). Since Y, is fixed, if m; # m,,
then we deduce that D =3 and according to Conclusion 1, the theorem
holds. If m; = m;,, D’ = D™, then from Lemma 7 we see that D’ and p satisfy
(4). In this case, if m; > 1 and 2 ¥m,, then 2 ¥D. It is impossible by Lemma
4. If 2|m,, then

p=(2a)+1 = a®>+(D™"*2,

which is a contradiction since p is a prime and max(D, p) > M. Thus, by
Lemma 7 and Conclusion 2, we obtain the following:

ConcLusioN 3. When max (D, p) > M, (1) has at most one integer solution
(m, n, x) with 2 fm except when D =3a*+1, p=4a*+1; in this case (1)
exactly has two integer solutions

(m, n, x) =(1, 1, a), (1, 3, 8a®+3a)
with 2 ¥m.
In the same way as the proof of Conclusion 3, we have the following:

ConcLusioN 4. When max (D, p) > M, (1) has at most one inetger solution
(m, n, x) with 2|m except when D =2, p =2¥+1.
Thus, from Conclusions 3 and 4, the theorem is proved.
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