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On representation of r-th powers by subset sums
by
E. Lipkin* (Tel-Aviv)

Let A be a set of x natural numbers
(1 A={ay,...,a}, 1<€a;<a;<...<a,<l, |A=x.

Let .# be a given set of integers. Denote by f(l, .#) the maximum
cardinality of a set A which contains no subset B < 4 such that ) a,€.#.

a;eB

Recently Erdos and Freud, and N. Alon proposed the foilowmg four
similar problems:
1. Let a, < 3(x—1). Does there exist a subset B < A such that ), g is

a;eB
a power of two? ([Er])

2. Let a, < 4(x—1). Does there exist a subset B = 4 such that z a; is
ajeB
a square-free number? ([Er].)
3. What is a maximal cardinality of set A which contains no subset

B = A such that Z a; is a square? In other words what is (I, #) if H

= M, is the set of a]l squares? ([Er].)
4. Let f(l, m) denote for m=>1 the maximum cardinality of a set

A cl,..., I} which contains no subset B <A such that ) a =m.
a;eB
Conjecture of N. Alon is that if I'* < m< ' then

f,m= (1+o(l])— as | —»o0;

m denotes the smallest integer that does not divide m. ([Al])
G. Freiman stated a natural generalization of problem 3 of P. Erdds:
3. What is f(I, .#) in the case when # = M, is the set of all rth
powers?
Problems 1 and 2 are considered in [Al] and [EF]. In [Al] it is shown
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354 E. Lipkin

that f(I, .#)=(+o(1))l if .# is the set of all powers of two and
fU, .#)=(E+o0()!if .# is the set of all square-free numbers. [EF] gives a
positive answer for both questions 1 and 2 by analytical method.

In this paper we use the methods of [EF] to study problems 3, 3’ and 4.

Concerning these problems the following is known:

P. Erd6s ([Er]) found a lower bound for f(l, M,),

fU My) = (1+0(1))-213-1'3;
N. Alon ([Al]) proved that

S, M3) = 0(lflog ).
G. Freiman conjectured a general asymptotic formula
f”‘ Mr’ - 21f(r+ 1) Jr= 1)ftr+ 1](1 +0(”)

for r > 2 and suggested that it can be derived by methods of [EF]. The
lower bound f (I, M,) = 21/ [r= DI+ (] 4 9(1)) follows using arguments

from [Er]. For large r, A is more dense, hence it is simpler to use analytical
method.

N. Alon in [Al] proved that for every fixed ¢ > 0, there exists a constant
c=c(e)>1 such that for every />0 and every m, which satisfies
1'*= < m < I*/logl, the inequality

‘-Ll-éf(a".m}cci
m m

holds.

In our paper we prove the following three theorems concerning pro-
blems 3, 3’ and 4.

THeoreM 1. Let & be an arbitrarily small positive number. Then
(2) fU, My) = 0(1*5%9).

THEOREM 2. For r 2 10

. a0y = 2w 1o (1)

e

where g is an arbitrary positive number less than 1/(6(r+1)).
Tueorem 3. If

(4) Cl(log )® <m < PP?/(log])?
then
(5) S, m)=l/m+h,

I logm

where hy =c—

—>-, C and c are some constants.
mlog*|
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In order to prove Theorems 1, 2 and 3 we first will establish several
results about additive properties of set A (Theorems 4, 5, 6) using analytical
method of [EF]; see also [F1], [F2], [FIM].

We use the following notation.

For each set AcN and s,qeN, g=>2 let A(s,q) = \a| a€ 4,
a =s(modg)}.

Let [a] denote the smallest integer > a.

C,, C,, ... denote positive constants.

I =I(N) denotes the number of solutions of the equation

(6) Xy + X+ ... %, = N,

where x,€A4. Q = Q(N) denotes the number of solutions of equation (6),
such that all x; are different, ie. x; # x; for i # j. Denote

a;+...+a,

M =
1 : 2 2

®) D=—Y a-M

TueoreM 4. Let A = {1, 2, ..., I} be a set (1), |A| = x. Suppose x > I/***,
where ¢ is an arbitrarily small positive number and | > ly(€), and suppose that

©) |A(s, @)l <x—h

for all s,q€N, q =2, where

(10) : h = x/log? 1.
Let n and N in (6) satisfy

AT
(11) Ci (;) (log)* <n < Cape =

(it is possible because of the assumption x > I*°*%) and
(12) Mn—Cy./nD <N < Mn+Cy/nD
where C,, C,, Cs, C, are any fixed numbers. Then

x e—(Mu—M1!2w+o( x" )
2rnD JnD)

Proof. It is known that the number of solutions of equation (6)
X1+ ...+ x, =N, x;€d is

1
I = I(N] = xnI‘pu(a)e—ZuicNda
]

I=

4 — Acta Arithmetica LI1, z. 4
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where

_l 2niaa
o) =_2 e

aed
Define the number
(13) L=Csl
where Cs is sufficiently large. Since the subintegral function has period 1,
1-1L )
I(N)=x" [ ‘pu(a)e—hmﬂdal
-1/L

Divide the interval [—1/L, 1—-1/L] into two parts [—1/L, 1/L] and [1/L,
1—1/L]. Correspondingly, I(N) equals the sum of the two integrals I, and
I,. To prove the assertion of Theorem 4 it is sufficient to prove that

1/L
(14) L= | @"@)e 2Ndy = ——— ¢~ Mn=M%2mD (] 1 (1))
-1/L \/2nnD
and that
1-1/L _ _
(15) I,= | o¢"(@@e *"da=o0(l/,'nD)

1/L

for all N, n which satisfy (11) and (12).

We first show (15). Let us estimate ¢(«) for a€[1/L, 1—1/L]. Each
number « €[0, 1] has a representation « = p/g+z, (p,q) =1, I'<g<L, |2l
< 1/(gL); for e €[1/L, 1—1/L] we have g > 2. Then we can represent ¢ (a) in
the form

1 . q-1 )
(16) o) =— Z e2ritpalgtza) l Z Z p2ritk/g +za)
X aea Xk=0 aeA
pa =k (mod g)
where
1 1
17 <—:l<—.
w lea qL 4q

Denote by m, the number of solutions of a congruence pa; = k(mod g)
for 0< k <q and 1 <j < x. Consider three different cases according to the
value of g, for a sufficiently large I. We will use the inequality

L Low?
i ) 2
(18) A b O, g AL
y sinu y u—u/6 4 6

which holds for 0 < yu < n/2 with y = 2.
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1. Case g = [. In this case m, < 1. Then we estimate

1S ingag _ 1 sin(mx/2q) 1 (ﬂx)2
= P O S i P (R i
19 le@l<TlZ = w6\
and by (19), using ¢ <L and 1/g > 1/(Csl), we have
. i 1 n?1 (f ?
(19" lp@)] <1-= a2 6aci\)

2.Casel <g <8£. By (9) m, < x—h holds for every k, therefore in the
X

sum (16) we can replace (x—h) terms by 1, h terms by e*™/2¢ and estimate
using (17) and (10)

1 .
(200 @l <—Ix= h+ he?129|

h
< b — |1+ €2"/29|
X X

i
= 1—2E + i(l+|e“‘*’3")
X X

h ., o T l()—cz
=1—4;Sln E_—l_logzlsm 4q<l 1082“34 I
B ] >_‘H(iz
by sinu > —u and sin E>4qz 4-64\1 )"

3. Case 8l < g <. In this case m, <[ /g1 < 2l/q for all k. Define m
X 4
=T2l/g 7 and r = x/(4l/g) 1 =xq/(4)]. Then m > 2l/q, r > xq/(4]) and mr
> x/2. Denote t = x—mr, then t < x/2. Replace in the sum (16) 1 terms by
1, m terms by ¢*"*2¢ for each k =0, 1, ..., r—1 and estimate using (17), and
(18) since r =2

t l r=1 ”
(21) lo@] < —+~|m ¥ e
X X k=0

1 sin(mr/2
, mr Lsin(ur/29)

t msin(nr/2q)
x r sin(n/2q)

t
=<t xsnm2g x

mr w* (r\? n? (x *
DSR4 7l L% P TR ..
x 4-6-4(q 34644 \1

in view of mr/x > 1/2 and r/q = x/4l.
From these three cases we conclude by (19'), (20), (21) that for all «, 1/L
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<a<l1-1/L

1 [x\?
lo()] < 1—00@?(7)

holds_ with an appropriate constant ¢, for a sufficiently large . Then by the
left side of (11) the estimation

1  \2\" I 25 C 10 2(log H*
(22) o))" < (1— g —-(~ o b W | !
“iogZi\1) | <\ iogzi i <p

follows. By (7) and (8) we observe that D < c/> where ¢ is some constant, so
by (11), nD <cl?> /I. Thus, (22) implies in (15) that

1-1/L _
[ (pn(a)e—l’niw\fda - 0(1/;2) s O(lf\an)

1L

and (15) follows.
1/L

Next we estimate integral I, = [ ¢"(x)e”2"*Nda to prove (14). By (7),
(8) D > Cx?* with some constant C a_nl;lLby (11) nD > CI*(log l)*, hence for b
= Jlogl)/nD, b < 1/L holds. Divide the interval [—1/L, 1/L] into three
parts [—1/L, —b], [—b, b], [b, 1/L]. Correspondingly I, = lffL equals the
sum of the three integrals. For all « €[ —1/L, 1/L], o

1 1
g < — ] = —
] Gl &

holds in view of (13). By the Taylor expansion formula e2%® = |+ 2nmixa
—2n*a?a*+o(x*a?), then we have

1 _
(23) 9@ =% e = 1+2niaM~2n?a? (D+ M?)+0(2* (D+ M)

acA

s eZm'RM -2n222p+ o(az.D]

Because of (23) for 1/L > |a| = b = /(log l)/nD and for sufficiently large [

(24) frp”(a)e‘z""“ﬁl < e—xzale < e—nzlugl — quz) < l/f‘
-b 1/L
holds and we conclude that | + [ =o(1/\/nD). For the principal part of

. . -1/L b
I, one can obtain the estimation (14) in the usual way.

This completes the proof of Theorem 4. W
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THEOREM 5. Let us assume that all the conditions of Theorem 4 are
satisfied. Then each number N €N in interval (12) can be represented as a
subset sum of A, N =Y a; where B < A.

a;eB

Proof. Recall that Q = Q(N) denotes the number of solutions of equa-

tion (6) such that all x; are different, i.e. x; # x; for i # j. Let us show that

(25) Q= I+o(x“/\/"r5).

If at least two unknowns in the solution of equation (6) are equal to a;,
denote the number of such solutions by Q;. There are n(n—1)/2 ways to
choose a pair of unknowns.

The number of solutions of the equation y, + ... +y,-, = N—2a; where

n—2
Y €A, is O(x"'z/\,-@) according to Theorem 4. Thus Q; =O(m2 j/_)
n

Notice that N —2a; belongs to the interval (12) if we take the number Cj

to be sufficiently large. By (11), ¥ Q; = O(x"/((log x)* \/nD)) which produces
i=1
(25). This implies the assertion of the theorem. M
The set A in (1) does not necessarily satisfy condition (9). Let us show

that for a large subset B of A the condition of type (9) holds.

LEmMA. Let A be the set (1), x > I* for some o >0 and | be sufficiently
large; h = x/log?l. Then there exists B = A such that

(i) 1B| > 4] —(log, (I/x)+ 1) h,

(i) B is contained in an arithmetic progression, i.e. for some § and g €N,
b; =5(mod g) holds for each b;€B,

(iii) |B(s, g)| <|B|—h for all s and q > G, qlq.

Proof. If condition (iii) for B= A and g =1 holds the proof is over.
Otherwise there exist some g, =2 and some integer s, such that for A4,
= A(so, qo) We have |4, > A—h. If condition (iii) for 4, and g = g, holds,
we put B = 4,, and if not, we can find g, > 29, and s, such that for A4,
= A, (sy, q,), it is |A,| = |44|—h = |A|—2h. Suppose that we arrived at A4,
= Ay 1 (Sk=1, ge—1) Where

(26) k =llog,(I/x)+171.

Let us show that for 4, condition (iii) holds. Suppose that on the contrary,
we can find 5, and g =>2q-, = 2" such that [Ayy,|=[Ak(sk gl

!
> |A,|—h. By (26) we have 2* > 2; hence

(27) |Agssl > Al = (k+ 1) b > x/2 > 12,
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Qn the other hand, A,,, = A, (5, gi) is contained in an arithmetic progres-
sion, so we have |A4,,,| < l/g. < l/2**! which contradicts (27).

To complete the proof of the Lemma, we put B= A, and §=s5,_;, 4
=qx-,- 0

As a corollary of Theorem 5 and the Lemma we obtain our central
auxiliary result.

THEOREM 6. Assume that set A in (1) satisfies the condition x > I***¢ with
arbitrary small positive . Let B = A (S, q) be the set which we find applying the
Lemma. Denote by M', D' corresponding values (7) and (8) for set B. Denote d
= (8, g). Then for | > l,(¢) each natural number N, N = 0(modd) satisfying

l 2
(28) Ce M’ (—) (logh* <N <C, M' —\/;
X log x
with some constants Cg, C, can be represented as a subset sum of B,
N =Y a; where G <B.
a;eG
Proof‘. We will prove the assertion of the theorem for all N satisfying
(28) belor{gmg to some class m(mod g), d|m. Since m is arbitrary, this does
not restrict generality. Let n, be a solution of the congruence nys
= m(mod g).
We have B={b;, b;=5+1;q),j=1,...,y. Define T=l1,,..., 1,

wuy Bl
where {; = (h;—5)/q. The numbers 1; satisfy the inequality r; <h;/g <l/q ar:d

445 +Ey
y> P S (:?) where 0 <&, <¢. From (iii) which is valid for B

= A(5, @) it follows that condition (9) is valid for T. Therefore we can apply
Theorem 5 to the set T: denote by M”, D” the corresponding values (7) and
(8) for T let n satisfy the conditions n = nyg(modg) and

’ 1 \2 1\¢ :.;,
(11) C,|— (Iog: <n<Cyt=—;
qy q log y
then each natural N in the interval
(12) M"n—C;/nD" < N < M"n+C,./nD"

can be represented as a subset sum of T, ie. N= Gyt e+, L,eT
Let us come back to B. From (bj, —5)/q+ ... +(b; —5)/q = N follows

b, + ... +b; =GN +ns.

We deduce by using (12/) that each element N of the form N = gN +n5 and
from the interval

(29) M"gn—Cyq/nD" +5n <N < M"gn+C4q/nD" +3n
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where n = no(modg), n belonging to (11), can be represented as a subset
sum of B.

Now we will show that sequence of intervals (29) covers interval (28)
when n runs over interval (11) and n =n,(modg). First we take two
consecutive n from interval (11): n and n+g. Interval (29) for n+g looks like

29) M"Gn+q—C33/(n+gD"+5(n+g <N
<M"G(n+—CaG/In+3D"+5(n+7).

Let us show that two neighboring intervals (29) and (29') intersect. It is
sufficient to check that

M"G(n+3) —C3G/(n+@ D" +5(n+3) < M"qn+Cyaq/nD" +5n
or
(30) M"2§? < CyonD"

for every positive constant Co. Since M"2g* < 2, D">x* and n
> (I/x)*log*l, (30) is satisfied. Secondly we observe that the union of
intervals (29) covers interval (28) when n runs over (11), provided constant
C, is sufficiently large relative to Cg, and C5 is sufficiently small relative to
C,. Also we use that gM" <M’ < C,; gM" where C,, is a constant. We
showed that all N from the interval (28), satisfying the condition N
= ny5(mod g), can be represented as subset sums of A. This completes the
proof. W

Now we can prove the main Theorems 1, 2, 3.

Tueorem 1. Let A be a set (1), |A| = x, satisfying x > I*/°** where ¢ is an
arbitrarily small positive number. Then for 1 > o (), there exists a square equal
to a subset sum of A. In other words f(l, M) = O(I*°*%).

Proof. By Theorem 6, all numbers N in interval (28) and of the form N
—t-d.teN are subset sums of A. Consider t =s-d, seN. Then

31 1CM'(I 2(lo D <s<C, M Vx|
= = s e,
1) a2 ° X B 77 logx d?

The left end of this interval is greater than 1, since d < g < I/x. The ratio of
the upper bound to the lower bound in (31)

/x 12 C
N i 4 5¢/2
€ log x /C6 (x) (log )" > log x(logf}‘f

is greater than two for a sufficiently large /. The segment [s, 2s] contains a
square, as does the interval (31). Multiplying it by d* we obtain a square
contained in (28), represented by a subset sum of A. W
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THEOREM 2. Let M, be the set of all r-th powers. For r = 10 and p being
an arbitrary positive number less than 1/6(r+1) we have the following asymp-
totic formula:

A3) f{, M,) =24eHD r=ble+ (1 4 0 (1/8)).

Proof. The lower bound is given for r = 2 by Erdos ([Er]). In the same
way for r = 2 we construct the 4 whose subset sum is never an rth power.
Let p be the least prime greater than

(32) a=2"MWr+th p2/r+1) 4 1

Since for any two consecutive primes p, and p,,, there is p,,, —p, < p? for
any 0 > 11/20 ([HI]) then

(33) p< 2~ Hr+ 1) 2ir+ 1) Cis 2= 6/tr+1) [26/(r+ 1)

Let A={a;=p-i| 1 <i<I/p}. We have ) aisp%GJrl):f(Hp}_ Let

ajed 2,0
{1+ p)
2p

us show that p" > ,or 2p*t > I(I+p).

Indeed,
207 > 2a" > 2(a— 1) 4 2(r+ 1) (@a— 1)
2 P42(r+ )27 D et 5 24 p

by (32) and (33) for I sufficiently large. All subset sums of our A4 are divisible
by p and none by p", hence subset sum of this 4 is never an rth power. In

, l
this example |4| = [;:l hence we conclude that

l
f“' M") 2 2— 1fir+1) l2f{r+ 1) 4 Cl 4 2—Bﬂr+ 1) Ilﬂﬂr+ 1)

> 21;{r+ 1) Ii'(r-*]),f[r+l) (] + 0 (l))
e

The upper bound in the asymptotic formula (3) we obtain as a consequence’

of Theorem 6. To prove f(l, M,) <2+ D r=Dir+1) 4 jr=Dir+ D=2 we sup-
pose on the contrary that A is an arbitrary set (1) with cardinality |A|
=2V = Dirt 1) = DAt D-e We will show that some subset sum of A
is the rth power of an integer. Take y = [§[*~ /"1 ~¢] elements of A,
denote this subset by A,; |4,] = y. Because of r > 10 and 0 < < 1/6(r+1),
we have

r—1 4

r+l 275
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Hence we can apply Theorem 6. We obtain that A, contains a subset A,(s, g)
defined by the Lemma; denote d, = (s, g): M, is an average of elements of
A,: then every natural N, N = 0(modd,), satisfying

f 2
(28) ¢, M,,(;) (loglh* <N <C, M ]‘ /y

is a subset sum of 4,(5, g). Denote by 4 a set of such integers N, denote by
L, and R, the left and right bounds of 4. We can calculate using (28’) that

(34 Ro/Ly > 2

for sufficiently large I. Consider 2 cases.

Case 1. All elements of A\ A4, are divisible by d, except at most d—1.
Delete from A\ A, the elements not divisible by d,, denote by A’ the set of
remaining elements. Clearly

{35] |A'| > 2l,|flr+ i)ilr—llf{r+ll+%!l[r— ir+1)—p

Construct the set G = {4, A+ay, ..., 4+a,+ ... +a,,}, where a; runs
over A'. G is an arithmetic progression with the difference d,, all elements of
G are divisible by d, and they are subset sums of A. Denote the left and right
bounds of G by L; and Ry, then Ly = Ly, Ry > Ry. We will show that d; €G
or (mdy) €G with some integer m > 1:

First, we check that dj < R;,.

14°]

Z a; /do Z J' } lA|2 > d 9= tr— 1lﬂr+ll{21r fir+1)
ﬂ

holds in view of (35). On the other hand, since all elements of A" are divisible
by do and a; < I, we have dy|A'| < I. Hence dy < If|A’| <27V DRICTD in
view of (35) and hence df <dy 2"~ W+ 2= Dr+ 1) Therefore d < Rj.

Secondly, if df > L; then d €G and we have the rth power represented by a
subset sum of A. If dj < L; then we take the smallest integer m (m > 1) such
that m"dj, > Ly, so that (m—1)"dy < L,. We use two inequalities:

m Ry
<2 (f 1) and
=1y (for m > 1) n L,
which holds by (34) since L, = L, and R; > R,. It follows that

mdy < 2(m—1)dy <2 Ly <R,.

We obtained that m"dy < R; and consequently m"dj €G.

> 2

Case 2. In A\ A, there are at least dj elements not divisible by dy. Then
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we proceed to the second step of the process by constructing two progres-
Sic?glf'n;d‘ ‘and G,. To const_ruct A, we choose d,—1 elements a\', a'?, ...,
a with the same remainder 6 modulo d, among dj elements of 4\ A4,
not divisible by d,. Denote d, = (dy, 8). Consider the set {4, A+a'", ...,
A+a+ ...+ d "1 All elements of this set are divisible by d, and they
are subset sums of A; the elements between L,+Id, and R, form an
arithmetic progression with difference d,. Denote this progression by 4,. Its

bounds L, = Ly+1Id, and R, = R, satisfy the condition
(34) R,/L, >27
because of (28’) and (34). Now we again consider 2 cases.

Case 1. All elements of set S=(A\A,,}\:a‘l”,...,a[f"_“} except at

most d?—1 are divisible by d,. Then we construct, using 4,, an arithmetic
progression G, like G before and show that G, contains an rth power.

Case 2. In S there are at least di elements not divisible by d,. Then we
proceed to the next step. The process will stop after log, ! steps at most. W

THeorem 3. If
4) Ci3l(log)® <m < P'*/(logl)?

then
S, m)=lm+h,
where

_ | logm
Y T ilog?

(36)

[
Proof. The lower bound [ﬁ:’ < f(l, m) was obtained by N. Alon ([Al]).

The upper bound is again a corollary of Theorem 6. Let m be an integer
from interval (4). To prove that f (I, m) <I/m+h, we suppose that A is an
arbitrary set (1) with cardinality

(37 |A]=x=[é+hl]
m

and will show that m has a representation as a subset sum of 4. By (37) we
have x > I/m and in view of m <logl

(38) Ilog | < x.

From (38) we observe that x > I*/**¢, thus we can apply Theorem 6 to A:
(a) If A satisfies condition (9) then all N in the interval
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Jx

1 2
(28") Ce M (;) (logl)* <N < C, Mo

(where M is the arithmetic mean of the elements of A) are subset sums of A.
Using x € M <1 and (38) we observe that interval (4) is contained in (28"),
so each m from interval (4) is a subset sum of A.

(b) If set 4 does not satisfy condition (9), then by Theorem 6 there exists
a subset B < A, B= A(5, q) such that each N, N =0(modd) lying in the
interval (28”) is a subset sum of B. Here d = (5, ), M is the arithmetic mean
of the elements of B. By Lemma |B| > x—h(log,(x/a)+1) holds where h
= x/(log, [)?, so using (37) and (36) we estimate

l !/m'+h1( | l
s —1=L o — +ch,.
,,—,"‘h’ 1 (o, )2 logzx +1 >n_1+c 1

On the other hand |B| < I/§ and we conclude from Il/m < B < I/g that m > g.
Therefore g is a divisor of m as well as d, i.e. m = 0(modd), hence m is a
subset sum of B 4. W

[B] >
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