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Introduction. Let K be an algebraic number field (thus a finite extension
of the rational field Q), and let | be some conductor in K, containing as
factors all the real infinite places of K (each to the first power). We write |
= [’ oo, where ', the “finite part” of f, can be regarded as an (integral) ideal
in O, the ring of integers of K. We shall be concerned with various
properties of the ray-class group (mod*f) of K, which we denote by A (K, §),
or just by A when there is no danger of confusion. It is well known ([3], p.
112) that A is a finite abelian group. As is usual in group theory, when
X, Ye2* (the power set of A), we define the product XY -to be
ixy; xeX, yeY), with the convention that X0 = QX = Q (the empty set)
for all X €24, It is clear that X < Y implies XZ < YZ for all X, Y, Z €24,
and it is trivial to verify that multiplication and inclusion induce on 24 the
structure of a partially ordered finite commutative monoid, with identity
element 1:= {1,!, where 1, is the identity of 4, i.e. the principal ray-class
(mod*f).

Now let 1 < neZ (the ordinary integers). We define the range R(n) of n
via
(0.1) R(n):= {[a]; Na=n},

where a runs over all (integral) ideals of Oy (written a < D) sa..sfying a+{'
= Ok, while Na is the absolute norm of a (thus # D/a) and [a] is the ray-
class of a (mod*{). Thus R(n) €24, and R(n) = O if and only if there is no a
< Dy prime to | with norm n. Our first aim in this paper is to give a
detailed analysis of the variation of R(n) with n. We shall carry this out
largely within the framework of the classical global theory of classfields,
making extensive use of Dirichlet series and the Chebotarev density theorem.
Eventually we shall derive as corollaries new, purely algebraic results, some
of which can be translated easily into corresponding statements in the
cohomological/idéle-theoretic version of classfield theory, while others seem
more natural in the traditional setting.
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In [5], [6] we considered the special case ' = Dy, so that 4 = A(K, §)
reduces to the (narrow) ideal class group of K. For various special fields K
we showed in [5] that there is a sort of “equidistribution” theorem for norms
of ideals in given narrow classes, and also deduced that, in such cases,
“almost all” norms have a maximal range (see Section 2 for definitions). We
shall improve considerably on the results of [5], [6], eliminating the need for
any special hypotheses about K and {. Instead we shall introduce new kinds
of Dirichlet series, whose singularity structure and meromorphic continua-
tions will be derived from the Chebotarev density theorem, together with
standard results on tensor products of induced representations of finite
groups. By applying the Mellin transformation and Perron’s summation
formula we are then able to obtain rather precise asymptotic expansions
describing the distribution of those n with prescribed values of R(n). In
particular we shall obtain an equidistribution theorem, together with a proof
that “almost all” norms have a maximal range, valid for arbitrary K and f.
Since the precise results can only be made intelligible after some preliminary
background material and definitions, we postpone the exact formulations of
our main theorems until Section 3.

An unexpected bonus coming out of our analysis is the opportunity to
generalise the notion of central classfield, originally due (independently) to A.
Scholz [9] and A. Fr&hlich [1], [2], and defined only when K/Q is Galois.
We show in Section 9 how to frame a suitable definition of central classfield
(mod*f) of K for arbitrary K and f.

The exposition of this paper is organised as follows. In Section 1 we study
the structure of 24, and deduce the existence of d-maximal ranges; these are
shown to be single cosets of certain subgroups of 4. In Section 2 we consider
“Frobenian. properties” of ranges (and various associated numerical func-
tions), and indicate how some preliminary, qualitative results on the distribu-
tion of R(n) can be derived directly by means of the author’s “method of
Frobenian functions™ [7], [8], developed some time after the publication of
[5], [6]- Unfortunately these preliminary results only yield the existence of
asymptotic expansions of a particular type, with little or no information
about certain critical exponents and coefficients, and are insufficient even for
a proof of our equidistribution theorem. To obtain the required extra
information we must introduce more sophisticated methods, whose develop-
ment and exploitation take up the major part of this paper. It is here that
the systematic use of nonabelian representation theory shows to decisive
advantage, compared with our earlier methods.

In Section 3 we formulate the precise statements of our main theorems,
while in Section 4 we prove some (mostly elementary) lemmas on characters
which will be used repeatedly in the remainder of the paper. Sections 5-8 are
devoted to the proofs of our main results, Theorems I-IV. In Section 9 we
formulate our generalised definition of central classfield and show that it
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includes the classical concept as a special case, while Section 10 consists of a
survey of related literature, together with a discussion of prospects for further
applications of our methods.

1. Maximal ranges. We recall the definition of R (n) given in (0.1). From
the uniqueness of factorisation of ideals and (total) multiplicativity of absolu-
te norms it is a trivial exercise to prove that

(1.1) R(mn) 2 R(m)R(n),

with equality if (m, n) = 1. Despite its simplicity (1.1) turns.out to be
fundamental in all that follows.

1A. Now let 1 < deZ be fixed: we denote by N, the set n; 1 < neZ,
(n,d)=1|. We shall consider the ranges R(n) for neN,. The set .#,:
= {R(n); neN,) is finite (since A is), and non-trivial, since 1N, and R(1)
= {1,!. Thus .#, possesses maximal elements with respect to inclusion in 24,
which we call d-maximal ranges. (Ultimately it will be shown that these d-
maximal ranges do not really depend on d at all, but this is a highly non-
trivial fact which cannot be proved until Section 7.) It is clear that every
member of .#, is contained in at least one d-maximal range. In fact we shall
see shortly that every (O #) X €.#, has a unique “d-maximal cover”, which
can be explicitly calculated.

First we note that 1:= {1,) = R(1)€.#,, so that certainly there must
exist d-maximal ranges which contain 1. Let M; (i = 1, 2) be two such, M;
=R(m;) (m;eNy. Then R(m;m,)e#;, while R(m;m,) = R(m;)R(m,;)
=M; M, 2M;uUM,, since 1,eM; " M,. Since the M; are d-maximal we
deduce that R(m, -m;) = M; M, = M, = M,. Hence there is precisely one d-
maximal range containing 1; we denote it by H,. The above argument also
shows that @ # H, =(H,)?, and, since A is finite, we see that H, is a
subgroup of A.

Now let N = R(n) be any d-maximal range, and let H = H; = R(h),
with n, heN;. Then hneN; and R(hn)e.#;, while R(hn) = R(h)R(n)
= HN 2 N, since 1 < H. Since N is d-maximal we deduce that HN = N,
and this implies that N is a union of cosets of H = H;. From the relation
HN = N in 2* we see that N*H = N* for all s > 1. Now we can choose s
such that 1,eN*® (for example, s = #A would do). For such s we have
nwheN,;, R(nhye#; and R(n*h) 2 R(n)R(h) 2 N°H =2 H. Since H is d-
maximal we have N°H = H = N*. Let x, yeN. Then x* and x*"'yeN*=H,
so that xH = yH. But we showed above that N is a union. of cosets of H, so
we must have N = xH = yH, a single coset of H = H,.

Now let R(t)e#,, xeR(1), teN,, and let R(t) = N, with N d-maximal.
Then xeN and so N = xH = R(t) H. This shows that R(t) H, is the unique
d-maximal cover of R(t) (provided that the latter is non-empty). We recall
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([373, p. 112) that every ray-class (mod* f) contains integral ideals prime to any
preassigned ideal. Hence every a €A belongs to some R (t) with t e N, so that

R(t)H; = aH,. It follows that the d-maximal ranges are precisely the cosets
of H; in A.

1B. We now seek characterisations of H, as a subroup of A. First, if
heN,, R(h) = H,, then, given neH,, we can find integral a, b prime to {
such that Na= Nb=h and [a] =#, [b] = 1,. (Here ['] denotes ray-class
(mod*f).) Then [ab™ '] =5, while N(ab™*) =1 and ab™' is prime both to |
and to d. Hence H, < HY, the subgroup of A consisting of those [c], where ¢
is a fractional ideal prime to df' and of norm 1. Conversely, if ¢ is any such
fractional ideal, and [¢] = #, we can write ¢=ab~' with a, b < O, a+df
=b+df' = Oy and Na= Nb=neN,. Then [a],[b]eR(n) S R(n)H,;, a
single coset of H,, and thus [¢] = [ab™']€H,. This implies that H} < H,,
and, in view of the previous inclusion, we deduce that H, = Hf.

An alternative characterisation of H, is now easily obtained; for Hy is
(trivially) identical with the set of ray-classes (mod*{) which contain frac-
tional ideals ¢, prime to df, such that Nc= Ny, o(x) for some o = [ (mod*{)
in K*. (The latter means that « is totally positive, and expressible as f/y,
where f and y are both in Oy and congruent to I(mod f).)

We now consider the effect of changing d. Clearly, if 1 < ¢ = 0(modd),
then N, €N, and #, < #,. Hence, for some neN,, we have R(n) = H,21,,
and so the d-maximal cover of R(n) is H,, ie. H, is a subgroup of H,. We

shall see in Section 2 that there is a subgroup H of 4 with H= (| H,,
o d=1
which plays an important role in the sequel. H in fact coincides with H,,

although this fact lies rather deep, and cannot be proved until Section 7.

1C. To prepare the way for Theorem IV we introduce further subgroups
of H,, as follows. Let p > 2 be prime, and let R(p) # @. Then, choosing any
xeR(p), we have R(p) = xB, where 1,€B =B, ,. In 24 we have an increas-
ing chain O #B =<B?><B*c... Since 2" is finite there exists an ng
= ny(x, p) =1 such that W:=B" = B*" — W2, In particular W = W, is
a subgroup of 4. It is trivial to check that this subgroup is independent of
the choice of xeR(p), and coincides with <tu~':t, ueR(p)), which we
denote by W,. It follows that R(p)" is a single coset of W,, for all large n. If
R(p) = O it is convenient to define W, = {1,}. In [5], [6] we proved that
H = H, = (W,: p ¥d). for any choice of d > 1, in the special cases where |
= O, and K/Q is either Galois or “generic cubic” (i.e. K = Q(6), where 0 is
cubic over Q and the minimal polynomial for 6 over Q is irreducible, with
Galois group S;). We shall prove later that

(1.2) H,=H=H,= (W,; p td),

for arbitrary K, f and d. This is a rather curious result, which cannot easily
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be translated into the modern language of cohomology and idéles; it appears
to be connected with some kind of “nonabelian cohomology” of idéle-class
groups, lying outside the scope of standard theories.

2. Frobenian properties of ranges.

2A. Corresponding to any pair K, f in Section 0, there exists, by global
classfield theory ([3], p. 179) a unique finite abelian extension R/K, of
conductor f, equipped with a canonical isomorphism Ga_l R/IK—-A=A(K,Y)

(the Artin map), induced by sending the Artin symbol (B-{’ﬁ) to the ray-class
[p] of p(mod*f), for all prime p <Ok not dividing . To study the
distribution of ranges in greater depth than in Section 1 it is necessary to
introduce the Galois hull F/Q of R/Q; thus F/Q is finite Galois, and minimal
with respect to the inclusion F 2 R. We first show that, in a certain sense,
ranges of norms are determined by a knowledge of the Frobenius classes of
(rational) primes in Gal F/Q. Let p, g > 2 be primes in Z unramified in F/Q.
(This condition is equivalent to p, g ¥ N(i’ 0), where 0 is the different of

F,
K/Q). Then the Frobenius classes (ﬂ—) and (—{12) are well-defined

p
conjugacy classes in G = Gal F/Q. Assume now that they are equal. By an
argument spelled out in detail in [6], the prime ideal factorisations g
=p,...p, and ¢Og = q, ... q, have the following close degree of similarity.
First g = h. Secondly the labelling of the p; and q; can be arranged in such a
way that [p;] = [q;] and p; and q; have the same residual degree (relative to
K/Q), for 1 <i <g. For such p, q it follows that R(p") = R(g") for all n > 0.
Together with (1.1) this is enough to prove that the map n—R(n) is
Frobenian multiplicative: N; —24, provided that d is divisible by all primes
ramified in F/Q ([7], [8)). (Incidentally, the definition of N, allows us always
to assume that d is squarefree, although this is of no real advantage.)

Now let e(K, f) be the product of all p ramified in F/Q. We shall
assume until further notice that d = 0(mod e (K, ). To exploit the Frobenian
multiplicative property of n+— R(n) we introduce some numerical functions
associated with R(n). Let A = Hom (A4, C*) be the character (or dual) group
of A. If neN,, x€A and ye€A, we define

2.1) r(n)= # la<aO; a+f = O, Na=n},
(22 r(e, n) = # la <Oy, a+§ = O, [a] =a, Na=n]
and
(2.3) Spm= Y x.

at{=Og

Na=n
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It is clear that r(n) and S(yx, n) are multiplicative, while the orthogonali-
ty relations for characters yield

(24) rla, n)=(#A)7" Y 1@S(, n).

xed

F F
From the above discussion of R(n) we see that (/—Q) = (%Q) implies
p
r(p") =r(g", r(, p") =r(x, q") and S(x, p") = S(x, q") for all n >0, all x€4
and all yeA. Moreover the groups W, and W, (defined in §1C) coincide,
while #; = A,k for all d =0(mode(K, f)), and so H, = H in §1B. The
proof that H = H, cannot be given at this stage.

2B. The analysis in [7] and [8] yields the following asymptotic expan-
sion. Let (O #) Le2?, and let d = 0(mod e(K, ). Then, as x — 2, we have

(25) #\neNgn<x,R(n=L)

~x ¥ Pya(loglogx)(log )™ { 3" ¢(d, j, L, m)(logx) ™™}

jedy, m=0
+ 04, (xexp(— C*(K, 1) \/log x)).

Here J, is a finite index set, P;,(T)eC[T] and the g; are complex
numbers whose real parts do not exceed &, the Dirichlet density of the set of
primes p in Z for which R(p) # @ (¢ only depends on K, not on | or d),
while C*(K, ) > 0. The dependence of all quantities occurring in (2.5) on the
various parameters is made explicit by the notation.

The general nature of the discussion in [7] and [8] makes it difficult to
determine the precise values of the various exponents, degrees and coefli-
cients in (2.5), and we shall have to introduce some alternative methods
which at least determine the net dominant term in (2.5) with sufficient
precision. We shall eventually show that the net dominant term in (2.5) has
the form b(d, L)x(logx)""' with b(d, L) >0, precisely when L is a d-
maximal range, and that (2.5) is definitely of smaller order of magnitude
otherwise. (Essentially this is one of the main assertions of Theorem II—see
§3.) Whereas (2.5) is vague for particular L, it is possible to derive directly
from [7], [8] and [10] a more informative result about the sum of
#ineNjs;n<x,R(n=L! over al L#@, that is, about
#ineNgjin<x,R(n#®). Writing (n)=1 or 0, according as or not
neN, and R(n) # @, we find that é is Frobenian multiplicative: N; — |0, |
(multiplication). A simple inspection of the appropriate generating functions
in [8], relevant to &, yields

(26) #{neNin<x,R(n#0) ~x(logx)*"! {bso+ mgs bym(log x)™ ™},
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with b;o > 0. If the various Dirichlet series in [8] are adjusted by allowing
prime factors of e(K, i) to enter, it is easily seen that an analogue of (2.6) is
still valid without the restriction d = 0(mod e(K, i)). We shall make frequent
use of (2.6) later.

2C. We conclude Section 2 with a simple device from classical analysis
which saves much tedious complication in deriving asymptotic expansions.
Suppose that f: N, = C is bounded, and that we have an asymptotic
expansion of the type

X
(2.7) Y f(n) log— ~ (25 (x —>)
l1=nsx
where (2.5)' denotes an expansion of the same general type as (2.5). Then a
simple Tauberian argument [10] based on summation-by-parts, yields

(2.8) Y f(m~ 25",
l=nsx

where (2.5)" is again of the same type as (2.5), and has the same net
dominant term as (2.5). Conversely, an “Abelian” argument (again based on
summation-by-parts) leads easily from (2.8) to (2.7).

The relevance of this discussion is that, if f(n) is, for example, the
characteristic function of some suitable subset of N,, it is often possible to
derive (2.7) by a straightforward application of the Mellin transformation and

- Perron’s summation formula to the Dirichlet series ) f(n)n~* (and its

nz1
meromorphic continuation, if it has one), whereas (2.8) cannot be obtained in

this way. In such cases the equivalence of (2.7) and (2.8) is important in

deriving the asymptotics of Z f(n). We shall use this process several
1sn<x
times, referring to it simply as “weight-stripping”.

3. Formulation of the main theorems. Having now given all the relevant
background material and definitions we are in a position to state our main
theorems. They will, in part, consist of assertions that various sets have
assymptotically equal cardinalities. We define

Wy(x, ) = (neNyi;n< x, R(n) =aH,!, Uip(x,a)= # %(x,a):
(3.1) #f (x,a)=neNszin< x,aeR(n)!,. U (x,a0)= # U] (x, ®):
Ui " (x, 0)=(neN; n< x, O # R(n) SaH,|,
Uf*(x,0) = # * (x, o).

Here d = 1 is arbitrary, €A is also arbitrary and x is large positive. It is
clear from Section 1 that #,(x, o) < %] (x,a) = #;} *(x,a), so that
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Uy(x,0) S Uf (x,2) S UF ¥ (x, o) for all x,d, a. In view of (2.5) it is clear
that all three quantities U, UT, U™* have expansions of the type (2.5)",
obtained from (2.5) by elementary manipulations. The following results will
be proved.

THeorem 1. For any d 2 1, a,, o, €A, we have
Ut (x,ap)  Ug ¥ (x, 2))
(i.e. the ratio of these quantities tends to 1 as x — ).

TueoreM I1. For each 1 <d =0(mode(K, f)) we have H, = H and, for
all neA,

Uy(x, o) = U (x,2) = Ug ¥ (x, a).

Tueorem 11, H=H,=H, for all d > 1.
THeorem 1V. We have H, = (W,: p ¥d) for any d > 1.

Before outlining the proofs of these theorems we first derive an inter-
esting heuristic reinterpretation of Theorems I and II. Let a;, ..., % be any
transversal for the cosets of H in A, so that k= (A:H). Then
(meN,;;n<x, R(n) #@! is the disjoint union of the #F"(x,a), j
=1, ..., k. (Here we are assuming that d = 0(mode(K, j)).) By Theorem I
the latter sets have asymptotically equal cardinalities. Applying (2.6) we
deduce that U} * (x, @) has net dominant term (4: H) ™" by x(log x)°~ ! for all
x€A. By Theorem II this is also the net dominant term in the expansions for
U,(x, o) and U] (x, ). Moreover, if (O #) L is a non-maximal range in .4,,
then @ # L & aH, = aH, for some a €L, so that

(3.2) #'neNjin<x,R(n) =L} <US(x,0)=Uy(x, a).

Applying Theorems I and II again, we see that the right-hand side of (3.2) is
negligible in comparison with x(log x)?~! and hence so is the left-hand side.
We therefore have a simple, informal reinterpretation of Theorem II —
“almost all norms in N, have a d-maximal range”.

In Section 7 we shall remove the hypothesis that d = 0(mode(K, )); it
is not convenient to prove the stronger form directly, since it requires a
further idea of a quite different kind from those used in the proofs of
Theorems I and Il

Theorem I will be proved in Section 5; it is the least demanding of the
main theorems, and the proof does not require any very intricate arguments.
Theorems II-IV lie much deeper, and only emerge after a rather delicate
chain of arguments involving tensor products of induced representations of
Gal F/Q. Theorem II is proved in Section 6, Theorem III (and the stronger
form of Theorem II) in Section 7, and Theorem IV in Section 8. An
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interesting by-product of our proof of Theorem II is another characterisation
of H in terms of a certain induction process applied to characters of A,
described in precise terms in Section 6. This characterisation is important in
Section 7, and is also the basis of our general definition of central classfield
given in Section 9.

The proof of Theorem IV is rather curious, and is based on the
construction of an unusual kind of Dirichlet series.

Before we embark on the proofs of our main theorems we shall need
some (mostly) elementary results on group characters: we prove these in the
next section, to avoid complicated digressions in Sections 5-8.

4. Lemmas on group characters. Let 4 = A(K, ), R and F be as in
Sections 0-2. We identify A with GalR/K via the Artin map. Let G
= GalF/Q and I = Gal F/K. If y €A then y lifts to a (degree-one) character
%5 Of I'. Since I' is a subgroup of G we may therefore construct from y, an
induced character x¢ of G, of degree (G:I') = [K: Q]. The properties of these
xS are very important in the sequel. '

LEmMa 4.1. Let 2 < ' { F/Q

1. < peZ be prime, p Ye(K, ), and let y€A, ge(T )
Then x%(g) = Y. x(p), where the sum is taken over all p <1 O with p+i' = Ok
and Np = p.

This is a well-known result, and corresponds to part of the proof of the
induction formula for Artin L-functions ([4], pp. 233-239).

We recall that the inner product of two C-valued class functions 6, ¢ on
G is defined to be

®, 0Yc:=(#6)"' ¥ 0(d) 0(9).
geG
LemMA 42. Let T = {yeAd; S, 156 = (1§, 13>}, where 1€A is the
identity character. Then T is a subgroup of A.
Proof. We have zS(g)=(#I""'Y i«(xgx~') for all geG, yeA,

xel
where

. e if uel,
fa ) = {0 if not.

Then, since |7, (xgx )| = |1, (xgx~ ") = i, (xgx~?) for all ye4, g, xeG, we
have |5 (@) < [15(g)I* for all g €G, y €A, with equality for all g if and only
if f.(xgx™')=4(g)1,(xgx~"') for all xeG, where |A(g)] =1 for all geG.
Hence yeT if and only if 7, (xgx™') = A(g) i, (xgx~") for all x, g in G. In
particular the latter requires that y, (y) = A(y) for all yeT', and it is now clear
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that yeT if and only if

4.1) Yx(@) = 714 (xgx™") for all ge'nx™'I'x (x€G).

It is obvious that if x, Y €4 both satisfy (4.1) then so also do x and xy,
so that T is, indeed, a subgroup of A.
If B is a subgroup of A we define

(4.2a) B'=!y€A:x(p)=1,VBeB =!ycA:B ckery!,
while, if D is a subgroup of A, we write
(4.2b) D'=la€A;x(@)=1,VyeD! = Nkery.

xeD

Then, by “Pontryagin duality”, we have B'' =B, D** =D.
LEmMA 4.3. Let B be a subgroup of A, and let r(x, n) be as in (2.2). Then

(4.3) Y Y (r@B, m—r@ n)=2(4:B"" ¥ IS nl%

acA feB xﬁﬂJ'
with S(x, n) as in (2.3).
Proof. We start from (24). This gives

(4.4) r(@B, m—ri, n)=(#A)"" ¥ 1@xB)-1)S, n).

xed

The left-hand side of (4.4) is real. Taking |-|* in (4.4), we have
(r(@B, n)—r(a, n))?
= (#A2 LY @Y @EBA - )W B~ 1)S( ) S, n).

nped

Summing over all €A, and using orthogonality relations, we deduce that

Y (r@B, m—r@, n) =(#A)"" X ISG, nl*(2—x(B) -1 (B)).

ae A xed

Finally, summing over all feB, and noting that

A@—x(ﬁ]—f(ﬁ)) =0 or 2#B,
according as or not y is trivial on B, the lemma is proved.

The relevance of Lemma 4.3 will be seen in Section 6. We shall show
there that if B is the image under the Artin map of H of Section 2 then B is
precisely T of Lemma 4.2.

For the next two lemmas we denote by [a;, ..., a,] the (positive) highest
common factor of ay, ..., a,€Z (not all zero).

Lemma 44. Let k=1 and let f,,...,fis1€Z, with f;>0. Let
s oosfrwrl=d, fi=dfi (1 <i<k+1), and let e = [/, ..., £i]. Suppose that

by, ..., byeZ satisfy Y b.f; = e. Then the solutions neZ**' of Y n f;=0
i<k i<k+1
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are precisely the vectors of the type

n=y(=by fis1,---» —bifis1, )+n*
with yeZ and n* a solution with nf¥,, =0.

Proof. This result could be derived from the theory of elementary
divisors, but this is hardly necessary, in view of the following elementary
argument. Let n,,,€Z be fixed. In order that there should exist

Ny, ..., €Z such that Y f; =0, it is necessary and suflficient that n,.
isk+1 P

= 0(mode). Writing n, ., = ye (ye€Z), one solution is n = y(—by frs1s---»

—b, fis1, €), while the difference of two solutions n, n’ of Z nfi=0
isk+1

= Y nif with m, =n, = ye is a solution of the type n*. Conversely,
isk+1

to any solution n we may add any solution of the type n* without changing
the last coordinate of n.

LeEmMMA 4.5. Let G, I', T be as above, and let g €G be lixed. Suppose that
X is any subset of G. For each xe€X let f(x) be the smallest positive integer
such that (xgx~'Y®el. Then if n(x) (x€X) are integers such that
Y. n(x) f(x) =0, we have

xe X
[T 2 ((xgx™ Y @) =1 for all xeT.

xe X

Proof. The result is obvious if #X =0 or 1. We lirst give a proof for

the case #X =2, and then set up an induction which proves the lemma
when #X > 2. Suppose lirst that X = |x, y|, where x # y. If [f(x),f(»)]
=d and f(x)=df (x), £(y) = df (y), we have n(x) f(x)+n(y) f(y) =0 if and
only if n(x) =kf(y) and n(y) = —kf(x) for some keZ (a special case of
Lemma 4.4). Then 4:= (xgx™ ')V = (xgx~ YWD and p:=(ygy~!)~"oY®
= (ygy~ YO are two elements of I' which are G-conjugate. The proof
of Lemma 4.2 shows that y,(4)=yx.(n) for all yeT. and so
we have proved the lemma when #X = 2. Now let k > 2 and suppose the
lemma proved when #X < k. Let #X = k+1; we denote the elements of X
by x;, ..., X4+, the quantities f(x;) by f; and the n(x;) by n; (1 <i < k+1).

We assume that ) n, f;=0. If n,,, =0 the problem at hand reduces to
isk+1

that of the case of the set X\ |x,,,!, for which the lemma is already proved.
By Lemma 44 we need only prove the lemma when n is the special

vector (—b, T —b,‘j;ﬂ,e}. Let y; ={xlgx“)‘r‘EF. Then 754+,
= }f’lf“ RRCL }',( | iIs G-conjugate 1o ¥ f"”, so that
bp‘l

Y (Ve+ D) = e (i f*”) for all xeTand all 1 <i<k.

On multiplying these relations together for 1 <i < k, we obtain the lemma.
This rather curious result turns out to be lmpo‘rtanl in Sections 6-8.
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5. Proof of Theorem I. We recall the definition (3.1) of the set
¥ (x,a). Let d =1 and yeA. If y is trivial on H, (i.e. y € H}) then, for any
neNy, y takes the same value at all members of R(n) (if R(n) # @), in other
words we may write this value unambiguously as y(R(n) H,), since R(n) is
contained in a single coset of H,. For y e H; we write y(QH,) = 0. Then we
have
(5.1) (A:H) ' Y xleHy)x(R(nHy) =1 or 0,

xcHd'
according as or not R(n)H,; =aH,, for any choice of x€A.
We now consider

(5.2) Y*t =Yt (x, 0) = > log(x/n).

ne ) Fixa

Using (5.1), we have

(5.3) Y**" =(A:H)™ ' Y 7(@H) | Y x(R(n)H,)log(x/n)).
= e

We shall prove that the trivial character alone gives rise to the dominant
term in the asymptotic expansion of (5.3). We introduce the Dirichlet series

(5.4) Lals, 0= Y x(R(m)Hy)n>,

nelNy
which is clearly absolutely convergent for ¢ = Res > 1, where it is an
analytic function of s. When o >1, %,(s,y has an Euler product
[14,(s, x), where 4,(s, ) =1+ Y p~* x(R(p*) H,) for p prime. Hence, after

pid k=1
adjusting a finite number of Euler factors, we can write Z,(s, x)

= Y.(s, y) - #4(s, y), where e = e(K, f) of Section 2 and ./#,(s, x) is analytic
and uniformly bounded in any closed half-plane ¢ > d (6 > 0), while
(1, 1) # 0.

We proceed to obtain a continuation of ¥, (s, x) into a region extending
some way to the left of ¢ = 1, cut along the real axis leftwards from s = 1;
this will be achieved by using the Frobenian properties derived in Section 2.

F,
Let 4 be the set of all Frobenius classes (/TQ) (p unramified) for which

R(p) # @. If p has Frobenius class C we write p« C. Then, by Section 2, the
values of x(R(p*) Hy) (k > 0) are determined by the choice of C: for p«—C we
write

a(x. O = (R(pPYHy) (k= 1).
Clearly we have
(5.5) Lo(s, 00 =[] %6 6 O -#* (s, 1)

Ce'
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for ¢ > 1, where
(5.6) (s, 1, C) = [1 1+ Y p"™aly, O,
peC k>1

while .#*(s, y) involves only the pXe for which R(p) =@, and thus is
analytic, non-zero and uniformly bounded for o > 3/4 (say).
Now we also have

(5.7) Y*(s, x, C) = Y**(s, x, C) . /**(s, x, O),

where

(5.8) P** (s, x, O) = [] exp(a: (x, ) p™?)
p~C

for ¢ > 1, and ./**(s, y, C) is analytic, non-zero and uniformly bounded for
o = 3/4. Taking logarithms (principal branch) in (5.8), and summing over all
Ce%, we have

(5.9) Y log **(s, 1, O =Y ai(x, O 1 ) p™*)
Ce' Ce'ts peC

when ¢ > 1. We can now apply the Chebotarev density theorem ([8], [10])
to determine the singularity of (5.9) at s = 1, and to prove the existence of a
continuation some way to the left of s =1. We find that

C
(5.10) Z log ¥**(s, ¥, C) = { z ay (x, C)i-}log + P(s, x),
Ce't Ccet #G s—1
where P(s, ) is analytic in a region of the type
; k(F)
(5.11) s=a+it, 0= l_log(rz+20)'

where k(F) > 0, and satisfies |P(s, y)| = Of(log log(20+1t?)) there.

Now the quantities a, (x, C) are just the x(R(p) Hy) for p«C, and have
absolute value 1 when Ce%. It follows that

#C #C

(5.12) Rec%ﬂ: (%, C)R < C*‘(‘E =0,
(with & as in §2B), with equality if and only if a, (¢, C) = 1 for all Ce%. The
latter occurs if and only if y(R(p)H,)=1 for all pfe =e(K,f) with
R(p) # O@. Now the sum Y Np~! taken over all prime p < O¢ with [p]
= a, is divergent, for any choice of & €4, a classical result of E. Hecke ([3],
p- 182). Hence, for all x €4, we can find a prime p te(K, ) with a eR(p). It
follows that equality holds in (5.12) if and only if ¥ = 1-€A4.

It is now clear that the series .%,(s, 1) has a singularity of the type
(s—1)~“F(s, 1), where F(s, 1) is analytic near s = 1, with F(1, 1) > 0, while,
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if x#1, Z.(s, y) is of the form (s—1)""® F (s, ), with F(s, y) analytic near
s=1 and Reb(y) < é.
A simple application of Perron’s summation formula [10] gives

2+io0 .8

(5.13) Y x(R(n) H,)log(x/n) = 5 [ = s, p)ds.

"EqN,‘? LS P PE
The singularity structure and meromorphic continuation of (s, ) determi-
ned above, together with the growth estimate for P(s, y) given after (3.11),
enable us to move the contour of integration in (5.13) to the left (but
avoiding the cut along the real axis leftwards from s =1). Applying the
methods of [7], [8], [10] we obtain easily the estimate

(5.14) 2 x(R(n) Hy)log(x/n) = o(x(log x)"~ ")

ﬂE{Ng
for x # 1, while, when x = 1, we recover (2.6) in its equivalent weighted form
(2.7). In view of (5.14), (2.6) and (5.3) we thus see that

(5.15) Y*T 2 (A:H)™' ) log(x/n).
JI:—{Nd
RFHT:O

Stripping weights in (5.15), we find that
(5.16) Ui "(x,0) x(A:H) ' # In<x;neN;, R(n) # Q).

The right-hand side here is independent of the choice of a€A, and S0
Theorem I is proved.

6. Proof of Theorem II. We shall make full use here of the lemmas ©n
characters given in Section 4, taking the subgroup B of A in Lemma 4.3 to
.be T, with T as in Lemma 4.2. Thus B' = T, by duality. At this stage the
result T4 =B = H = H, (d =0(mod(e(K, f)) is not relevant, but will eme-
tge as a by-product of our analysis.

Let .#(d)= Ny {n; R(n) # ®}. We shall obtain the asymptotic for-
mula

(6.1) Y (log(x/m)r(n)~2V(n) x~ q(d) x(log x)" !

nsx

ne . #id)

later in this section. Here we assume d = 0(mod (e(K, f))), while ¢(d) > 0 and
@ < 0 (and is independent of d), while

(6.2) Ving=Y Y (r@B, n—r(x, n)?

aed feB

all other notation being the same as in Sections 0-4. The weights log(X/n)
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are effectively irrelevant here, since r(n)™? V (n) is bounded on ./#(d), so that
weight-stripping (§ 2C) is legitimate. Hence we can deduce from (6.1) and (2.6)
that

(6.3) Y r(n)2V(n) = 0,((log x)~2" # (. /(d) N1, x])),
nsx
ne fid)

where y > 0 depends only on K and {.

6A. Let us assume for the moment tha_t. (6.3) has already been proved,
and deduce Theorem II (and the result H=H, =B = T%) from it. Let

M(x,d) = M(d) N[, x], M(x,d) = # H#(x, d),
&(x,d)=ne.M(x,d); V(n) = (logx) " "r(n?} and E(x,d) = # &(x, d).
Then, by (6.3), we have
(64) E(x,d)(logx)™"< Y r(n) 2V(n)=0,(M(x, d)(logx)~?),

ne H(x.d)
so that E(x, d) = 0,(M(x, d)(log x)"7). Thus, as x —oc, only a negligible
fraction of ./#(x, d) is in ¢ (x, d), and “almost all” ne.#(x, d) satisfy V(n)
< (log x) ™ 'r(n)2.

We now choose ¢ > 0, subject only to the restriction that ¢-2 # A < 1.
Corresponding to ¢ we can find x,(¢) such that E(x, d) <&M (x, d) and
# ne.M(x,d);r(n) ?V(n) <e?! >(1—g) M(x, d) for all x > x,(¢). We then
take x > xq(¢), ne. #(x, d)\ £ (x, d), and assume that ne.#(x, d) is “typical”,
in that r(n)"2V(n) <e? Then r(n) >0, and so, for some %o €A, we have
r(%o, n) = max \r(x, n); x €A} = (#A4)"'r(n). Since V(n) <e*r(n)? we see
that |r(xf, n)—r(x, n)| <er(n) <e(#A)r(xy, N)for all xeA, feB = T*. But
2e(#A) <1 and r(ag, n) 2 1, so that r(x, 8, n) = 1 for all feB. This implies
that ag B = R(n), while R(n) <2, H,, so that B < H,.

6B. We now show, conversely, that H, < B or, equivalently, that T
= B* < H;. To do this we must show that y(a) = 1 for all fractional ideals a
prime to di’ and of norm 1, whenever y € T. Since the group " of such a is
the (internal) direct product of the subgroups L, (p prime), consisting of
fractional ideals of norm 1 composed only of prime ideals dividing p and not
di’, we need only show that y(L,) =1 for all p and all yeT. We have
assumed that d = 0(mod (e(K, 7)), so that the p with L, # |1! are unrami-

F
fied in F/Q. Let p be such a prime, and let ge(-—/-Q-). If p,, ..., p, are the
P

distinct prime ideal factors of p in Oy, with respective residual degrees
Siy o-os Jx (relative to K/Q), we can find x,, ..., x, €G = Gal F/Q such that f;
is the smallest positive integer such that (x;gx; 'Y eI’ = Gal F/K, and then
X)) = xe ((x; gx7 ‘)‘r‘} for 1 <i<k and every yeA. This is a consequence of
Sections 2 and 4, and the relations connecting Frobenius elements of primes

6 — Acta Arithmetica LI, z. 4
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in F relative to the Galois extensions F/Q and F/K. In order that

P ...p €L, it is necessary and sufficient that ) n; f; =0. But then, in

lsisk

view of Lemma 4.5, we have
1@ m = ] zalvigx ™) =1 for all zeT.
1=i=sk
We have thus proved that B = H,.

Having established that B = H, we can now see that the arguments of
§6A give more information than it would seem at first sight. Indeed, most of
. (x, d) is not in &(x, d), and, in fact, most n€./(x, d) have a coset of Hy
contained in R(n). Thus we see that “almost all ne./#(x, d) have a d-
maximal range”.

6C. Still assuming that (6.3) has been proved, we are now in a position
to deduce Theorem II from Theorem I. The latter shows that

Uf*(x,a) x(A:H) " M(x, d).
Let a,, ..., a, be a transversal for the cosets of H, in A. Then ./#(x, d) is the

disjoint union of the %, *(x, aj), 1 <j < k. But the arguments of §6A and

§6B show that Y U(x,a) = M(x,d), the #,(x,x;) being pairwise
1<)k
disjoint. Since U,(x, a) < Uy * (x, a;) for all j we deduce that

Usx,0) * Uf " (x,a) for all aeA.

Finally, as U(x,a) < U (x,0) <US*(x,a), all three quantities are
asymptotically equal, provided that d = 0(mode(K, f)).

6D. It now remains to prove (6.1). We shall in fact obtain a rather more
precise version. Let A(n) = 0 if r(n) = 0, A(n) = r(n)~* otherwise; then A(n) is
multiplicative, by Section 2. The left-hand side of (6.1) can be rewritten as
(65) Y (log(x/m)i(n)2(4:B)~" Y IS(x, n)l?

e xest
=2(A:B)"' Y Y (log(x/m)A(n)|S (x, m)I*,
xeB e d

by Lemma 4.3. It therefore suffices to obtain appropriate asymptotic expan-
sions for the various

(6.6) W,:= 3 (log(x/m)A(m)IS(x, n)l*.

et
We introduce the Dirichlet series
(6.7) F(r,s,d):= Y n~*A(n)|S(x n)>.

neNy
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This converges for ¢ > 1 to an analytic function of s, since
IS(x, n)) <r(n)=0(n) for any ¢ > 0.
Now 4(n) and [S(x, n)|* are both multiplicative, so that (6.7) can be written
as an LEuler product

(6.8) [T+ X p~*4(IS PN*)

pid k21

for 6 > 1. As in Section 5 we rearrange Euler factors and separate off the
primes with R(p) = @, and those dividing e but not d, obtaining

(6.9) F(x,s,d)=G(x,s,d) [] expip*A(pIS(x, p)I*|

pre
rp) =0

for ¢ > 1, where G(y, s, d) is analytic, non-zero and bounded for ¢ > 3/4,
while G(x, 1, d) # 0. Taking logarithms in (6.9) we find that

(6.10) log F(x, s, d—logG(z, s, d)= Y, p*A(pIS(x p)I
r[:i’:ﬂ
for ¢ > 1. Now for p Ye both A(p) and |S(x, p)|* are uniquely determined by

the Frobenius class of p in Gal F/Q, as was shown in Section 2. Applying
Chebotarev’s density theorem, we obtain

(6.11) logF(s, x,d)—logG(s, x, d)

#C 1
= AO)S(x, O)* ——=plog—— + P* (s,
L_% (OIS (x, O #G}ogs_l (s, 0
for ¢ > 1, with the same notation as in Section 5, where P*(s, x) is of the
same type as P(s, x) of (5.10), and has the same order of growth in (5.11).
Here A(C) is the common value of A(p) for all p—C, and S(x, C) = S(x, p)
for all p—C.

The quantity
(#G)™' Y 4(C) #C|S(x, O)

Ce¥
can be re-expressed as
(#G)™' Y 15(9) * x5 @)
qeG
(notation as in Section 4), where Z is taken over all geG with 1(g) # 0.

Since we have chosen B = T* and x¢B*, there is at least one g €G with
xS (9)1? < 1S (g)%, while [xS(g)I*> < 1$(g)? for every g eG. Consequently, for
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any y¢B?, we have
(6.12) o) :=(#G)""' Y A(O) #C|S(x, O)1* <0,

Ce%
with @ as in Sections 2-5. Proceeding as in [7], [8] and [10] we obtain for
W, the asymptotic expansion

(6.13) W, ~ C(x, d) x(log )™~ {1+ Y ¢;(x, d)(log x)™7},

izl
where C(x, d) > 0. Summing (6.13) over all y¢B*, and applying (6.5), we
obtain a sharper version of (6.1). We have thus proved H = H, = T* for
d =0(mod (e(K, 7)), and also Theorem II. We remark that the hypothesis
d = 0(mod (e(K, f))) has not been used in the proof of (6.13).

7. Proof of Theorem IIl. We shall now apply some standard global
classfield theory to show that H, always coincides with H,. First let d
= 0(mod (e(K, f))). Then we have already shown that H, = T* (notation as in
§6). Let C be the subfield of R fixed by B, the subgroup corresponding to T+
under the identification of A with Gal R/K via the Artin map. Then C/K is
finite abelian. We shall prove that H, = H; by examining the divisor class
group in K which has C as its classfield. For any modulus (conductor) m let
I" be the group of fractional ideals of K which are prime to the finite part of
ny and let Iy be the subgroup of I'" consisting of all principal (a) with «
= | (mod* m).

Consider now the group Q of all fractional ideals a in K for which the

C/K
Artin symbol ¢(a):= (/T is a well-defined element of Gal C/K. Certainly

R/K _ K
I' = Q since (/T) is defined for all ael' and (%) is then the image of
LL

) under the natural projection of Gal R/K onto Gal C/K. Moreover
a

: R/K ;
I, = ker ¢ since (/T)= 1 for all aell). The relation H; = T* = B can be

rephrased as ker ¢ NI = I n (I, ker N), where d = 0(mod(e(K, 7)), and N
is the absolute norm homomorphism I' — Q*. It follows that ker¢ nI4
= X nI4 where X = I' n(I}ker N), since I*  I'. Since ker ¢ nI' and X are
both between Ij and I, it follows by a standard argument ([3], p. 166-167)
that X = If(ker ¢ N 1) = I (I* n(Ijker N)) = ker ¢ nI'. Thus the fractional
ideals in X and in I ~ (I} ker N) occupy precisely the same set of ray-classes
(mod*f), and this proves that H, = H,. It also follows that H, o H, o H,,
=H =H, for any k> 1, ie. we have proved Theorem IIL

In view of Theorem III the notion of d-maximal range is now redun-
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dant, and can be replaced simply by that of a maximal range (meaning a 1-
maximal range). In order to remove the hypothesis d = 0(mod (e(K, j))) from
Theorem II it is only necessary to observe that (6.13) is valid for arbitrary d
> 1, as is Theorem I.

8. Proof of Theorem IV. We shall obtain this theorem as a corollary of a
formula somewhat analogous to (6.1), but with more restrictions on the n
involved in the summation. In the first place we restrict the summation to
squarefree members of . #(x, d). To describe the further restrictions we recall
the subgroups W, introduced in Section 1. We shall work once more under
the assumption that d = 0(mod(e(K, ))), since this hypothesis not only
strengthens the asserted result but makes it easier to prove. For primes p
unramilied in F/Q the values of R(p) and W, only depend (by Section 2) on

) F P )
the Frobenius class (£ ): if this class is C we can thus denote these values
p

by R(C) and W respectively. By Section 1, given C there is a unique
minimal v = v(C) > 0 such that W = R(C)", and then there is a unique
minimal k = k(C) > 0 such that R(C)"*™ =W, (m>0) if and only if 0 < m
= 0(mod k).

Now let wc(n):= # \p. p prime, p|n, p—C!, for each n > 1 and each
C e of Section 5, and let {(C) be any k(C)th root of 1. For any fixed vector
{ = {(C)|c.r We consider the quantity
Y 12 (n) 2(n) V (m)(log (x/m) [T £(0)°C" ™,

neNg Cet

nEx

(8.1) G(x, L d):=

where pu(n) is the standard M&bius function, and the other notation is as in
Section 6. We shall obtain the asymptotics of (8.1) by imitating, with
appropriate changes, the methods of Sections 5§ and 6. We have, to begin
with,

82 G(x, ¢ d
=2(A:H)™!

Y Y EmAm)IS (g, nl? (log(\/nj)” s.(CJmCm_NC}

.(‘“ Jll '\d

=24: D T (O™ X Gix, &4, 3),

Ce't Z‘H_

in view of Lemma 4.3., where

83) G Ldog:= Y Amud(m]S(z mf(log(x/m) [T ()",
Cet

ne \d
n€x
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8A. The function p?(n) A(n)[S(x, n)I* [] £(0)°™ is multiplicative (by §2),
Ce¥
with absolute value < 1. Hence we have an Euler product identity

84) Y np2(mAm)IS(x, nI? ] ¢

neNg Cet
=TI 1+p* 4@ IS pI? [T ()€™
pid Ce'

for ¢ > 1. Since we have assumed that d = 0(mod (e(K, f))), we can simplify
the right-hand side of (8.4) to

(8.5) [T [T H+42©OLO)ISx, pI*p~*).

Ce'. p=C
pid

Applying Chebotarev’s density theorem once more, we see that (8.5) has the
form

1 C
(8.6) A(s, 1, 2, exp (IOBS‘_—f'CZ SO OIS (x, C)P%)’

where A(s, |, x, ) behaves like exp P(s, x) (with P(s, ) as in (5.10)) in the
region (5.11). Since [{(C)| =1 we have

. , #C , #
8.7) Recat,(c)i{c) IS(x, Ol %G S C%HCJ IS(x, Ol %G
for all g €A, while equality holds in (8.7) if and only if {(C) = 1 for all Ce.
Since we only consider those x¢ H*, it follows by an argument similar to
that of §6C that G(x, {, d) = O,(x(logx)? ") for some & = &'({) <@ and
every choice of {. If we use this estimate and sum over all vectors { we
deduce that '

(88) G*(x,d):= 3 12 (n) A(n) V (n) log (x/n) = O,4(x(log x)" ),
weln) ‘;ia‘:‘ii‘a‘f,b KO
YCe¥€
where &' < @.

8B. Let us call n> 1 defective at C(€%) if we have wq(n) <v(C). Let

8(n) =1 if r(n) >0, 8(n) = 0 otherwise. Then, if Z’ denotes summation over
-
neN, defective at C, we have

(8.9) Yomn e =P*(Y p*) [ 1=-p™7"
[& peC r(:]f‘:eo

for ¢ > 1, where P**(T) is a polynomial with coefficients w}‘1ich are analytic
functions of s, uniformly bounded for ¢ > 3/4. It is simple to deduce from
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(8.9) and the Chebotarev density theorem that
(8.10) Y8 (n)log (x/n) = 04(x (log log x)*© (log x)?~ 1 = #¢/#6)
=

for some 0 < a(C) < v(C)—2. (A somewhat similar estimation is carried out
in [5] and [10])

An integer ne. #(x, d) will be called replete if w.(n) = v(C) for all Ce%.
Then a comparison of (2.6) and (8.10) shows that almost all members of
./ (x, d) are replete. Moreover, if we make a simple modification of the
generating functions in §8A and §5 it is easy to prove that the proportion of
.#(x,d) occupied by squarefree n, with wc(n) =v(C) (modk(C)) for all
Ce, tends to a positive limit as x = oco. Almost all of these n will be
replete, by another comparison with (2.6) and (8.10). Also, by Theorem II,
almost all of these n have a maximal range, which, since it contains the
principal ray-class (mod*f{), must be H; = H,. Thus, for these n, on the one
hand R(n) = Hy, while, on the other hand, R(n) = (W.; C €% >. Consequent-
ly H=H, = Hy = (W; Ce%), and this certainly implies Theorem IV, since
{W,; p ¥d) certainly contains (W;; C€%).

9. A generalisation of centfal classfields.

9A. Let K/Q be a finite Galois extension. The (narrow) Hilbert classfield
of K is the maximal finite abelian extension H(K) of K ramified only at the
real infinite places of K. In fact H(K)/Q is also a Galois extension, since the
principal narrow ideal class is invariant under the action of GalK/Q. Also
Gal H(K)/K is canonically isomorphic to the narrow ideal class group of K,
via the Artin map. Scholz and Frohlich [1], [2], [9] studied an interesting
subfield of H(K), the so-called central classfield of K, defined by the
following procedure. Consider all fields L satisfying:

(i) K<L<H(K);
(9.1) (i) L/Q is Galois;
(iij) GalL/K is a central subgroup of GalL/Q.

Then the central classfield C(K) is the unique maximal field amongst the L
satisfying (9.1).

We can characterise C(K) in terms of subgroups of G = Gal H (K)/Q.
Let A = Gal H(K)/K; then A is abelian and 4 <1G. Let F’ be the fixed field
of the commutator subgroup [A,G]:= {aga ‘g ':a€A,geG). Since
[4, G] is normal both in G and in A, it is clear that F'//Q is Galois,
with group G/[A, G]. Moreover A/[A, G] is central in G/[A4, G], and
A/[A, G] is the Galois group of F'/K. Consequently F’ is one of the fields
satisfying (9.1).

Conversely, for any L satisfying (9.1), let B = Gal H(K)/L, so that B <G
and B < A. Then Gal L/Q = G/B and Gal L/K = A/B, so that A/B is central
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in G/B. The latter happens if and only if [4, G] B. so that L < F', the
fixed field of [4, G]. It follows that C(K) is, indeed, unique, and is the fixed
lield of [4. G].

We now determine the divisor class group in K having C(K) as
classfield. We replace K. R and F of Section 2 by K. H(K) and H(K)
respectively (recalling that H(K)/Q is Galois). Then G of Section 2 becomes
Gal H(K)/Q, and I of Section 2 reduces to 4 = A(K, i) = A(K, (1) o0). By
Lemma 4.2 the characters yeA satisfying %, x$> = (14, 1Y form a
subgroup T of A, and the proof of Lemma 4.2 shows that these are exactly
those 7€A such that y(a) = y(g 'ag) for all a€A, geG, ie. are precisely
those 7 €4 which are trivial on [4, G]. Consequently, by Theorem III and
the arguments of Section 7 (with K replaced by K), we see that C(K) is
classfield to the ideal group Ioker N, where I, is the group of all principal
fractional ideals (x) with  €eK*, > 0, and N is the absolute norm mor-
phism I — Q*, I being the group of all fractional ideals in K.

9B. We now seek to generalise the definition of central classfield by
dropping the condition that K/Q be Galois, and replacing narrow ideal
classes by ray-classes (mod* ) for arbitrary j. We revert to the notation and
hypotheses of Section 2. In terms of classtields it appears reasonable to deline
the central classfield (mod*f) of K to be C(K, {), the classfield over K
corresponding to the ideal group I' m (I ker N) encountered in Section 7, and
this is what we shall, in fact, do. With this delinition, if K/Q is Galois, and i
= Oy . then C(K, f) reduces to the field considered by Scholz and
Frohlich, in view of our arguments in §9A.

By means of our main theorems we can characterise Gal C(K, {)/K as
the dual of the subgroup

T'= [yed: G, ¥50¢=-415. 18}.

In particular, if A, G and I' are known, there is no particular difficulty in
determining C (K, f) as the fixed field of a certain subgroup of G, as we now
show. We introduce

Ai={dg 'y 'y 'iyel,geG, g 'ygel’> and V:=Gal F/R.

two subgroups of G, with 4 < I'. We consider characters y 4. Then we
have y €T if and only if the lifted character x, of I' satisfies all three of the
following conditions:
(1) . is a degree-one character of I';
(i) 7, 1s trivial on V;
(ili) 7, is trivial on 4.
(Of these. the first two are trivial, while the third is immediate from the

On the distribution of norms of ideuls 395

proof of Lemma 4.2) On the other hand, if y, is any character of I
satisfving (i)-(iii), then it is obviously expressible as the lifting of a character
of A, and the latter must belong to T. It follows at once that Gal F/C(K. )
= (V, 4.

An interesting simplification occurs if the conductor { is taken to be
(f)oc, with 0 < f eZ divisible by all primes ramified in K/Q. If now K/Q is
the Galois hull of K/Q, the ray-class field H(K, ) of K(mod*{) is also
Galois over Q, and H(K, f) = R is the maximal abelian extension of K
contained in H(K, ). Since, in the above characterisations of C(K, j). we
may replace F/Q by any larger finite Galois extension, we can replace F by
H(K. ). Thus, in this case, we obtain V= TI"=[I, I']. Consequently any
degree-one character of I' is trivial on V' and, moreover, V' < 4. Thus, in this
case, C(K, ) is the fixed field of 4, and this characterisation is almost as
straightforward as the corresponding one in the “classical” case described in
§9A.

10. Relations to earlier work: lines for further research.

10A. The original motive for the research giving rise to this paper was
the desire to improve upon the results of [5] and [6]. There results
substantially equivalent to Theorems I, II and IV were obtained by rather
different methods for certain rather special fields K, with the special conduc-
tor | = O w0, (corresponding to the narrow ideal class group of K). The
special case K/Q Galois was covered by the methods of [5], where there was
no need for a result of the depth and subtlety of the present Theorem III.
The crucial point in the argument of [5] is the fact that GalK/Q acts
transitively on the set of prime ideals of Oy lying over a given p in Z, while
the invariance of the narrow principal class under the action of GalK/Q
shows that the range R(p’) (where fis the residual degree corresponding to p)
consists precisely of a single orbit of the action of GalK/Q on the narrow
ideal class group of K. It seems clear that it would be very difficult to handle
the general non-Galois extension K/Q by any method which attemps directly
to exploit Galois actions on primes in Ok. (As it happens, a fortunate
accident enables one to prove Theorems I, II and IV by such methods in the
special case where [K:Q]=¢[K:Q], where ¢ is prime, not dividing
[K:Q], K/Q being the Galois hull of K/Q. In particular, this covers the case
of “generic cubic” K/Q).

10B. Prospects for generalising results on ranges. It seems fairly clear
that, with minor modifications, the notion of range, and the possibility of
obtaining asymptotic results on the distribution of ranges, can be generalised
at least to the following context. Let A be any finite-dimensional commutati-
ve semisimple Q-algebra (thus, by Wedderburn's theorem, isomorphic (in the
abstract) to a direct sum of algebraic number fields). An interesting special
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case here would be 4 = KG, where G is a finite abelian group and K is an
algebraic number field. Let O be any Z-order of maximal Z-rank in A4 (eg.
O=90,G if A=KG). We work with invertible integral ideals of O, for
which the classical notion of absolute norm generalises in a satisfactory
manner. We then define the range R(n) of n>1 to be the set of all ©-
isomorphism classes of invertible integral O-ideals with absolute norm n. The
results of Sections 1 and 2 carry over without difficulty, provided that the
auxiliary field F of 2 is suitably altered. The isomorphism classes of invertible
O-fractional ideals can be associated with ray-classes (mod*f) of fractional
ideals of O, the unique maximal Z-order in A, provided that f is a multiple
of the conductor of O over O. We shall develop this and related ideas in a
forthcoming joint paper with G. Everest (UEA).

10C. Central classfields. The recent monograph [2] by A. Fr&hlich
reworks the earlier theory of central classfields in terms of idéles and
cohomology, simplifying and clarifying many of the earlier results, and
highlighting their relationship with a number of important topics in Galois
theory. It would be interesting to try to extend the approach of [2] to
exploit our generalised concept of central classfield (mod*f{), perhaps ob-
taining thereby a sort of “non-Galois” classfield theory for certain number
fields. This is, of course, highly speculative at present, since there is no clear
picture of what such a theory should encompass.

10D. The relation obtained in our Theorem IV appears to indicate some
hitherto unexpected relations in the idéle-class group of a number field, and
probably merits some kind of explicit formulation in terms of non-abelian
cohomology theory. We cannot go further into this question here.
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