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1. Let K be an algebraic number field on finite degree n>2 and
absolute value of discriminant d. Denote by f a given nonzero integral ideal
of the ring of algebraic integers Rg of K. Let x(C) be a Dirichlet character of
the abelian group H*(f) of ideal classes C(mod f) in the “narrow” sense. For
an integral ideal a of Ry let x(a) be the usual extension of x(C) (see [8], Def.
LVI) and z* the primitive character mod f,- induced by x(mod ), fyelf. Let

n—1
A= \/E (25(:33 ‘:)) n® <d denote the constant appearing in Siegel's
theorem on the fundamental system of units (see [10]).

Denote by (x(s, x, ), s =a+it, the Hecke-Landau zeta-function de-

fined for ¢ > 1 by the series

Lk(s, x, D =2 x(@Na™%

where a runs through integral ideals of K. Let N(x, T, x) denote the number
of zeros of {x(s, ¥, ), s = g +it, in the rectangle « < ¢ < 1,0 <t < T. Basing
on some effective estimates of the order of Hecke-Landau zeta-functions near
the line o = 1 (see [1], Th. 1) and using Haldsz-Turdn ideas (see [4] and [5])
we shall prove the following theorem:

Tueorem. There exist absolute positive constants co > 1 and ¢, <1 such
that for all o and T with

(1.1) 1—min(c;, e 2%“* M) <a<1, T>co
the following inequality holds:

1
(1.2) Y Y*N@ Ty <exp[250M1(f, T)(1 -—a)3leog3l—;],

a yimod al
Na<Ni

where
(1.3) M, (f, T) = max(log*?(Nf), A**log T).
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The star in the inner sum indicates that y runs through primitive characters
moda only.

For the Riemann zeta-function, the estimate of the form (1.1)«1.3) is due
to G. Haldsz and P. Turdn (see [4]) and for the Dirichlet L-functions to the
second of the present authors (see [2]). Our estimate can be compared with
the following result of W. Stas [11] for the Dedekind zeta-functions  (s):

For all a with
(1.4) 1—(3nexp(—10%) ' <a<1
and T > e the following inequality holds:

1

(1.5)  N(a, T, K) < expexp(cn36°0 4169) 70-1n2(n(1-2)3/2 logz_,[_l__]‘
niL—a

where ¢ is a positive absolute constant.

Putting j= R in (1.2) we obtain an estimate for N(a, T, K) which is
better than (1.5) in respect of the dependence on the parameters of the field
K, but our rectangle (1.1) is narrower than that in Sta$’s theorem. And vice
versa, since [] (x(s, x*) ={u(s), ny=nk*(), d.=d"" [] Nj,., where

(mod f) mod
L is the class-xﬁe]d of the group H*(f), we can obtain an e;{tim;te similar to

(1.2) from (1.5), but the dependence on the parameters will be much worse.

2. The proof of (1.1)«1.3) will rest on the following lemmas:
Lemma 1 (see [7] and [4], p. 130). Let G(z) be regular for |z| <R,

G(0)# 0 and |%’:§_ U. Then if 0 <r <R and the zeros of G(z) in the
disc |z| <r are zy, z,, ... then for all non-negative integers u we have

2.1

1| j{,u+l)]0gU( 1 1[G, ™
1 24
|Zj;‘$-l'z"+l|{ s +Iog(R/r} +#! c¥ =0

To obtain a lower bound we will use Turdn's theorem.

Lemma 2 (Turdn’s second main theorem, see [13], p. 52). For any m > 0,
positive integer n< N* and complex numbers w,,w,, ..., w,, there is an
integer vo with m < vy < m+ N* such that

i v N* v v
2.2 il 2 e
(2.2) IE: w;| (Be(m = N,)) Wy
where w, stands for any of the wjs.

Lemma 3 (see [12], Lemma 6). Denoting by N(T, x) the number of roots
of the Hecke—Landau zeta-function {x (s, x, f) in the region [t| < T, —1 <o <1,
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we have the estimate
(2.3) N(T+1, ))=N(T, y) <c,log(dNf(ITI+3)),
where ¢, denotes an absolute constant.
We will also use the following estimate due to Landau (see [9]):
24 HE =|Y 1]<n™"d*D(logd)?x' ~2"* V4 ¢} x(logd)"™",
No<x

and for x # Xo,
(25} H(x, x] - | Z x(a)l < n‘-‘s" (dan;'{n+ 1) (log (de))"x’ =2/(n+ ll’

Na€x
where ¢,, ¢, and cs are absolute constants. An effective version of (24) and
(2.5) can be found in [1] (Lemma 8).

Lemma 4. For 1—-1/(n+1)<o<1,t 211,

. ' - n->(n -a)32
26  Itx(@+it, 7, Pl < & (Nf)r 0124000022+ 201 =012 (169 1)213

+n7" /d(logd*"(N})* ~“ log (NT),

and for ¢ 21, t 2 1.1 we have
27 Ik (s, x, DI < € (log ) + 1" (log d)*" log (N'),

where c¢ and c, are absolute constants.

Proof Theorem 1 in [1] yields (2.6), (2.7) can be proved similarly:
For 0 > 1=1/(n+1),t > 1 we have (see (4.2) in [1])

[Cx (s, 2, DI < l Z

1Sm<Y yexplniog2/3n)

+| z

Y 1c:p(ulogzﬂﬂ <m<yyntl

= |S|+1S,1 + b7 (logd)" ™",

F(m, yym™|

F(m, y)ym~*|+bj (logd)"™"

where
Y, = 27 m DM (ND), Y, = n?" d? (log d)** P (log (1+ NP * P (NY)
and b, and b, are absolute constants. _ .
For ¢ > 1, t = 1.1, we estimate |S,| trivially by partial summation using
(2.5):
Sl Y F(mm™* <n""(logd)*((log ) +log(NY))
m<Y yexplnlog?/3n)

since Y; > d. The second sum |S,| is estimated in the same way as |S,| in [1]
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(see (4.6)) and we obtain for e > 1, t = 1.1
|S2| < exp(bs A)(Nf)' ~* (logt)*>.
Finally, we get (2.7). The constants b; and b, are absolute.

LEmMmA 5 (see [1], Th. 2). There exists a positive constant cg > 1,
independent of K and y, such that in the region

(28) o> 1—(cy max (log (N7), A(log (lt]+3))*> (log log (If| +3))3)) ",
— 7 <! < xX

the function (y(c+it, x) has no zeros except for the hypothetical real simple
zero of (k(s, x1), x1 real.

3. Proof of the theorem. Let € be such that
(3.1 (0.07cg M(f, T))~' < 1—6 < min(c,, exp(—20(4+1))),

where ¢, is a sufficiently small absolute constant, cg is taken from Lemma 5
and :

M (f, T) = max (log (N1), A (log(|T|+3))*? (log log (| T| + 3))'/3).
Further, set
1 3
(32) 2=(1-8p2 (log 1—;-9) .

It is easy to notice that

. A 1 ylog M, (f, T)

(33) — (107" log?—— > ,
g =0 o8 15> 0,5,

1-0

where M, (f, T) is given by (1.3) and y is an arbitrarily large absolute
constant, provided T> c¢,. Let I denote the segment

I:6=0,=2-0, T/R2<t<T

LemMmA 6. For a suitable set H* <1 of measure

(3.4) |H*| < n®"d*"* D (log d)*" (M, (f, T))'**exp(2AM, (f, T))
the inequality

Mexp(=AM, (f, T))

(3-3) (1-6)

%(s' x* " a){v}

holds for all sel\H* whenever T> c,, (with a sufficiently large absolute
constant c,o) for all {x(s, x*, a) with characters y*(moda), where Na < Nf,
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and for all v with

M, (f, n( )
gz \ Tiog(i/1-0)) " S

(3.6)

AM, (7, T)(l+ 24 )
log3 log(l/(l—B)) :

Proof. For a fixed natural v, consider the set H = H(v, ) of those sel
for which

Z 1
'Ei(s. % n)"" > —exp(—iM, (f, T))
K

(go—1)"

for {x (s, x*, o) attached to some primitive character ¥*(moda), Na < Nf (not
necessarily the same for all s in H). ; ]
Let 7, be the smallest t-value in H and 74, ..., Ty bcfng dehne:-d, let 744

be the smallest t-value in H satisfying 7,,, =1,+6 (if there is any). If
P

Ty, ..., Tp are all these points then H = {J [z, .+ 6] and hence |H| < 6P.
=1

Analogously to [4], pp. 347-348, we get

P2v2 _amyam
(60 i l)lv

3.7

1 10g2‘+4N0 E * —itj 2).
E: E: E i x¥(a) Na
s R NalogzNa)(, (No)**°™! I;:;rth @ |

where | =1 and T/2 > |tr;—1j| > 6. The first factor on the right-hand side
is estimated using Abel's formula and inequality (2.4):

dx
log x / x*(log x)?

1
ﬂéx Na(log Na)?

oW

2
< n‘3" 43+ “(log d)ln_
Hence we get

vVI2P? oMy
“ _O]Zv

(38)

N3y i, X3 (@) x5, (@)

P
Z ity

Iong-l- 4 Na

& ”fs"dznn 1) log.".u dz

- (Na)290~! jida=1  (Na) STy
r (log Na)™** 1;,1,(0)
= n3"q¥n+ Vog2nd z Mjy ’szg(Na)zqo-lﬁ(:h—rjz)’

J1d2=1
where if o, is the modulus of };, a; is the modulus of xf,, then x;,;, 1s a
character modulo a; a,. Next, separating the terms on the right of (3.8) with
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J1 =J, and those with j, # j,, we obtain

a9 D -mmen

g < nc.il! d3tn+ 1) log Zud(lcx (20, — 1)(2,.4.4,|

+ P max ICI((zGO— 1 +it: Xs a}[2v+4ll)_

Na< Ni2
6<I1<T/2
X#X0

To estimate the derivatives of Dedekind zeta functions we apply Cau-
chy’s coefficient estimation, first to the disc |s—(20,—1)| < (l - l)(200—2).
v

This circle is situated on the right of the line ¢ = 1, thus Abel's formula and
(24) give for ¢ > 1

{x(s) =s [ H(x)x"*dx < n™"d%"* D (log d)z"lLll,
1 g—
and Cauchy’s estimation yields

(2v+5)!
(2(1 _9))2v+5‘

Applying the same reasoning to the disc [s=(20,—1+i
: —1+it)) <20,—1-6
= 3(1—0), but using (2.6) and (2.7) we get ° ’

(3.11) Nmaxz [k (200 —1+it, y, a)2v+4)
6-!;:2”?[{2
X#xo
< (2v+4)
Waxp(cﬁ A) (NP 1= M (f, T) T14000n2-5(n+ 2)(1 - 9)3/2

(3 10)' |‘:K (200 — l)‘z"'*‘ll < n‘33d2!in+ l}ﬂog d)Zn

Applying (3.10) and (3.11) in (3.9) we get

(3.12)  pe  PAMIOD o 2e3m jain+ 1) o B
<n d (log d) 22v+5v!2(1_9)3
W44,
Wawu%gjﬁe“‘(NDZ*““ My (f, TyTIoo0ctAdne Bo-g3l2,

. 1
Since =0 < M, (f, T) and, by the Stirling formula,

2v+4)! as

v+5)!

22v+ 5 v!2
and v < M, (f, T), we obtain
(3.13)  pe” HMIED ¢ 3" gatnt 1 1g gyt M, (f, T)S

and

+ Pecc.d (NDZII _s](Ml (f! T))s,s T14°°°"='5‘”+ 2)(1-93/2 (2/3)2'.
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Now, we have

A'Ml (fs T} ( )
v = 1+ b
log(3/2) \  log(1/1-0))
and since 1—0 is bounded by an absolute constant, for T > ¢, the estimate

(3.3) allows us to reduce any numerical factor of the second expression on
the right of (3.13). Hence the measure of the set H is estimated as follows:

(3.14) H| < n®3" 4%+ (log ) M, (f, T)° S e 17,

Let us denote by H* the set of s €l for which the assumptions of the lemma
hold. Its complement H* in I is certainly covered by the union of the above
H = H(v, ) sets. Hence owing to (3.6) and (3.14) the lemma is proved.

4. Let us consider the horizontal strips ; defined by
j /i j+1 . T
J J=0! 19"'9 [EM?(T| T)]-

T
41) <+ t<=+—3-——=i
. 2T MG D

REVH
1 L)

We call a strip /; “good” if its intersection with I contains at least one point
of the set H, otherwise we call it “bad”. By (3.14) the number of “bad” strips

is

[42) < n"9“ d‘u"(lﬂ* 1) (log d}atn Ml (f; T')IS.S eliMlli.T)'

In every “bad” strip /; let us fix a point zj = go+it". _
Lemma 7. For all {x(s, x, @ functions, Na< Nf, except at most

4.3) © o pS12n gelnt ”(log d)4n M, (, T)Q.S euMl”-n,

the inequality (3.5) holds at z; for all v satisfying (3.6), provided Tis sufficiently
large.

Proof. Let
x*(moda), Neo;<Nf, i=1,...,N,

be all primitive characters for which

Ej(z}', L*, Q¥ vexp(—aM: (1, T)
K

=
(1-0y

for a fixed v from (3.6). Analogously to (3.9) we get

Nv'ze_ 2AM (1T
(44) - 5 1.‘< n¢3nd2,rtn+ ”(logd)z"(max ic(zao_l’ Xo» a,uv+4}i
(l _8) ) Nao< Nf
+N max_[{(200—1, x, 92"*¥).
Na< Nj2
X#X0

Now, the first expression on the right of (4.3) is estimated using (3.10), and the
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second using Cauchy’s inequality for the circle |s—(20,—1)| < 20,—1—0
=3(1—0). In this circle, if y # yo and Na< Nf> we have

117 22/(n+1)

— =g (ogd*"(Nf(log Njy=* /%) =",

To prove this we take ¢ > 1 and use Abel's formula. We obtain

(4'5) |‘:K (S, Xs ﬂ)l “‘{h

Ix(s, 2, ) =s[HE )& *dE+s [H(E, 0& 4 dE.
1 X

By (24), for 6 >0 > 1—1/(n+1) the first integral is estimated as follows:
xl-ﬂ

1-6

Similarly, (2.5) gives for the second integral (for ¢ =6 > 1—1/(n+1)) the
bound

|s [H(E, )& ~*dg| <|s|n"®"d*"* D (log d)*"
1

|s ?H(é, & T dE| < s|n" (ANt (Jlog (AN x! 0D,

Putting x = \/fﬂ(log Na)"* 172 where Na< N2, we get (4.5).
Hence, if x # 3o and Na< Nf?, Cauchy’s inequality yields by (4.5)

ICx (200—1, 2, >4

(2v+4)n 11"
= W

d?™*V(Nj(log Nnmznuz)l -0
and this shows that using (4.4) we get the inequality

~23My(1LT) " aiint . (2v+5)!
Ne™ MI0D ¢ 12" g4+ (log dy* (—v!,pmu_ms
(2v+4)!
32v+4“_9}5v!2

analogous to (3.12). Thus for sufficiently large T we have for N the same
estimate as before for P and the lemma is proved.

We call a zeta function “good” in a “bad” strip [; if it satisfies inequality
(3.5) at zj for all v from (3.6), and “bad” in the opposite case.

Owing to Lemma 2, from (4.2) and (4.3) the number of zeros of “bad” (-
functions in all “bad™ strips of the rectangle

+N (an-—ﬁ{log Nﬂn{n+l](l—m12)

1/0.07cg M(f, T) < 1—60 < min(cy, e 2%4*1)  T/2<t< T, T>cys

cannot exceed

(46) nﬂd'uds““'Hloga"dM%‘(f, T.)e4AMi[1.TI
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5. Let z* = g,+it* be a point of H* in any fixed “good” strip or the
point zj in any fixed “bad” strip. Hence for all v from the interval (3.6) we
have
=AM (i, T)

i

!
v!
L’—(;:‘“, o, ) < ——m—r—y

¢ (1-0y

where { is any {-function in the first case, and a “good” one in the second
case. We shall apply Lemma 1 with r=e(l1—6), R=¢e*(1-0), G(2)
= {(z4+2z*, x*, 0. We have

1__6 v+l
=y
lz*-olSe(1—6) ¥ —@

<

(5.1)

(5.2)

4(v+1)logU (1-06)*!
v+1 + 1
e Wi

%(Z., x*, u){")\’

where ¢ runs through the zeros of { in the disc |z*—¢| < e(1—6) and

{(z+z* x*, 0
U= max —*—*;—
ki<e2a-o) $E5 59

Owing to (24) we get

- (-22)

a
R <{x(0o) < n3"d¥* Viogird —2—
(z*, ¥*, a
< n¥" @t Vog2"dM,,

0'0—1

and using Lemma 4,
_p3/2
K(z+2*% 1*, 0 <™’ Njte?-na-0 1410325+ 2002 - 1320 -0%2 M, (f, T).
Hence
R 103n2.5
(53) U 49‘15" M%(f, T)(Nf}" 1)(1-6) 14-103n2:3(n+2)(

and logU < M, (§, 7). _ o

So the first expression on the right of (5.2) is arbitrarily small and the
second can be estimated using (5.1). Therefore for T >c,¢ and for all v
permitted by (3.6) we have

e2-1)312(1-93/2

(54 1-0 )\'H‘ {%e_;_ulu.n'

!lz°-ol€e[l ) (Z' -

In order to estimate the sum in (5.4) from below we sl::all apply Turan’s
theorem (Lemma 2). To estimate the number of terms in (5.4) we apply
Jensen’s inequality, which gives for the number of zeros of the regular
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function f(s) in the disc|s—so| < 9R (0 < 9 < 1) the bound

ax log -f-(s—}
10g (1/9) s-sol <r (So)

This means that the sum (5.4) has at most log U terms. Owing to (5.3),

gl AM, cys Alog3 i 2log M,

1 1 1
“log—— \(1—0)*?10g? —— —0)32og?
Iog2 ogl_8 (1-0)"*log I—SM‘ (1—-0)"*log I—UMI

(e*—1)log Nf . 14-10° n**(n+2)(e*— 1)*2 log Tlog 3

1 1
“_G)MIOgZI_—_BMI M, log? —

1-0

It is easy to notice that the first three terms on the right-hand side are,
owing to (3.3), arbitrarily small, provided T is sufficiently large. Similarly, the
last term can be made arbitrarily small for sufficiently large T, provided 1—6
is sufficiently small. Hence we can choose in Lemma 2

M, 4
- log 3 log (1/(1—0))

*

and according to (3.6)

_AM, () A
"= log3 ( ¥ ‘08(1/(1~9)))'

Moreover, in any strip /; we have, owing to (3.6),
v+ 1 1

1-0+1-g0,
z*—p 2’
provided T is sufficiently large. Hence by Lemma 2 there exists a v, in the
interval (3.6) such that

1_9 v0+1
5 (_)
|z*-elSe(1—-0) \Z" —0

1_ "
> jexp (—N* log (Se (l+ Rm;))—(voJrI)log (I - ] _c;‘; )

where ¢* = g,.+it,. denotes the zero with the greatest real part in the
strip [;.

(5.5
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Let

§= log (1/(1-9))

B

Comparing (5.4) with (5.5) we get
AM, AM, ( l) ( I-—o’,u)
- - 1 — 1+~ Jlog{1+—
M, > ﬂlog%log(iie( +B) e 3 —

and finally

i log3—log(8e(l+
log(1+ 11_65 )>ﬁ og} ;Jf_(ﬁe( ﬁ)).

Putting f > 20 we get

1-0,

0.0945.
log(l+ =0 )>

This proves that all zeros of our zeta-functions in “good” strips and also of
“good” functions in “bad’ strips satisfy the inequality

0, <1-009(1-6).
Putting

x=1-009(1-0)
and using (4.6) we have for T > ¢, the estimate
66 Y ¥ (N@ T,0-N T/2, 1)

Na < Nj x(moda)

< n14"@® D jogPrd Mt exp (4AM,).
Replacing in (5.6) T by
T22...2 T/ 2 ¢ 2 T/ZH
we get after summation and application of (5.6)
67 Y Y (N@ TO-N@ e, )
Na< Ni gimoda)
< n 14" @¥ 0t D ogB" dM?° exp (4A M)
3121y 009
<exp|150M,(f, T)(1—a) log—l—_—a

in the rectangle (1.1).
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6. Now, as in the proof of (4.6) we shall show that in the rectangle
1—min(c;, exp(—20(A+ 1) <a<1l, 0<t<cy,

the inequality
©n) ¥ ¥ Necay

Na<Ni x(moda)
< n18" g+ D Jog4n 4 log!4 (dNT) exp (24 log® (dN')
< exp((2+8) Alog*? (dNT)

< exp (70(1 — )32 ]og? 10—1 log*/? (de))
—o

holds for an arbitrarily small &.
Since there exists a numerical constant ¢,;s > 0 such that in the region

(62) o?l—;ﬁ%ﬁm,]ﬂ$q7
the function @(s, ) = [] [l ¢xk(s, x, o has at most one zero (see [3]), let
0 be such that

10¢,9

—1 <1-0<mi -20(4+1)
nlog (@NT) 0 < min(c,, e )

We obtain for the same A as before
A(log (dNT))*?
log (1/(1—9))
where y is a sufficiently large constant, provided either n, d, or Nf is
sufficiently large.
We divide the segment 0o =2—0, 0 <t < ¢y, using the points
jeis 10°
(nlog (dNf))?

= ynd'* log (nlog (dN¥))

S;=0o+it;=2—-0+i
where j=0, 1, ..., (c;o 10nlog(dNf))*/cy.
Similarly to Lemma 7, we obtain

Lemma 8. For all {x(s, x, a functions, Na< Nf, except at most
(6.3) n 12" g4+ D (log d)*" (log AN7)'* exp (24 (log dN7)*?)
the inequality

vlexp(—A(logdNi)*?)
(1-6)°

<

C |
‘i(sj’ X ﬂ}ll '

Zeros of Hecke-Landau zeta-functions 351

holds for all v with

log 3 ( +log(1/(l—9}))“vh log3 log(1/(1—-8))

provided either n, d or Nf is sufficiently large.

i(log (dN7)*? - 4 (log (dN7))*? (l M 2 ),

Using Landau’s and Turdn’s theorems (Lemmas 1 and 2), we find that in
the strip

lt—1,| < 500¢3q(nlog(dNi))~?
zeros o* = a,.+it,. of such zeta functions satisfy
1 -0, 2 0.1(1-0).

Putting « = 1—0.1(1—6) we see that if 1 —0 < ¢;, and one of the parameters
n, d or Nj is sufficiently large, all zeros of @ (s, i) for ¢ > a are zeros of “bad”
Lk (s, x*, o)-functions, which we estimate using (6.3) and Lemma 3 and finally
get (6.1).

If n, d and Nj are all bounded we take 1—a <c¢,, where ¢;; is a
sufficiently small absolute constant such that the rectangle 0<1-«
< €5y, 1 < €y is narrower than the rectangle (6.2). This means that there is
it most one zero there.
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ACTA ARITHMETICA
LII (1989)

On representation of r-th powers by subset sums
by
E. Lipkin* (Tel-Aviv)

Let A be a set of x natural numbers
(1 A={ay,...,a}, 1<€a;<a;<...<a,<l, |A=x.

Let .# be a given set of integers. Denote by f(l, .#) the maximum
cardinality of a set A which contains no subset B < 4 such that ) a,€.#.

a;eB

Recently Erdos and Freud, and N. Alon proposed the foilowmg four
similar problems:
1. Let a, < 3(x—1). Does there exist a subset B < A such that ), g is

a;eB
a power of two? ([Er])

2. Let a, < 4(x—1). Does there exist a subset B = 4 such that z a; is
ajeB
a square-free number? ([Er].)
3. What is a maximal cardinality of set A which contains no subset

B = A such that Z a; is a square? In other words what is (I, #) if H

= M, is the set of a]l squares? ([Er].)
4. Let f(l, m) denote for m=>1 the maximum cardinality of a set

A cl,..., I} which contains no subset B <A such that ) a =m.
a;eB
Conjecture of N. Alon is that if I'* < m< ' then

f,m= (1+o(l])— as | —»o0;

m denotes the smallest integer that does not divide m. ([Al])
G. Freiman stated a natural generalization of problem 3 of P. Erdds:
3. What is f(I, .#) in the case when # = M, is the set of all rth
powers?
Problems 1 and 2 are considered in [Al] and [EF]. In [Al] it is shown

* Research supported in part by the Fund for Basic Research administered by the Israel
Academy of Sciences.
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