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On combining the estimates above we obtain
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as required.

Now the proof of Theorem 1 is complete.
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Elementary estimates for the Chebyshev function ¥ (x) and
for the Mobius function M (x)
by

N. Costa Pereira (Lisbon)

1. The general approach. We have shown in [4] that a technique first
devised by Sylvester [11] to evaluate liminfy (x)/x and limsupy (x)/x, could
be transformed into an elementary method for estimating s (x). In this way
we established several elementary bounds for y and for the related function
0, including Rosser’s result [9]:

V() _y(113)

bt 4 ; 1
(1.1) ili[; . 3 < 1.038821,
and also
0(x) 69
3 — < 1.0145 —
(1.2) ili% - < 1.01456 < &
and
(1.3) M > 0.985 > E§ for x > 11927,
X 66

The present paper is devoted to a generalization and further refinement
of these ideas, which allow us to obtain improved bounds for y and 6, as
well as new estimates for the M&bius sum function.

Let f be a given function defined for all x > 0 and vanishing identically
for 0 <x < 1. Assuming that the behaviour of f is sufficiently well known,
we consider the problem of estimating its Mdbius transform ¢ defined for
x >0 by

(14) o)=Y uk f(%)

kz1

Let (r,)x>, be an increasing sequence of positive numbers which includes
the positive integers. Extending u(t) to all t+ > 0 by letting () = 0 if ¢ is not



308 N. Costa Pereira

an integer, we may rewrite (1.4) in the form

(15) o (x) = Z,u(mf(f)-

k=1 ry

Then, if v is a given function defined for ¢t > 0, the new function ¢
defined for x > 0 by

k=

(1.6) _ o)=Y v(rk)f(f)
1 Tk

should be a good approximation to ¢ provided that v is close enough to p.
To make things more precise we take an integer m > 1 and choose for v an
integer-valued function satisfying

(1.7) vi)=u(t) ifO0<r<m.
We assume also that
(1.8) R=1{t>0:v(t) #0!

is a finite set of rational numbers and define (r)i>, as the increasing
sequence of all non-negative multiples of the members of R. Since r, = 0 and
1 eR, the set |r!;>, includes all the positive integers; hence (1.5) holds and
we take the function defined by (1.6) as an approximation to ¢. In this case
we have simply

(19) o)=Y v(r,.)f(r—’i).

rgeR
The following lemma relates the values of ¢ and o.
LemMma 1. If F(x) is defined for all real x by

(1.10) : Fx=Y v(n)H,
E rpeR Tk
we have
(L11) o) =0(x- ¥ (F(r,.}-mr,_l))qo(i)_
rp=m Fn

Proof. From (1.4), the M&bius formula gives
X
f=3 o (—)
i1 \J

and so
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for each k > 1. Hence (1.6) yields
x x
o)=Y v Y <p(].—)= 5 vtrk)qo(,.——).

k=1 izt Ty kjz1 Tk

Since jr, is a term of the sequence (r,),>, letting r, = jr, we obtain
x

(1.12) cx=Y ¥ v{rt)(o(—).
n=1rle, Fy

On the other hand, recalling again that r,!,>, includes all the positive
multiples of r, we deduce that

Iy Tn—1 __{l ifrklrm

[a]_[T:I_ 0 if refr,

_ P |_[rama
r%nv(rk)_kglv(&} (L'tJ [ T J)

In view of (1.10) this gives
(1.13) Y v(r) = F(r)=F(r,-),

relrn

and so

and (1.12) is transformed into

009 = T (Fra-Fe-)o (X

n=1 Fn

Now from (1.7) and the identity

Y p(k)lﬂ=1 if x>1,

k=1
we see that F(r) =1 if 1<r,<m. As ry =1 and F(ry) =0, we obtain

a(x) = p(x)+ § (F(r..)—F(r,.-;))rp(;),
FpZm n
which is equivalent to (1.11). :
As the identity (1.11) expresses ¢ (x) in terms of ¢ (x/r,), with r, =2 m > 2,
and the “known” function o (x), it suggests the possibility of estimating ¢ (x)
by some kind of recursive method, provided that we have enough informa-
tion about F(x). To develop this idea it is convenient to restrict further the
admissible functions v. In view of the identity

A _ Y u(k)

_..—‘:gO’
k=1 Tk 1 k
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we impose on v the additional condition

viry)

reR Tk

(1.14) =0.

Since

Fx)= ¥ ‘v'(rg]*— > *’("x){ }

reR Tk rxeR
we have then

(1.15) Fx)=- % v(rk){ }

rgeR

which shows, in particular, that F is bounded. To estimate F(x) efficiently we
need the following lemma.

LemMa 2. Let S be a subset of R, T a common multiple of the members of
S and d the l.c.m. of the denominators of the members of S. Define G(x) for all
real x by

(L16) GH=-Y v(r,,){ }
l'kes
then G has period t and we have, for every integer n,
(1.17) o d)m(r_i*_‘): - S v+l 3 10,
d ryes rtss Iy

Proof. As t/r, is an integer for all r, €S, (1.16) immediately gives
G(x+1) = G(x), which shows that G has period . Then we have

ol eGheo(=50)
- 2o+ - )

Since dr, is an integer for every r, €S, we have

L. nt+l| { 1
drk dr;, | T dr,"
and (1.17) follows.

Taking S = R in this lemma, we conclude that F has a period t equal to
the least common multiple of the members of R. Also, if d is the l.c.m. of the
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denominators of the members of R, (1.17) gives

(1.18) F(5)+F( —":1)= = X v,
rge

From (1.10) we see that F can only change at x if x is a multiple of
some r,€R and this shows that F is constant in each interval [r,, r,+,).
Then, letting t = g/d, the mean value of F is given by

192! (n 1 2! n+1
= - —_— = — F —_—— s
v q,,gop(d) ZQ(E:OF( )+ ng{) (t d ))
and (1.18) yields
(1.19) w=—%) v(r).

L eR

Representing the maximum and the minimum of F respectively by s*
and s~, we also deduce from (1.18) that

s++3' = = Z v(rk.)l
rgeR
or
(1.20) st +s™ =2w.

With this information about F(x) we now return to the identity (1.11)
and show that the difference ¢ (x)—o(x) can be expressed, in several ways, as
a finite sum of alternating series.

For each integer s satisfying s~ <s <s", let py(s) be the first term r,
such that F(r,) <s. We define an increasing sequence (p;(s))i>o in the set
\Faln>1 by the condition of [pyx—(5), p2«(s)) being a maximal interval where
F(x) > s holds. Since F(x) =1 for 1 <r, <m, we have

pols)=1 if 1 <s<s™;
and
Po(s) =m CifsT <s< 1.

On the other hand, each term r, > m has the form p,;;;(s) iff F (r)
=s> F(r,—,) and the form p,.(s) iff F(r,—;) = s> F(r,). From this we
obtain the identity

(121) Y (Fer)—F(r -1))40(,1)

rp=m

x x X
T s” <Zs£| 4 (m) * -~ Eg,i" k§1 (qo (Pn— 1 (3))_4’ (Pzn (5)))‘
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since the coefficient of ¢(x/r,) in the second member is exactly F(r,)
=Flre-y).

For each integer s in the range s~ <s < s* we define also an increasing
sequence (g;(s)):>o by choosing g, (s) as the first term r, such that F (r)=s

and by the condition of [g,,-(s), g (s)) being a maximal interval where
F(x) <s holds. We have

A () =pesi(s) f 1 <s<s™;

and

G+1(8) =p(s) if s7 <s<1,

rp=m n

x b x
- 1 <§,+ ® (%(S})_ s Esﬂ t§1 ((D (sz— 1 (5))_(p (sz (S)))’

Finally, from (1.11), (1.21) and (1.22) we obtain

(1.22) E(F(rn)_F(rn"i))(p(;{)

(123) o=00+ ¥ o x)

5 <s=1 O(S)

X b
- 5 Eﬁs"' kgl ((p (r'_lk- 1 (5])_(‘0 (PZR(S]))’

(1L24) oM =0(x— ¥ w(x)

1 <s=s™ q(}(s)

X X
+ — — e
s Es.«* k§1 ((P (‘hk-i(S}) (P(QZJ((S}))

and also the more symmetrical identity

1.25 = g ( Y__))
( ) e J{x)+$-§$_,k§o ((0 (Pn(s]) g Paik+1(5)

X X
, (§s+ k;o (qa (ffzk (5))_“p (‘E‘#l (S)‘))'

The best way of dealing with these identities depends on the nature of
the function ¢ to be estimated. We shall consider separately the cases of the
Chebyshev function

Y(x)= Y logp; p prime

k.p
p*-ix
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and of the M&bius sum function

M) = 3 ulk).

ksx
2. Estimates for y (x). From the well-known identity
X
log[x)t = ¥ ¥ (% )
kz1
the Mobius inversion formula gives

X

TEED) ,u(k)log[;]!.

k=1

which is a particular case of (1.4) with ¢(x) =y (x) and f(x) = log[x]!
Choosing a suitable function v we then take

2.1) o)=Y v(r,‘)log[r—ijl!

Tk eR

as a first approximation to Y (x).
To evaluate o(x) we observe that

i) [l o lols)

[EJ =Z400)
T Ty

when x increases to infinity. This gives

and

o(x) =(xlogx—x) ) v _ N v(rk)rilogr,,—FO{logx)

rgeR Tk reR k

=— Z v(rkjilog r.+ 0 (log x),
rgeR g

where the last identity follows from (1.14). Introducing the constant

(2.2 w=-Y v log ry,

rgeR ry
we have then
(2.3) a(x) = wx+0(logx)
which shows, in particular, that
a(x
(24) lim g =w

xo+m X
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For our purposes, however, we also need a more precise version of (2.3)
and this is given in the following lemma.

Lemma 3. We have
(2.5) lo(x)—wx| <(s* —w)logx+h+7y/x for x> maxR,

where s* and w are, respectively, the maximum and the mean value of the
Junction F, and h, y are constants defined by

(2.6) h=4%3 |v(r)llogr,+|w|log 2r,
(2.7) Y= Z [v(rlre.
rgeR

Proof. For each u > 1, Stirling’s formula gives

(28)  log[u]! = ([u]+3) log[u] —[u] +4log 2n+ o (u)
with 0 < o(u) < 1/(4[u]).
On the other hand, from the inequality
log(l+0) <t ift>—1,
we obtain easily
u)/u < logu—Ilog [u] < |u}/[u].
This gives
([u]+%) (logu—log [ul) < {u} + {u}/[u]
and
([u]+3)(log u—1log [u]) > (u—4)(logu—log [u]) > {u} — (u}/2u.

Hence, from (2.8) we deduce

(29) log [u]! = ([u]+%) logu—u+3log 2n+ & (u)
with
fu) < 1 ,u

Observing that (u} <1 and u=[u]+ {u) <[u]+1<2[u], we have
simply

(2.10) le(u) < 1/u.

Now taking u = x/r, > 1 for each r, €R, we obtain from (1.10), (1.14),
(1.19), (2.1) and (2.2)
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a(x) = ox+(F(x)—w)logx+ ¥ v(r)(ix/ri) —%) logr,—
rkeR

—wlog2n+ Y v(rde(x/ry).

rgeR
Using (2.10) and introducing the constants h and y this gives
lo (x)—wx| <|F(x)—w|log x+h+7y/x.

However, if s~ is the minimum of F, (1.20) shows that s* —w=w—5".
Hence
[F(x)—w| <s7 —w,

and (2.5) holds.
To obtain estimates for ¥ (x) from our estimates of o (x) we use identities
(1.23) and (1.24). Since  is a monotonic increasing function, we now have

v (sz—xl (S})—w (;ﬁ) #
o(— Y[ 2)s0

Yo 1 (8) - Yax (s)

and

in the second members of (1.23) and (1.24) respectively. Hence, denoting by I,
and J, two finite sets of indices, we obtain

Vi) <sox+ ¥ 'P(pots,)— 3 Z( (pn I(s}) "’(p_:t?)))

s <s=] 57 <a=ss
and
X
Vi 20l g <\2<:‘ v (‘fo (s) )+ . {z\:ﬁ\»f .&g ( (cm :{S}) v (fhk {-5'}))-

Replacing, if necessary, some of the p,,(s) or g, (s) by suitable lower
bounds, we then arrive at two inequalities of the form

211) Y <o(x)+ Z '»"( )"_ EE‘”ZI( (bk(s;) "’(&T_v}))

and
2 > 7 1}
212 ¥ > 00— E%”( )+s Eﬂz,( (b;:m) “’(e;(s)))

Here the constants a, verify

a,<qo(s) ifs™ <s<1: a,<pols) if 1l <s<s*



316 N. Costa Pereira

and [b(s),ck(s)), [bk(s), ck(s)) are intervals, not necessarily maximal,

where F(x) = s and F(x) <s respectively.
Simplifying the notation we may rewrite (2.11) and (2.12) as

(2.13) V<o(+ Y ¥ (;x)‘ 2 (‘f’ (i)“"b G))
4= g N kel k

and

eH  vesew- I w() E( (= ) (;))

where I, J are finite sets of indices and b, < ¢, for each kel uJ.
Now let

AT —hmsup? A~ =limin fM

Dividing both members of (2.13) and (2.14) by x and using (2.4) we
obtain

AT x4
(2.15) i <o+ _ (___)
s‘{zss.l as lél by C
and
A-I- A‘.— ;..+
216) i s Y Aoy (— - _).
1<§ss+ ds Ei by Ck
Introducing the constants
1
&= é—&l ds E:‘C" E"b“
and
1
(2.18) C= Ligwils Bi=p—T
Z + 4y El’ Ck I;J‘bk

1<s=s

we can rewrite (2.15) and (2.16) in the form
(2.19) AA*"+BA  <w; CA"+Di" zw

On the other hand we have

1 1 ‘1 1 1 1
——— | — o =
RE;uJ' (bk Cx ) 5= 4§43+ u§1 (sz 108 Pu(8)  Ga-1(5)  gu (5))

Y ot L o< T oo

5= '<s$.lp°(s) lﬂsﬁs"'q{)(s) s~ <s<s?t as
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which shows that A—C < D—B. Assuming 4 > C we then have D > B and
this implies that 4, B, C, D are all positive. Hence, from (2.19) we deduce

(AD—BC)A* <w(D—B): (AD—-BC)i~ 2 w(A-C).
As AD—BC > 0 we conclude the following
Tueorem 1. If A > C we have

ix) _o(D-B)

(2.20) limsup ~ S AD—BC
and
Ax) . w(A-C)
kil )
(2.21) liminf = 1D—BC

The quality of the bounds given by (2.20) and (2.21) is measured by the
ratio

(222) ¢=(D-Bf4-0C)

which should be as near to unity as possible. Introducing one moge term of
the form ¥ (x/b,)—¥ (x/c;) in the right side of (2.13) or (2.14), we obtain new
constants A, B, C', D', and Theorem 1 gives new bounds for y (x)/x. Since
the new ratio is

D'—B _D—B-1/b,
A—-C A-C-1¢.’

]

Q:

and the condition ¢’ < g is equivalent to
(2.23) 0 < ¢ /by

we see that these new bounds are sharper if and only if (2.23) holds.
To give a simple example, take m = 6 in (1.7). Following Chebyshev [3]
we define v(30) =1 and v(r1) =0 if £ > 6, t # 30. In this case we have r, =k

for each k = 0 and the identity
(2.24) 1+4-4-4-4=0

shows that condition (1.14) is satisfied. The function F is now given by

1 [x | x| |x

2 3 5
and has period T = 30. By direct computation along a period we can verify
that s~ =0, s* =1 and we also see that

(P(Dkso = (6, 7, 10, 13, 15, 17, 18, 19, 20, 23, 24, 29, 30, 31, 36, ...).

F(x) = [x]+[30
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Hence, taking I =J = @ in (2.13) and (2.14), we obtain

(2.25) Y () < oHU(O: YD) > o),
and (2.22) gives ¢ = 6/5. However, we also have

(2.:26) Y (x) < () +Y (x/6) =y (x/T)+¥ (x/10)
and

(2.27) Y (x) = o (x)+y (x/24)— Y (x/29).

Since 10/7 > o, 29/24 > o, these last inequalities yield better bounds than
(2.25). At this point (2.22) gives p = 1.16668 ... > 7/6 and we easily verify that
no further improvement is possible. Actually, since

_log2 log3 log5 log30
=72 T3 s T30

(2.25) leads to Chebyshev’s classical estimates

=0.92129202...,

iimsup""(\f’ < 1.105556: Iiminf‘“—:) > 0921292,
while (2.26) and (2.27) yield
lim sr.tp"l’—f{x1 < 1.076578: lirninl'w—(ﬂ > 0.922610.
A X

We note that these last bounds have a smaller ratio than those obtained
recently in [6] with a more complicated method. They could easily be
improved by taking higher values of m in (1.7) but these results are
superseded by the prime number theorem which shows that limy (x)/x = 1.

Our next theorem gives (inite estimates for y of the type

L~ <y(x/x <L* if x=N.

THeOREM 2. Let N > 1 and choose i* (1), A~ (1), ™, @~ such that

(2.28) O<SYXYX<AT(@M) ift<x<N
and
(2.29) o <o(x)/x<w* if x=N.

Assuming (2.13) and (2.14), we define L™, L™ by

+ o+ L + ..A_r. - l - E —L " E
(230) L"=w"+ Z a A (as) ,‘Zd(b*’l (bk) cki (C&))

5T <x€1 8
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and

o L, (N L-(N\_1,.(N
231) L =o'- ¥ —4 (g)*’g(a" (E;)"c_f‘ (Z))

1<s€3T 8

Then if
(2.32)
L* <A*(Nfa) for s~ <s<s*; L*<A"(N/¢) for kelulJ
and
(2.33) L™ >4 (N/b) for kelul,
we have
(2.34) L™ <y(x)/x <L* for x=N.

Proof. From (2.13), (2.14) and (2.29), we obtain for x > N
| . )
(2.35) yix) <o+ ) _.1,(1)/1

X Sy

and

(2.36) L PP Y Lw(i)/i

x <ot Gs \ag )| ag
2 (v @) - ()5

Take an integer n > N and assume that (2.34) holds for N < x <n. If
n<x <n+1 we have
N x n+l1 n+l

—< =< < <n for s <s<s".
a, a a, m.

From the inductive hypothesis and (2.32) we deduce then

w(i)gvisz" (E)l for N< = <n.
aS a&‘ aS aS as
On the other hand, from the delinition of 1" () we get
w(i)ﬁ A* (E)i for N <> <N.

a! 5 a.l as a.!



320 N. Costa Pereira

It follows that

5

x N\ x
d/(a—)-é..l* (;)—— for n<x<n+1,5" <s<s*.

In the same way we obtain

VG )< G

for n< x <n+1 and all kel uJ. Then, from (2.35), (2.36), (2.30), (2.31) we
conclude that (2.34) holds for n < x <n+1 and the theorem is proved by
induction.

When applying this theorem, if (2.32) or (2.33) is not true for some of the
AT (1), A (1), we replace them by the new bounds L*, L™ in (2.30), (2.31) and
we determine a new pair L%, L™. This process converges quickly and we
soon arrive at a pair L*, L™ satisfying the conditions (2.32) and (2.33).
However, to deduce Rosser’s inequality (1.1) we only need the following
special case of the theorem.

CoroLLARY 1. Assuming (2.13), (2.14) and (2 29) let A, B, C, D be given by
(2.17), (2.18). If A > C define

Do —Bw~
37 e A s I T =
(237) £ AD—BC ’ &

Ao~ —Cw*
AD—BC '

Take also No, Ny such that a, < No for s~ <s<s™, ¢
and b, < N for kel uJ. Then if

< Ny for kel uJ

e YP<rr fr Sax<n; Woi o Denen,
No X No

we have

(2.39) L™ <y(x)/x <L* for x=N.

Proof. (2.38) shows that we may take
A*()=L* for NINo<t<N; A (t)=L" for NINy<t<N
in (2.28). Then (2.30) and (2.31) are replaced by
L+

- +
o+ 3 -3 (-T)
kel bl’.

5T <s<1 % Cx

wee- 2 0260

1<s<st s Ck

and

respectively.
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As these conditions are equivalent to (2.37), the estimate (2.39) follows

from the previous theorem.

To deduce (1.1) we take m =17 in (1.7). From (2.24) we obtain

1 1 1 1 1 1 1 1 1

____ — — i _——=0,

6 7 42 10 11 110 14 182 13
we deduce that

el 1 1 11,
El 182 30 42 110
Thus, condition (1.14) is satistied if we define v(z) by v(¢) = u(r) for 1 <1
<17 and
v(182) =1; v(30) = v(42) = v(110) = —
v() =0 otherwise.

In this case (ry)>, is again the sequence of the positive integers and the
function F is given by

Fo=Y v(k)[ﬂ.
k=1

To estimate F(x) we use the decomposition
F(x) = Fo(x)+F,(x)+F,(x)+F3(x)

where
x| [x) [x] [x
roe =02+ |53 -5 3
x| [x %
r=[5-7 )
[ x| [ x x|
ratn =[5 ]| | i)
and
[ x x| %
F3(X) = L“ﬁ— +[ﬁ§‘|‘-lﬁd.
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= -

and F,(x) is an integer, we see that Fy(x) < 2; in the same way we obtain
Fi(x)<1, F(x) <1, F3(x) <0 and this gives F(x) <4. From (1.19) we
obtain w = 1/2, and (1.20) shows that

Since

-1 < F(x)<4.

As F has period 7 = 30030, the terms p,(s), gx(s) would be completely
determined by computing F(x) for the integral values of x up to 15014 and
using (1.18). To obtain (1.1), however, we need only to evaluate F(x) at the
integers n such that 0 < n < 876. The most eflicient way of achieving this i$
to observe that (1.13) now reduces to

(2.40) Y v(k) = F(n)—F (n—1).
kin

Hence we determine ) v(k) in the range 0 <n <876 by an obvious
kln
sieve method and we compute F(n) recursively starting with F(16) = 1.

These calculations can be performed easily since the labour required is
comparable to that needed to construct a table of primes up to 876. We
obtain

Po(1) =66, po(0) >876: go(2) =17, go(3) =19, go(4) = 439.
Now, in the inequalities (2.11), (2.12) we take
a, =66, a,=877: a,=17, a3;=19, a, =439,

and we choose the following intervals [ag(s), bi(s)), [ai (s), by (5)).

[k (), bi(s)

[67,126) [157,176)  [179,220)
[223,275) [277,330) [359,429)

[ (), by (9)

[17,22) [23,26) [29,35)
s=2| [4752) [59.65) [71,78) [26,29) [65,71) [117,139)
[79.88) [191,210)

[21,31) [33,61) [63,73)
s=3| [19.21) [84,103) [110,193) [208,229)
[242,271) [294,323) [325,373)
[440,493)
y=4 —— [440.877)
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Then (2.17) and (2.18) give
A =0.732878785..., B =0.297381533...,
C=0.263737183..., D =0.802852410...
Taking N = 10° we may apply Lemma 3 with
® = 1.04652442.... h=21.15419476...: 7y =451.
We obtain the estimate
o~ <a(x)/x <w* for x> N,
where
o~ =1.046025;: % =1.047024
and (2.37) yields
L* =1.038383... <27/26; L™ =0961776... > 25/26.
On the other hand, from a table of primes up to 10° we can verify that
Y(x)/x <27/26 if 114 < x <10°
and
Y (x)/x > 25/26 if 227 < x < 10°.

Applying Corollary 1 with N, =877, Nj =440, and noticing that
N/N, > 114, N/N, > 227, we conclude that

(241)  Y(x)/x <27/26 if x> 114: P (x)/x > 25/26 if x > 227.
But now Rosser’s inequality (1.1) follows simply from
Y(x)/x <y (113)/113 = 1.0388205... if 0 < x <113.

To improve (2.41) substantially we must choose higher values of m in
(1.7) and we need also sharp estimates of the type (2.28) holding for wide
intervals. With a computer we have obtained several bounds 4" (1), 27 (1) in
the range r < x < 10® and this enables us to use Theorem 2 with N = 10°.
These values of A* (t) and A~ () are listed in Table I which is a more detailed
version of a similar table given in [5].

For high values of m in (1.7), the task of choosing a suitable function v
satisfying (1.14) is much simplified if we allow the set R to include non-
integer elements. To keep the sequence (ry),>; as simple as possible within
the zone where F(r,) is to be computed, we search for identities of the form
(2.42) &“—L%l:()

k<m k .:'l r

where j is an integer, m < |j| <|r| and 5-107 <|r| < 10°.

2 — Acta Arithmetica LII, z. 4
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Testing several functions v obtained by this method shows that the value
m=28021 is nearly optimal. In this case (242) holds with j= 34502,
r =92516105.9109... and we consequently define v(r) by

(243) v()=pu() if 0 <r <8021; v(34502) = —1; v(r)=1;

v(r) = 0 otherwise.
Now (1.15) gives

o o= gl

Counting the non-negative terms in the right side of this identity we see
that F(x) < 2440 but a much better bound for F(x) can be obtained from the
following lemma.

LemmMa 4. Take a positive integer ny and let Q be the set of the square-free
integers, prime to no, in the range 1 < q <m. For each q€Q denote by S, the
set of the positive integers d such that d|n, and qd < m. Defining

G,(x) = —pulg) ¥ u(d){-z-}

ﬂssq 2
and
ug = —plq Y E‘(iﬂ'
dssq
we have
(2.45) F)<[Y (m+e)]+1,
qeQ
with
0 if u, <0,
=dq-1
=Yy, iy, >0
q
and

m, = max G, (k).
k
~ Proof. With n =[x] we easily obtain from (2.44)

n n] Ix' |x
P & il {fr -

As 0 <j <r we have

1.1 l l
{:}+~‘_'<1___+-<1,
J £ 4, °F
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and so
F<-Y u{k}{2}+l.
k<m
Since F(x) is an integer, we obtain
(2.46) F(x)s[- Y ,u(k)%;‘—‘”—kl.

On the other hand, observing that every square-free integer k in the
range 1 <k <m has just one representation of the form k = gd with geQ
and deS§,, we see that

(247) - ¥ {E} =Y ¥ -nuad {qid}

k<m qeQdeS,

We have now
S L2l G E/_‘i}
aé,, p(qd) qud} #(q)deEsq,u(d){ T
= —p(g) Y, ud {[—"{fl}+{f}"q

desq q

o

Y. —u(qd) {%} < my+g,,

ﬂESq

This gives

and the lemma follows directly from (2.46) and (2.47).

From Lemma 2 we see that each function G, has a period 7, such that
T, | no and (1.17) shows further that we can determine m, by evaluating G,(n)
along a half-period. Hence, choosing n, = 30030, the calculations required by
Lemma 4 can be efficiently performed by a computer and (245) yields
F(x) < 1182.

On the other hand (1.19) gives w = 1/2 and we conclude

(2.48) —1181 < F(x) < 1182.
From (2.2), (2.6) and (2.7) we obtain
o = 09999376831...; h=1949543942...; y=11210672891...
Now Lemma 3 shows that (2.29) holds for x > 10® with
w* =1.0003503; w~ =09995250.
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With our choice of v all the r, less than 10® are integers, except for the terr
corresponding to r, and this enables us to evaluate F(r,) for 1 <r, < 10® by
a sieve method using a trivial modification of (2.40). In Table II we list the
initial terms pg(s) and g, (s) for each value s of F(r,) in this region, together
with the number of intervals [bj(s), ci(s)), [bi(s), ci(s) selected for the
second members of (2.11) and (2.12) respectively. These are maximal intervals
of the type previously described, truncated at 107, such that the correspond-
ing terms in (2.30) or (2.31) are positive.

Taking
a,=pols) if =73<s<1; a, =10 if —1180<s< —74;
=qols) if2<s5s<78; a,=10® if 79 <s <1182,

we obtain from (2.30) and (2.31)
LY <1.0018823 <532/531; L~ > 0998118 > 530/531.

With these values of L* and L™, conditions (2.32) and (2.33) are satisfied
and Theorem 2 yields

¥ (x) 1 5
- — > 108,
5 1| < 531 if x>=10
Hence, from Table I we conclude
(2.49) V) 332 S 60299
X 531
and
¥ (x) >
2.50 > _
(2.50) - > 531 if x> 70841

We note that L. Schoenfeld [10] gives

("} 1‘<000119721 if x> 108,

but this estimate requires much deeper analytical methods as well as the

result of very extensive computations on the zeros of Riemann’s zeta
function.

As an application of (249) and (2.50) we prove
Tueorem 3. We have
6(x)

2.51 et P s
231) % <531

if x>0
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and

0(x) 499
(2.52) e if x> 487381
Proof. (2.51) follows directly from (2.49) together with the inequalities
B(x) < Y (x) for x >0 and 0(x) < x for x < 60299.
(2.52) can be verified directly for 487381 < x <839973. In the interval
839973 < x < 10® it follows from the estimate

X200 _ 1833 if 839973 < x < 10°,
vx
taken from Appel and Rosser [1]. To prove it for x > 10° we use the

inequality
0(x) = Y ()— ¥ (x"D) =y (x'P) =y (x') if x>0,
which is established in [5]. From (2.50) and Table I we obtain

f(x) 530 1.051616 1.021163 1.038821 499

: 8
51 10F 108 T 1097F Ts0 X100

An immediate consequence of this theorem is that each interval
[x, 258x/257) contains a prime if x > 485492, a result that still holds when x
= 8469.

Taking N > 10® in Theorem 2, we can obtain better results with the
same function v, provided that we have sharp estimates for { in the range
10® < x < N. Actually, with N = 10"!, Theorem 2 shows that

'lf(x) ‘
2976

holds for every x = 10! if it holds for 10® < x < 10'! and this last condition
follows from R. Brent’s estimates of m(x) [2]. However, our choice of m
= 8021 in Theorem 2 is not 0pt1mal for N =10"! and these results could
still be improved.

3. Estimates for M(x). From the definition of M(x) we have

M(x) = 3 u(k)6(x/k)

k=1

Where é is defined by é(t) =11if t =
(1.6) and (1.19) give simply

1 and 6(t) =0if 0 <t < 1. In this case

o(x) = —2w if x > maxR,
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@Gy IMEI<2w+ Y ¥

()
= <s<1 k=0 2 (5) Pa+1(5)

X X
M M \
* 1 <§s+ *go) (‘ht(s)) (qlk+t (3])
if x> maxR

Let v* be the maximum of ]F(x)—l| For each integer v such that
1 <v<ov", the region where |F(x)—1| = v is the union of all intervals

[g2c(0+1), g+, (v+1)) and [Par(2—0), Pai+1(2—0)).

As these are non-overlapping intervals, then if [a,(s), by (s)) denotes 2
maximum interval where [F(x)—1| > v and F(x)—1 has constant sign, (3.1)

gives
(ak (U)) e (_bi’j)

(32 |IM(x)| <2w+ Z 2
v=1k20

If Q(t) denotes the number of square-free integers in the interval [1, t]

we clearly have

if x > maxR.

X x X x
33 2yl Y Ol— 0=
&) P (a,(v)) (bk(v)) ‘Q(aktv)) Q(bktvl)
and also
X X X
4 M < — M ;
i ’M ak(v)) (b,(v)) <pg (v))*' (b*(v))
Hence, if I, (1 <v< +] are finite sets of indices, defining
X
(35] H(x) = 1 151 (lM (ﬂk{'))) + ‘M (bktv)) )’
X
G0 A= ;;1 l%u( (at(v)) Q(m))
we have
(3.7) IM(x)] < 2|wl+H(x)+S(x) if x> maxR.

We refer to the intervals [a, (v), b (v)) such that kel, as the “selected
intervals” of the estimate (3.7).

THeoreM 4. Assuming (3.7) we define o and B by

et

1 1
o‘=\:1 kgu (ak{v} * 3:(?))’

(3.8) o=
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vt

1 1
B3 = u§| k§p (ak(”) a bk(v))‘

Then, if « <1, we have

Mx)|__ 6B

(3.10 lim sup IS 2a=w

Proof. Let
A = limsup|M(x)/x].

Taking an integer n such that n > max I,, we have from (3.7)

1<o<e™t
o «
o <amtsnins 5 3 (o()-0 (2 ) 5 ()
2.2\2G0) %o EIQ a0
k<n
Dividing both members by x and using the well-known relation
t 6
lim w =3
t~+w [ n

we obtain

1), 6% 1
L dn —zvzl z (ak i [U))+ 22w

k<n
Taking the limit when n increases to infinity we obtain
A < Ao+ 6p/n?,

and (3.10) holds.

If a new interval [a,(v), by (v)) is selected in (3.7), (3.10) gives a new
estimate

|M( )| o 6(B=1/a®)+1/bi(v)
\“ n* (1 —a— 1/, (v) = 1/b; (v)’
which is sharper if and only if
b (v) o l—a+p
a () l-a=p
As an application we define
(3.12) v()=u@® if0<r<T7,

lim sup

(3.11)

v(7.5) = —1; v()=0 otherwise,

following Diamond and McCurley [7]. In this case the function F has period
T =30. By a simple calculation we obtain s* =1 and we see that the
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intervals [a,(s), b, (s)) are
[7,75), [10,11), [13,15), [15,17), [19,20), [225,23), [29, 30),
[30, 31), [37, 37.5),
Taking I, = @, we obtain from (3.9)

ﬁ-Z( 1 1 . 1
T 5, \30k+7  30k+75 7 T 30k+29 30k+31/)

Truncating this series at k =99 and evaluating the tail by

1 1 £
E,,(ak+b B ak+b+a) S wavab+tas b0l =zx0,

we get
B < 0.0513365.
Then (3.10) yields
limsup|M (x)/x| <0.03121 < 1/32,

which is the result obtained in [7]. However, if we transfer from S(x) to H(x)
the terms corresponding to the intervals

[10, 11), [13,15), [15,17),
(3.10) gives

lim sup |M (x)/x] < 0.0271829 < 1/36.

At this point (3.11) shows that no further improvement is possible with this
function v by selecting other intervals in (3.7).
Take now a fixed number N > max R. To obtain a finite estimate of the
type
IM(x)/x| <L if x=N,

we need two lemmas.
LemmMa 5. If y = x > 0 we have

(3.13) Q(x) < $x+4%,
and
(3.14) Q) —-0(x) <3(y—x)+5.

Proof. Denoting by f(t) the number of integers in the interval [1, t]
which are not divisible by 4 or 9, we have

fo= [‘]‘HJ‘ [;J+ [%J
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and this gives
$t—3% < f(1)<3r+3.
Now the lemma follows from the inequalities Q(x) < f(x) and Q(y)
Q)< f()—S(x).

LEMMA 6. Let (c,)x>o be an increasing sequence of positive numbers. If x
= N we have

619 3 (Q(ﬁk) o)) zel)

2 4 20 1 1 4)
S S Selemt el sl §
('3 3N 3Z "( ¢ N

k=1 Cak—1

where

1 1 4 ;
——>—1 & =0 otherwise.
Cx-1 Cu N

o =1 if

Proof. If (d).>o is an increasing sequence of positive numbers, Lemma
5 gives

e (g ve i)

2 m=1
S —-— A
3 k=0 (dlk d2t+1

and this can be. rewritten in the form

316 -0 (di)‘l;kil ez )hglif))

242"'(1 14)

+_|

1 4) 2 4
" dysy, N/ 3dy, 3N

__‘<h___,.. o ™ A
3, TIN T 3%

dy-1 dy N/

Returning now to the sequence (c,).>o and denoting by I the subset of
1, ..., n' such that &, =1 iff kel, we have

LS (o2 )-e () o) |
Lof2)-1 fol)o(2)
<Lo()-tx (el ) e()
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Using (3.16) we see that this last expression does not exceed

Lk Zpfl L 4
3¢o6 3N 35 \cu-r cu N/
which proves (3.15).

If (ci (v)k > o denotes the increasing sequence formed by the end points of
the intervals [a,(v), by (v)) such that k¢l,, then (3.6) is transformed into

D= ;il Z, (Q (a:ﬁ)_Q (cﬂ +x1 (l-’)))'

Taking the limit in Lemma 6 and changing the notation we obtain

S(x) % 2 4 2 1 1 4
—<Z (360(0) *IN T3 ‘5"(”)( _))

x b1 k>1 C—1(¥)  cx(v) N

if x> N. Hence, (3.7) gives

lM(x)(M 4* H(x)

3.17 < ol it x>
(3.17) N 3N+ = +s ifx=N

with

2% 7 f 1 1 4
3.18 s = S — cus 2
G18  s=32 (co(v) 2,50 (Czk—r(”) C2(0) N))

Now, from (3.17), we obtain the following analogues to Theorem 2 and
Corollary 1; the proofs are similar and we omit them.

THEOREM 5. Choose A(t) such that
(3.19) IM(x)/x| <A(t) ift<x<N
and let

2iw| 4ot o 1 N 1 N
3200 L=2M_ % A ( )) .
i35) N TN .,>=:“.§,,(ak(v) (ak(v))J’ o 6w

Then, if

N

321) L< z(a—w
k

N
: LSA(——) or kel,, 1 <v<v*,
) by (v) f

we have
IM(x)/x| <L for x> N.

CoroLLARY 2. Take N, such that b, (v) < N, for each kel,, 1 <v<v*
and let a be given by (3.8). Assuming o < 1, define

_ 2|w|/N+4v* /3N +s
B l1—a '

(3.22) L
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Then, if
(3.23) IM(x)/x| <L for N/Ng<x <N,
we have

IM(x)/x <L for x> N.

Consider again the function v defined by (3.12) and take N = 108,
Selecting the intervals [10, 11), [13, 15), [15, 17) we may apply Corollary 2
with N, = 17 to obtain

a < 045998904;: s < 0.0161882.

Since w = 1, (3.22) yields
L<0.0299777 < 3/100.
On the other hand Neubauer [8] has shown that

IM(x)| < x/2 for 201 < x < 10,

which implies
IM (x)/x| <3/100 if 278 < x < 108.

Thus condition (3.23) is satisfied and Corollary 2 gives
M (x)/x| <3/100 if x> 10%.

As this inequality holds also for 202 < x < 278, we conclude
IM(x)/x] <3/100 if x> 202.

To improve this result we have applied Theorem 5 with N = 10® and
the bounds A(z) given in Table III. For the function v defined by (2.43), the
intervals [ (v), by (v)) appearing in (3.2) were determined in the zone x < 107
and truncated at 107. The initial terms a,(v) can be obtained directly from
Table II up to 108 and this gives a,(v) for 1 < v < 77. As (2.48) shows that
s* < 1182, we have replaced a,(v) by 10® for 78 < v < 1182. To evaluate L
we have taken the intervals [a,(v), by (v)) sequentially for each v, comparing
the effect on L of selecting or not a new interval in (3.7). With this method a
total of 418 intervals were selected and the highest of b,(v) with kel, is
85845. Now (3.20) yields

L < 0.0009647 < 1/1036,
and the conditions (3.21) are satisfied. Hence, Theorem 5 gives
IM(x)/x] <1/1036 if x > 10%.

From Table III we see that this inequality still holds for 120865 < x
< 10® and it can be also checked in the range 120727 < x < 120865. We
conclude

IM(x)/x] < 1/1036 if x = 120727.
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Table 1
AT)x <y(x)<it@)x ifr<x<10®
! ()] t £ (1)
1 1.0388206 23 0.8658345
114 1.0359089 41 0.9060283
201 1.0272755 59 | 09223773
294 1.0211630 101 0.9484202
469 1.0180185 227 0.9676432
664 1.0138597 347 0.9749497
684 1.0136306 569 | 0.9787068
1630 1.0119595 1429 | 0.9870819
1670 ) 1.0098987 1447 0.9875864
2868 1.0074348 2657 | 0.9882855
2974 1.0066131 3299 | 0.9900226
3948 1.0064876 3461 0.9922755
6380 1.0063952 3511 0.9923791
6404 1.0054256 5387 | 0.9933098
7045 1.0051616 7451 09934334
10359 1.0045711 7477 | 0.9934380
24271 1.0036023 11801 0.9948622
24297 1.0029673 19379 | 0.9954703
43068 1.0029036 19423 | 0.9964387
59851 1.0023695 32059 | 0.9970335
60299 1.0018667 32321 0.9977007
60977 1.0015609 69997 0.9978769
96021 1.0015220 70843 | 0.9981698
102688 1.0014363 88807 | 0.9985121
155941 1.0012069 175939 | 0.9987077
230569 1.0011420 303287 | 0.9989190
356185 1.0008886 312229 | 0.9990620
359810 1.0007863 463447 | 0.9991479
445208 1.0007157 467867 0.9993803
618740 1.0005627 643847 | 09993884
1198547 1.0004825 1092893 | 0.9996014
1520824 1.0003639 1790479 0.9996740
3459604 1.0002563 3597037 | 09997171
4996151 1.0002148 4420517 | 09997916
7118551 1.0001838 5880041 0.9998085
12898940 1.0001288 10393637 | 0.9998633
30980127 1.0000960 16577753 | 0.9998764
33896936 1.0000905 36999173 0.9999030
40886484 1.0000754 | 38113423 | 0.9999254

Table 11
(see text)

5 Po (“] X, n”a 5 4o t\} o, ﬁa

1 8021 15 19 2 9161 15 17

0 8022 17 18 3 9219 14 17
-1 8023 17 18 4 9221 14 18
-2 8026 18 18 5 9283 13 18
-3 8027 19 17 6 9285 15 20
—4 8031 21 17 7 9294 12 21
-5 8033 22 13 8 9403 12 21
-6 8034 24 12 9 9417 11 19
-7 8035 24 11 10 9418 9 18
-8 8038 24 11 11 9419 8 19
-9 8049 24 7 12 9421 8 20
—10 8051 26 7 13 9422 8 21
—11 8057 24 7 14 9426 8 21
-12 8058 22 8 15 9433 8 21
—-13 8065 22 7 16 9434 8 20
—-14 8071 25 7 17 9439 8 21
15 8141 23 6 18 9465 6 22
—16 8142 23 5 19 9474 5 23
—-17 8143 22 5 20 9478 4 24
—18 8146 25 4 21 9479 4 25
-19 8151 27 4 22 9483 4 28
-20 8153 28 4 23 9485 4 28
=21 8158 24 4 24 9499 3 27
—-22 8159 25 3 25 9551 3 28
-23 8201 25 2 26 9698 3 26
-24 8413 23 2 27 9699 3 26
-25 8418 20 2 28 9710 3 24
=26 8489 17 2 29 9715 1 24
=27 8490 16 1 30 9717 1 23
-28 8491 17 0 3l 9718 1 24
-29 8503 18 0 32 9719 1 23
-30 8506 17 0 33 9721 1 21
-31 8507 16 0 34 9726 1 19
-32 8509 15 0 35 9741 1 18
-33 8510 14 0 36 9749 1 16
-34 8511 15 0 37 9822 0 17
—35] 11759 15 0 38 9823 0 15
-36| 11761 16 0 39 9830 0 15
—37| 11762 16 0 40 9831 0 13
38| 11769 16 0 41 9833 0 13
-39 11770 12 0 42 9857 0 14
—40( 1171 14 0 43 9861 0 10
—-41] 11773 13 0 44 92967 0 8
—42 ] 69971 11 0 45 157579 0 7
—43| 69973 10 0 46 180064 0 4
—44 | 69986 10 0 47 180071 0 6
—45| 70561 10 0 48 180077 0 5
—46 | 70569 9 0 49 180079 0 5
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Table II (continued)

s Po {SJ o .Bs 5 qdo (S) oy .8;
—-47 70570 | 10 0 50 180082 0O 4
—48 70596 8 0 51 180259 0O 4
—49 70597 6 0 52 1802631 0 5
—50 70601 7 0 53 180271 O 5
-51 70603 6 0 54 180386 0 3
—52| 302741 5 0 55 1803%0| 0O 3
—53| 302742 3 0 56 180390 O 4
—54 1523273 2 0 57 180391 © 3
— 55| 2942825 1 0 58 180444 O 3
—56 | 2942829 1 0 59 180463 0 3
—57 | 2942875 1 0 60 180466 0 3
—58 | 2942877 1 0 61 180467| 0 3
—59 | 2942879 1 0 62 | 1675007| O 2
—60 | 2942879 1 0 63 | 1675070 O 2
—61]2942880 | 1 0 64 | 1675073 O 1
—62 | 2942887 1 0 65 1675080 © 1
—63 | 2942957 1 0 66 | 1675087 0 1
—64 | 2943035 1 0 67 (27413461 O 0
—65 | 2943042 1 0 68 [27423461| O 0
—66 | 2943050 1 0 69 |34043952| O 0
—67 | 2943053 1 0 70 |34043957| O 0
—68 | 2943055 1 0 71 (34043967 0 0
—69 | 2943076 1 0 72 |36690681| O 0
—70 | 2943082 1 0 73 |36690681| O 0
—T1 | 2943083 1 0 74 |36690681| O 0
—T72 | 2943085 1 0 75 136690682 O 0
—73 | 2943108 1 0 76 |36690683( 0 0

77 |36690704| ° 0 0
78 [36690705| O 0
. Table III
IM(x)) <i()x ift<x<10®

t Al t At)
10 0.2307693 11821 0.0029771
14 0.1578948 24522 0.0022820
21 0.1290323 32018 0.0020484
34 0.0697675 42982 0.0019822
46 0.0638298 48517 0.0018968
74 0.0526316 60982 0.0013748
118 0.0402011 97077 0.0011042
203 0.0279721 120865 0.0009446
298 0.0203161 142278 0.0007986
445 0.0180452 300914 0.0007253
689 0.0135257 359891 0.0005269
1137 0.0097740 464551 0.0004610
1641 0.0089191 604362 0.0004324
2867 0.0069803 618062 0.0004050
3422 0.0048793 1079317 0.0003066
4262 0.0043607 1802578 0.0002459
9959 0.0035675 2159549 0.0002367

(m
[2]
(3]
[4]

(5]
(6]

n

(8]
]
[10]
(11
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