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and finally
(443) —12log2ny u(d)+2np(g)—124(q)+Y logd(d™?)
dlg dig
= z a, (g(lm) Cq(ﬂ).
nz1
References -

[11 T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York-Berlin-
Heidelberg-Tokyo 1976.
[2] —, Modular Functions and Dirichlet Series in Number Theory, Springer, New York—
Heidelberg—Berlin 1976.
[3] R. Courant and D. Hilbert, Methoden der Mathematischen Physik I, Springer, Berlin—
Heidelberg-New York 1968.
[4] M. M. Crum, On some Dirichlet series, J. London Math. Soc. 15 (1940), 10-15.
[5]1 H. Delange, On Ramanujan expansions of certain arithmetical functions, Acta Arith. 31
(1976), 259-270.
[6] A. Hildebrand, Uber die punktweise Konvergenz von Ramanujan-Entwicklungen zahlen-
theoretischer Funktionen, ibid. 44 (1984), 109-140.
[7] D. Klusch, Mellin transforms and Fourier-Ramanujan expansions, Math. Zeitschrift 193
(1986), 515-526.
[8] F. Oberhettinger, Tables of Mellin Transforms, Springer, Berlin-Heidelberg-New York
1974.
[9] S. Ramanujan, On certain trigonometrical sums and their applications in number theory,
Trans. Cambr. Phil. Soc. 22 (1918), 259-276.
[10] W. Schwarz and J. Spilker, Mean Values and Ramanujan-Expansions of Almost Even
Functions, Coll. Math. Soc. Janos Bolyai, Debrecen 1974, S. 315-357. Budapest 1976.
[11] E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford
1951.
[12] F. Tuttas, Uber die Entwicklung multiplikativer Funktionen nach Ramanujan-Summen, Acta
Arith. 36 (1980), 257-270.
[13] E. T. Whittaker and G. N. Watson, 4 course of modern analysis, 4th ed., Cambridge
University Press, 1927.
[14] A. Wintner, Eratosthenian averages, Waverly Press, 1943.

Received on 31.7.1987 (1741)

ACTA ARITHMETICA
LII (1989)

Bilinear form of the remainder term in the Rosser-Iwaniec
sieve of dimension » €(1/2, 1)

by

Jacek Pomykata (Warszawa)

1. Introduction. It is well known that the remainder term in the linear

sieve can be expressed in terms of bilinear forms Z z Ay b,r(.«/, mn). This
mEMnsN
result due to H. Iwaniec was established in 1977 (see [4]). This shape of the

remainder term is more flexible than the conventional one and usually
improves the estimates for the sifting function since the level of uniform
distribution may be increased. On the other hand, it seems that an applica-
tion of Rosser's weights would lead to the best sieving limit when the
dimension of the sieve lies in the interval (4, 1) (see [3]). In such
circumstances it is natural to ask for the analogous result to that of paper
[4] in the case when 1/2 <x < 1. The aim of this paper is to prove that the
remainder term in the latter case can be expressed in terms of bilinear forms
defined on the product [—1, 1] x[—1, 1], where M, N > 1 satisfy

MNP~ = 4.

Here f = f(x) is the sieving limit and 4 reflects the level of uniform
distribution.

I would also like to thank Professor Andrzej Schinzel for his critical
remarks and valuable comments concerning this paper.

Notation. Let .« = {a,, a,, ...} be a finite sequence of positive inte-
gers; a; €./ means that g; is an element of the sequence ./. For a given set 2
of primes and z > 2 we write

Pi)=[]»r.

pe®
p<z

The main object in sieve theory is the sifting function S(</, 2, z) which

Tepresents the number of elements g; €./ such that (a;, P(z)) = 1. _
For any d|P(z) we consider the subsequence ./, which consists of those

tlements g; €./ for which g; = 0(modd).



294 J. Pomykala

\'?’e assume that the number of elements ag; €./,, which we denote by
|n/d|,.1s approximately equal to w(d)d~' X, where w(d) is a multiplicative
function and X > 0 is a parameter (independent of d). Formally

(1) 7 =$X+rw, d)

where r(./, d) is to be considered as a remainder term; X is to be chosen in
such a way that r(./, d) should be small on average.
It is assumed that

(2 O<w(p<p for pez

and that there exists a parameter x €(1/2, 1) such that

= A\x
3) I (1—M) < ('”—Z) {1+i
w€p<z P Inw Inw
pe:# k
for all z>w>2 where K is a constant > 1.
Every » satisfying (3) will be called the dimension of the sieve. The
conditions (1)«3) will be regarded as axioms.
For simplicity we will use the abbreviation

V)= [] (l—w).
plPz) p

All constants implied in the symbols O(-) and < may depend on x only.

2. if.cfsser-lwaniec sieve. Estimation ror the main term. Let 4, f > 1. For
any positive integer d we denote by (d) the number of prime factors of d.
Let d|P(z), 2(d) =r. We write

d=p;p;...p, Where p,<p,_; <..<p <z.

We will use the convention that the product over the empty set is equal

to one. In particular, d = 1 is equivalent to r = 0 in the above notation. Now
define

+ 1

d* = max  p55 pu...pis
0<IS(r—1)2

- _ +1

d~ = max pi'pu-y...p1-
1<1<r2

Let # = +. One may define Rosser’s weights as follows (see [5]):

(=)™ f g < 4,
0 otherwise.

13(4) = {
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For them the following sieve inequalities are valid (see e.g. [2], p. 159):

4) Y A Q)| A <S(A, 2,0 < Y A (D]
diP(z) djP(z)

Using (1) we may write

(5)  nS(, 2 z)sn%)( Yy A:(A;f’—@+ Y (o, d)}

d| P(z) d d|P(z)
=n!XM"(4, #,2)+R* (<, 4)] (by definition).

The problem of evaluating the main term M" is very difficult and has
been treated in detail in [3] (cf. also [7]). We only formulate the final result:

Lemma 1. Let s =Ind4/Inz. Under the axioms (2), (3) we have
M* (4, #,2) < V(2) F()+0(eX*(na) ')} ifz<4,
M~ (4, 2,22 V(@) f(+0(e**(nd)~'3)] if z< 4.
Here B—1 is the largest real zero of

® 2] —g™¥
p——————a -5z du -1 - 2x .
-2 be {exp (x£ = u) }z dz

6 gl)=s>""+

Remark 1. F(s) and f(s) are the familiar functions of upper and lower
bound respectively for the sifting function S(.«/, 2, z). In the general case
(¢ = 0) they are the continuous solutions of the following system of differen-

tial-difference equations (see e.g. [6]):
s*F(s) = A,

s* f(s) = By

(s*F(s)y ==s*"" f(s—1)

(s*fls)) =xs""'F(s—1)

if s < B,
if s> B.

The optimal f (sieving limit) should be equal to inf {8; f(s) > O for all s > B
(or B =1if f(s) >0 for all 5s) and the correct choice of A, and B, is to be
inferred from the behaviour of f(s)=1+0(e™%) and F(s)=1+0(e"") as
s —00. In the case when 1/2 <x <1 we have B, =0 and it turns out that
the sieving limit is defined by (6) (see [3]).

3. The remainder term. Main result. In view of (5) we should deal with
the remainder term in the form '

Y. 2i(4)-r(4, d).

d<4
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Transformation of this sum into a bilinear form does not proceed directly. In
fact, it requires that a certain modification into the Rosser-Iwaniec sieve be
introduced previously. Proceeding similarly to the proof of Theorem 1 of [4]
we will prove the following

THEOREM 1. Let B = f(x) be fixed, 0<e<1/3, 4> 1. Assume that
M, N > 1 satisfy the condition MN?~' = A. If the axioms (1)<3) hold and
z2< AYP then;

7 S(o, #,2) < XV(Z){F (lln—‘{)-l»E(s, 4, K)}+R+ (¢/, M, N),

nz

8) S(A, P,2) > XV(z){f (lll;—‘:)—E(a, 4, K)}+R'(.q/, M, N),

where for the error term E (g, A, K) we have the estimate
©) E(, 4, K) <e+e 4 eX(Ing)~ 13
and the remainder term R™(./, M, N) has the form

(10) R*(</, M, N)
= 3 Y ai;(M,N,e) ¥ b,;(M, N, e)r(</, mn).

-3ymsM nsN
JRexpl13e™ %) Lipia) nlP(z)

Here the coefficients ay, ;(M, N, ¢), b ;(M, N, ¢) are real and satisfy lamil <1,

|bhl < 1.

Remark 2. The essential difference when compared with Theorem 1 of
[4] is the more general condition 4 = MN?~! which depends on the sieving
limit B = f(x). We know (see [3]) that B is a function of » such that
I <B(x) <2 for 1/2 <x <1, therefore one may expect a larger value of the
parameter 4 than in the traditional approach.

The proof of Theorem 1 will be based on some lemmas. Set

u = A2

The following result is known in the literature as the Fundamental
Lemma (see [1]).

LemMMA 2 (see [4]). There exist two sequences {@}}, {¢@; ), such that
Pi=1, |ol<, ei=0 if v=4,
P xlSuxl <ot xl,
w(v)

b ‘P:T = V(u) {l+0(e” "+ (e In 4) 1))
v| P(u)
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Next we quote some useful definitions. Let n =¢°, P(z, u) = P(z)/P(u),
o, =1, a_=1/p

Let &= wt*: k=0,1,2,....

We define the following set of sequences:

(Dy,...D);r=1, Dje#, i=1,...,r, D,<D,.; <...<D; <4”}.

Adding to it the empty sequence (r = 0) we obtain a set of sequences
which we denote by &*. The number of sequences in " is bounded by a
constant depending only on &. Taking ¢ < 1/2 we can roughly estimate this
number as follows:

Ing=% Y\
aw w< T2 w3 (i)
n<g zzl?"'l'!]kcl
€ 241 YIn(+e)f 2 < e 2+ 1) e 1) 2
€ 2+1)e 1272

exp(—13¢2Ine) < exp(13e72).

NN

e _ -2_ - -2
< e 12 2—2$8 12¢ 4€£.13e

Next we define

(Dy,....,D)" = max D4 Dy...Dy,
0<IS(r-1)/2

(Dl'r'"aDr)_ = max DngDZI‘-l"'Dl'
1=i1<r/2

According to our convention we assign the value one to the empty sequence
(r =0). In the case when
Dy=D,=...=D;y >Djy4s1=-..>Dy s viy_y+1=-.=Diys 4y, =D,
we will write
r(Dy, ..., D) =iliz!.. il
Theorem 1 will be derived from the following lemma.

LemMA 3. Assume that the axioms (1)~3) hold. Then the estimates (7) and
(8) are valid for z < A and z < A"* respectively, where the remainder term
R*(«/, M, N) is to be replaced by

(12) R'('da A| Z’ = Z Z C(RDI";"Dr‘(v‘ n, A)
(Dy....D)ed™ v< A
(Dy....D)"™ < 4 VIPW)

X Y r(<, vpy...p,)
Dyspi<p}*"
PPl P(z,u)
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where
“33} Ct-.'l—)l.“.,D,}(v! "a A)
{Fhl(Dn,---,Dr)fpf if 2|r and (D,,...,D,)* < 4,

=I~'(\Dy,...,D)e, if2)r and (D,,...,D,)* <AV *n
0 otherwise,

(13b)  cp,...0p (v, 1, 4)
=YDy oz DY o5 if 2|r and (D, ..., D,)” < AV *n,
={—-F“‘(Dl,...,D,)(p; if 2fr and (D,,...,D,)” <4,
0 otherwise.

4. Proof of Theorem 1. In this section we will derive Theorem 1 from
Lemma 3. The following assertion is of the main significance:

LemMa 4. Let M, N >1, <2 and 4= MNP~'. For every sequence
(Dy, ..., D,)EU™ such that

(Dy,...,D)r <4
there exists a partition
{l° 2,..., r} = {1y s is}u{jh --'&fl}
such that
h<lh<u.<ly Jp<js €oa<jy, r=stt,

Dy Di,...D, <M, D, D,...D,

§ g QN.

]

Proof. We apply induction with respect to r. If r = 1, by the definition
of &* we have

D, < A" < max(M, N).

Now assume that the conclusion is verified for r—1 and consider the
sequence (D,, ..., D,) €™ such that

(Dyy....D)* <4 =MNF-1,
By the induction hypothesis,
L2 =1 =iy, i U sy e gl
where
I < <...<iy, J1<jz<...<ji, s+t=r—1,

D,..D,<M, D;..D;<N.

11 It
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We may assume that
D ...D; D,>M and D; ...D;D,>N
since otherwise the conclusion is obvious. Therefore
MN <D}D,_,...D;, < MN#~'D?"#,
Hence (f <2) we have D, > N and consequently
M <D ...D; D,<DD,...D, < MN*" /D!~ < M.

This contradiction shows that Lemma 4 is valid.

Now we are in a position to derive Theorem 1 from Lemma 3. We will
prove only the inequality (8) which requires more detailed considerations
than the analogous inequality (7). Consider any M, N > 1 such that MN#~!
= 4. We have

max(M, N) > A" > 4* (< 1/3),
so the quantities
M, = (max(M, N) 4~ *n N, = (min(M, N))/(1+n
satisfy
M,>1, N,>1.
If M> N then
M, Nq-l = [MA-zjl!(Hnl N@-+m (MNE-HU+m g=el(l+m
= Aol +m
If M < N then
Nl Mq—l . le{i'l'lﬂ(NA—r-)iﬂ" DAL +n)

=(MNﬂ‘l)l.-‘tl-uiA—ctﬂ~lml+rn = AL -ef-1)(1+n)

Let

Zp = 11-¢(B—1)

and apply the Buchstab identity.
Since
p—1 < l—s__
B B(1+n)

(for £<1/3)

7 — Acta Arithmetica LIL3
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we have

(14) S(, P, 2) = S(A, P, 20)— S(t,, P, APV,

AL =L +m)gp < 41/8
plP(z)
Replacing 4 by 41 ~9/1* or by A ~<«F= 10 and z by z, in Lemma 3 we
have in view of the error term E(e, 4, K) the following inequality:
In4d

S(A, P, z0) = XV(2) {f (E)—‘E(s, 4, K)}"'R,_

where the remainder term R~ is equal to

R™ (o, A1™9ED 20) = y
(Dy....D)ed™ v P(u)
(Dy...uDp) ™ <Al=0N(1+N) ved

X ¥ r(,p,ps...0) fM=2N
D;<p;<p}*"
p1P2---PrlPlz )
and similarly

R™ =R~ (of, A1~6-DIA+0 20y if N> M.
By Lemma 4 we find subsequences (D; , ..., D;) and (D}, ..., Dj) such that

D, ...D,,<M;, Dj...D; <Ny

Letting m = vp;, ... i, n=pj, ..-Pj, W€ obtain
m< AAM*" =max(M, N), n<Ni*"=min(M,N),

which shows that in both cases (M = N, N > M) the remainder term R~ has
the required form (10) (since ay, ;, b} ; may depend on 4 = MNP~1), By (14) it
remains to estimate from above the sum

S(/,, 2, dm—nmz)'
AL=e/(B(1+m) <p < 4118
plP(z)
In view of (5) and Lemma 1 (s = 1) by standard calculations we see that
the contribution of the main terms here is O(XV(2) E(s, 4, K)). The contri-
bution of the remainder terms takes the form

Y A @, pd).
A1 =B+ <p< gUP 4 4p- /g2
plP(z) d|P(z)
To complete the proof one has to show that the sum above has the desireczl
form (10). Since max(M,N)>4Y we put m=p n=d if 44~
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<min(M, N), and m = pd, n=1 otherwise to obtain that
pd < A8 4B~V = g1-(@-1ip)?

Since min(M, N) < 4%~V in the latter case, we get
Al-({ﬁ—l)iﬂlz_
Hence pd < max(M, N) and Theorem 1 follows.

5. Proof of Lemma 2. We first prove an auxiliary lemma.

Lemma 5. Let H(d) be any positive arithmetic function. Then

(15) Y A (AH@<Zf-Z37,
d| P(z,u)
(16) Y A (MH() =2y —-27,
d|P(z,u)
(17) Ir-Z3< Y H@A A+ Y H(d),
d|P(z,u) Al +mgg+ <4l +n
d|P(z,u)
(18) IT-Z;2 Yy H@ - ¥, H(d),
d|P(z,u) A+ <g— <qltn
d|P(z,4)

where we have set for simplicity

+ -1
zl = E r (Dl""9Dr) Z H(plpr)s
(Dy,...D)e@ ¥ 2|r D;<p; <D} 1"
(D1.-D)* <4 Py Pl Pz.W)
g -1
;= ) r-‘o,,...n) Y Hp...p)
(Dy....DPedt 24r D;<p; <D} ™"
(Dy.uDy)~ < gt/ 0 Py Pyl Pz, W)
Zp = Y r~'(Dy,...0) ¥  H(pi...p),
(Dy....D)e@ " 2Ir D;<p;<pl*N
(D1...uDp)~ < gl +m py-pyl Plz.0)
- _ -1
22 - Z r (D!:---a Dr) E H(plpr}
(Dy,..wDped ™ 247 D;<p;<pl*n
(DysDp)™ <4 py--Pyl Plz,W)

Here and in the sequel, this last sum is to be understood as being taken

over those P1s P25 -+« Pr fO?’ which Da'sPi <D|'1+u9 P:‘IP{Z, H), and pl‘épj !f
P2, i, Jj=1, sl

The proof of the inequalities (15), (16) follows directly from the defini-
tions of 2%, d*, (D, ..., D)* and I'(D,, ..., D).
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To show (17) we proceed as follows:

If-23 < ¥ H(d)— 3 H (d)
d| P(z,u) d| P(z,u)
2id)ydt <al tn

= Y H@+ Y H@- Y H@

24d),d T < gl/(1+n)

d|P(z,u).2| 2(d) d| P(z,u).2| 2(d) d| P(z,u).2 ¥ 12(d)
dt <4 asdt <4l tn at <4
- Y H (d)
d|P(z,u).2 ¥ 2(d)
Al +nggt <y

< Y H@N )+ b3 H (d).
d|P(z,u) d|P(z,u)
AU +mggt <41 +n

Similar arguments show that (18) is valid. This completes the proof of
Lemma 5.

Now we are in a position to prove Lemma 3. We deal only with the
lower bound (8) since the arguments for the upper bound are similar.

Denote by .o/ the subsequence of ./ consisting of those elements g; €.&/
for which (a;; P(u)) = 1. Applying inequality (16) for H(d) = S(.</;, 2, u) we
have by (4)

(19 S(o, 2.2)> Y Jildl= Y A (4)S(d,, P, u)

d|P(z,u) d|P(z,u)
; Z ‘r_l(_'Dla--"Dr) Z S('dpl...pra ?s u)
(Dy....De2 ™ 2|r Dj<p;<D} *"
(Dy,...D)~ <all(1+n) Pi-Pyl P(z,u)
= Z r_l(Dls---sDr) Z S('dpl...pr' -‘?& u)‘
(Dy,...DPEB™ 241 D;<p; <D} *"
tﬂl ..... D,}_ <4 P1 ...p,lP[z,n)
By Lemma 2 we obtain in view of (1) that
nS( Ay, PLu)ST ) @Ay
v| P(u)
w )
(X—(é}- o7 ()+ Y oir(d, dv)).
d v| Pu) v v|P(u)
If we insert thls in (19) we find that
S (A, 2, z)
e wle o) . : o (py--p,)
?X{Z (P\r_(—_ Z r I(Dls'--;Dr) z —-n
vl P(w) v. (Dy....D)e@ ™ 2|r D;<p; <Di‘ +n  P1-Dr

(Dqs.Dp)~ <M1 1) P1PylP(z,0)
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W(") e @ (py---py)
-y o2 Y r'o,..n) y 2k
v Pu) (Dy.....D)e@ 247 D;<p; .q,il +n  P1--Pr
(DyssDy) ™ <4 Py Pl Plz,u)
+R7(H, 4, 2)

where R™(.¢/, 4, z) has the required form (12) (m = —).
Applying the definition of I'(D,, ..., D,), Lemma 2 and inequality (3), we
see that the replacement in the above of ¢, by ¢, gives an error which does

not exceed
w(d)
(dlé.ul d ) }

X{ IR T
<XVwe "(1+eXeing)~?) [] (l+m(.0))

@)

v| Plu) v v| Plu) Lg
plPlz,u) p

XV(Z}S' l!z(l+e\£(£ In A) l,rﬁ(ii“i)

o 2
< XV(z)e "(1+e¥(elng)~"P)e* (l+i§;)

- 2
< XV(z)e " (1+e*(Ind)~"3)e~?° (1 +l‘:—d)

< XV(@)e g% (e K (In4)" P +1)* < XV (2)e(eX(In4) ™' +1)
< XV(2)E(, 4, K) in view of (9).
Therefore by inequality (18) and Lemma 2 we obtain
S(A, P,2) = XV(u) {1+0(e™ (1 +eK(elnd)” 13))}

2 o Ai = 2 M}

|P(z,u) d Al +mgg— <41 +n d
d|P{z,u)

+0(XV(2)E(e, 4, K))+R™ (¥, 4, 2).
Now we are led to consider the expression

20) XV [1+0(e (1 +e K (e In 4)~1/3)))

.x{M‘(A,J’, z)+0( Y @)}

Al +mgg— <41 +n
d|P(z,u)

where 2 = {pe#; p > u), with the aim of showing that it is at least as large
as

@1) XV() { f (11':14 )+ EG, 4 K)}
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Since

(20"« g, (-2

wEp=<z 14 wEp<z p
pe? pe?

we may apply inequality (3) and Lemma 1 (£ — 2, V(z) = V(z, u) to
remark that
In4

M~ (4, 2,2) 2 ——={f()+0(**(nd)~ ")}, s= ="

V(z)
V(u)

Assuming that

(22) > ? <&l +e 10K3(Ing)™!

AU +ngg— <4140
d| P(z,u)

we find that the expression (20) is not less than

23)  XV(@) 1+0(e” V¢ (1+e K (eln 4)"13)))

x {%(I (59)+0(e**(In4)~ ")+ 0(* +¢7°K*(In4)” ‘)}

= XV(2) {f()+0(e**(In4)~ )} {1 +E,}

+0 {XVW(e+e '°K3*(Ind)~)(1+E,)}
where
E, <e (1+eK(eln4)~13).

The first term on the right-hand side of (23) contributes the expected value

XV (2) {f (]%)-Hz‘(s, 4, K)}.

To handle the second one we make use of (3) to obtain

— v _ _o@)
VW = V@ =Ye pll;!-ui(l . )

Inz K K
SV@E);—{1+—¢ < e :
V(Z)lnu{l+lnu} viee J[H-szlnd}
Hence the O(-) term is

K
@XV(z)a‘z{l+m} 3+ 19K3(In4)~ 1) {1+E,)
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<XV() 1+Ke 2(Ind)™ ") le+e "2K3(In4) ™)

x [1+e (1 +eX(eind)” Lt
< XV(2) le+e K4 (In4)" ") {1+eX(In4)~ ')
< XV(2)'le+e M eX(Ind)" '3 <« XV(2)E(e, 4, K).

Therefore it remains to prove (22). Every d|P(z,u) such that A+
<d~ < A'™" can be decomposed as

d =mpn
where
m|P(z,u), n|P(z,u), peS, m <p<sm,,

provided that m, = max(u, 4'~"/m), m, = min(z, 4'*"/m).

Hence
(d) (m) (p) w(n)
) D S S
d|P(z.u) m|P(z.u) mySp<mjy P n| Piz,u)
Altngd™ <4l*n pe?
Since
Inm, - In(A'*"/m) B In(4'~"/m)+1In 4"
Inm,  In(max(u, 4'~"/m)) ~ In(max(u, 4'~"/m))
In4?" 2nin4 =
1 <1+ =14+0(")
BT (max (u, 4 ~"/m)) e2ln4A
we obtain

In C“'"z ) =0().
Inm,

Hence in view of (3) we have

s G0 5 n((-22)")

myEp<my p myEp<my p
pe.# pe-#
& -1
cn( 1 (-22))
1Sp<my p
pe®
1 K K
len(nm2)+— <e'+—.
Inm, /] Inu Inu
w(m) ;
To evaluate ), i) we again use (3):

m|P(z,u)
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ol I (1_,_2(&})& I (_M)_!
plP(z.u)

m| P(z,u) m plP(z,u) p p

Inz \* K
<(E){+a
lnu) Inu

Inz K 5 K
T e | 3 gt i MR T e
Inu Inu Inu

On combining the estimates above we obtain

wd) |, K*¢ %[, Ke?
o s B DRE B
d.P.Z:..‘, i { "ma (° Tna

AL+ gg— <4l +n

K? K?
e e +e T — b <+ 0 —
In4 In4
as required.

Now the proof of Theorem 1 is complete.
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Elementary estimates for the Chebyshev function ¥ (x) and
for the Mobius function M (x)
by

N. Costa Pereira (Lisbon)

1. The general approach. We have shown in [4] that a technique first
devised by Sylvester [11] to evaluate liminfy (x)/x and limsupy (x)/x, could
be transformed into an elementary method for estimating s (x). In this way
we established several elementary bounds for y and for the related function
0, including Rosser’s result [9]:

V() _y(113)

bt 4 ; 1
(1.1) ili[; . 3 < 1.038821,
and also
0(x) 69
3 — < 1.0145 —
(1.2) ili% - < 1.01456 < &
and
(1.3) M > 0.985 > E§ for x > 11927,
X 66

The present paper is devoted to a generalization and further refinement
of these ideas, which allow us to obtain improved bounds for y and 6, as
well as new estimates for the M&bius sum function.

Let f be a given function defined for all x > 0 and vanishing identically
for 0 <x < 1. Assuming that the behaviour of f is sufficiently well known,
we consider the problem of estimating its Mdbius transform ¢ defined for
x >0 by

(14) o)=Y uk f(%)

kz1

Let (r,)x>, be an increasing sequence of positive numbers which includes
the positive integers. Extending u(t) to all t+ > 0 by letting () = 0 if ¢ is not
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