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In additive number theory, the set A4 of nonnegative integers is an
asymptotic basis of order 2 if every sufliciently large integer can be written as
the sum of two elements of A. Let r,(n) denote the number of representa-
tions of n in the form n = a+a’, where a,a'€A and a < a'. An asymptotic
basis A4 of order 2 is minimal if no proper subset of 4 is an asymptotic basis
of order 2. Erdds and Nathanson [2] proved that if 4 is an asymptotic basis
of order 2 such that r,(n) = c¢-logn for some constant ¢ > 1/log(4/3) and
every sufficiently large integer n, then some subset of 4 is a minimal
asymptotic basis of order 2.

It is an open problem to determine whether the set A must contain a
minimal asymptotic basis of order 2 if r,(n) merely tends to infinity as n
tends to infinity. This paper contains several results connected with this
question. Let |S| denote the cardinality of the set S. For any set 4 of
nonnegative integers, let

S,(n)=lacAdA| n—acA!

be the solution set of n in A. Erdos and Nathanson [3] proved that there
exists a probability measure on the space of all sets of positive integers such
that, with probability I, a random set A has the properties that r(n) — o
and |S,(m)nS,(n)| is bounded for all m # n. We shall show that the
following weaker condition suffices to prove the existence of a minimal
asymptotic basis: If r (n) o0 and if |S,(m)NS,(n)| <(1/2—8)|S,(n)| for
some 0 >0 and all sufficiently large integers m and n with m # n, then 4
contains a minimal asymptotic basis. On the other hand, we shall prove that
for any integer 1 there exists an asymptotic basis 4 of order 2 such that every
sufficiently large integer has at least t distinct representations as a sum of
two elements of 4, but A contains no minimal asymptotic basis of order 2.
The proof will use a refinement of a method applied previously by the
authors to construct an asymptotic basis A of order 2 with the property that
A\S is an asymptotic basis of order 2 if and only if the set A NS is finite [1].
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Erdés and Nathanson [4] have recently written a survey of results and
open problems concerning minimal asymptotic bases.

Notation. Let 4 and B be sets of integers. Denote by A+ B the set of all
integers n of the form n =a+b, with acA4 and beB. Let 24 = A+ A. Let
Sy(n)=laeAdA| n—aeA!, and let S,(n)= laeS,(n)| a=n/2!. Then r (n)
=[S, (m)| = [(|S4(n|+1)/2]. Let S be any subset of 4. We write that “S
destroys n” if, whenever n = a+a’ with a, a’€A4, then either a€S or a'€S.
For any real numbers a and b, let [a, b] denote the set of integers n such
than a<n<b.

LEmMMA 1. Let A be a set of nonnegative integers. If
1S4 () NS, ()] <(1/2)[S (),
then n€2(A\S,(u)).

Proof. If n¢2(A\S,(u)), then S, (u) destroys n, and so S, (u) contains at
least one element of each pair |a, a'] of elements of A such that a+a’ = n. It
follows that

1S4(n) NS, )| > ra(n) = [(1S4(m]+1)/2] > [S4()/2,
which contradicts the hypothesis of the lemma.

THEOREM 1. Let A be an asymptotic basis of order 2 such that
(i) r4(n) >0 as n - o0, and
(ii) there exists 6 >0 and Ny such that for all m,n= Ny, m #n,

IS4 (m) NS4 (m)| <(1/2—6)IS4(n)].
Then A contains a minimal asymptotic basis of order 2.

Proof. Choose N, = N, such that ne24 for all n = N,. Choose a, €4
with a, > N,. Choose aje€A with a) >a,, and let u, =a,+da;. Then
u; > 2N, and a) €S, (u,). We define the set A; by

A; = (A\S (uy))u la)).

Then A, € A, = A, and u, = a,+4) is the unique representation of u, as
the sum of two elements of A,. Since a>u,/2> N, for all aeA\A,, it
follows that for n < N; we have ne2A, if and only if ne24. Let n > N,,
n # u;. Since

1S4 (1) NS (uy)l <(1/2=0)[S4(n)] <S4 (n)/2,

it follows from Lemma | that ne2(A4\S,(u,)) < 24,.

Let k > 1. Suppose that we have constructed a decreasing finite sequence
of subsets 4 =A4,2A4, 24, 2...2 A4, such that 24 =2A4,. Suppose
also that for i =1, ..., k we have constructed integers a;, a; € A, such that, if
we define y; = a;+a;, then u; <... <u, and u; = a;+a; is the unique repre-
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sentation of u; as the sum of two elements of A4,. Finally, we assume that
Ao\ A €84 (w)

fori=1,...,k.
Choose t such that 0 <t < 2d. Since r,(n) — oo, there exists M > u,
k
such that r,(n) > (1/1) ¥ r,(u;) for all n> M. Choose a,., €4, such that
i=1
a4 +1 < u,. We shall shortly impose an additional condition on the choice of
a4+ 1. Choose aj,, €A, such that a;,, > 2M, and define u; ., = @) +disy.
Then uy,, >2M > 2u, and a;,, €5 (U ,) N A;. Define the set A4,,, < A4,
by
Agsy = (Ak \S:,,[uk+,)lu \Bs1)-
Then w4+, = a4+, +a,,, is the unique representation of u,,; as the sum of
two elements of 4,,,.
We shall show that 24,,, = 2A4. Since 24 = 24,, it suffices to show
that 2A4,,, = 24,. Note that u,,,/2 > M, hence

(1) A\Apsr SSa(usy) SIM+1, w441,
and so, if n < M, then ne2A4,,, if and only if ne2A4,. Let n > M, n # u4,.
Then ne2A,. Let R(n) (resp. R'(n)) denote the number of representations of n
as a sum of two elements of A, (resp. 4,,,). We must show that R'(n) > 0.
Since

k

A\A, € U Sy(u),
i=1

it follows that

k k
ra(n) S Rm)+ ) IS4(w)l = R(n)+ ) ra(w) < R(n)+1ry(n),
i=1

and so R(n) > (1—1)r,(n) for n > M. By (1), the number of representations
of n as a sum of two elements of A, that are not representations of n as a
sum of two elements of 4,,, is at most

1S4(1) O (A \ Axs )l S IS4(n) O Sy (s 1)l S IS4 () NS4 (1)l
<(1/2=8)IS 4 ()]

<(1/2=0)2r (n) =(1=20)r,(n).
This implies that

R'(n) 2 R(n)—(1—=23)r,(n)
>(1=1)rm—(1-28)r (n =(20—1)r (n) >0

and so ne2A4,,, for all n > M. This completes the induction.
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o
Let A* = () A4,. Then 24* = 24 and so A* is an asymptotic basis of
k=0
order 2. Moreover, u, = a,+a; is the unique representation of i, as the sum
of two elements of the set A*.
In order for A* to be a minimal asymptotic basis of order 2, we impose

the following additional condition on the choice of the integers a,: If a e A*, -

then a = g, for infinitely many k. This means that for any a € A* there will be
infinitely many integers u, such that u,¢2(A*\ la}). Thus, A* is minimal.
This completes the proof.

Lemma 2. Let I =[a,b] and J = [¢,d], where b < c¢. Let k2 1. If me[a
+ec+k—1,b4+d—k+1], then m has at least k representations in the form m
=x+y, where xel,yeJ, and x<y. If ne[2a+2k—2, 2b—2k+2], then n
has at least k representations in the form n = x+y, where x, yel, and x < y.

Proof. Since [a+c+k—1, b+d—k+1] =[a+k—1,b]+[c,d—k+1],
it follows that m = x+y, where xe[a+k—1, b] and ye[c, d—k+1], hence
x < y. Then m = (x—i)+(y+i), where x—iel =[a, b], y+ieJ = [c, d], and
x—igy+ifori=0,1,...,k=1.

Since [2a+2k—2.2b—2k+2] =[a+k—1,b—k+1]+[a+k—1.b—k+1],
it follows that n = x+y, where x, ye[a+k—1, b—k+1] and x < y, hence n
= (x—i)+(y+i), where x—i, y+iel and x—i< y+ifori=0,1,...,k—1.
This completes the proof.

Lemma 3. Let ng < ny < ny < ... be a sequence of positive integers such
that n,_, = 3k*+6k+1 and n, > 8n,_, for k 2 1. Let N, =2m+1. For each
k = 1, define the following sets of integers:

Pk = [Nk—l+l! ﬂg—Nhg]‘
0= m—m_1=3ku+1lu=1,2,..., k+1},
Ri=[m+1, i+ Ny I\ ime+m_+3kul u=1,2, ..., k+1].

Let Bt=PkUQ;‘URk and B = U Bk' Then
k=1

(i) N ¢2B for k=20, and
(i) If k >3 and ne[Ny-,+1, N,—1], then n has at least k representa-
tions in the form n=u+v, where u,veB, UB,_, VB;_,.

Proof. (i) Since the smallest element of B is Ny+1, it is clear that
No¢2B. Let k > 1. Note that '
BN[Ny_ +1,m] =P, Uy
and
Bn[n+1, Nd=Bn[n+1, m+N,,]=R,.
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If Ny =2n,+1 =c+d, where 0<c¢<d, then c<n, and d=n+1. If
ceB and ¢¢Q,, then ¢ <nm—N,_, and so N, =2d=N,—c=>nm+N,_,+1.
Since Bn[m+N;_+1, N =0, it follows that d¢B. If ¢€Q,, then ¢
=nm—m_,—3ku+1 for some ue[l,k+1], hence d = N,—c =nm+n,_,
+3kue[m+1, N,]. Since d¢R,, it follows that d¢B and so N,¢2B.

(ii) Let k > 3. We apply Lemma 2 to the set P,. If

(2) nel2N;_ +2k, Ny—2N,_; —2k+1],

then n has at least k distinct representations as the sum of two elements
of P,.
Define the sets S, and T, by

Ss=[m+1.m+nm_,+k+1], Ti=[n+n_,+3kk+D+1, n,+N,_,].
Then S, u T, = R,. Since
Necatme+m_ +3k(k+1)+k+1 < Ny—=2N,_, —2k+2,
it follows from Lemma 2, applied to the'sets P, and T,, that if
3) ne[N,=2N,_,—2k+2, N.—k]

then n has at least k distinct representations in the form n = x+y, where

thP,‘Tand v €T, S R,. Similarly, Lemma 2, applied to the set S, _,, implies
that i

(4] ﬂE[Nk-[+2‘\_1, Nk—|+Nk—2]

then n has at least k distinct representations as the sum of two elements of
Si-1. Finally, Lemma 2, applied to the sets P, and P,_,, shows that if

(5) ne[Ne_i+Ni—s+1, 2N, +2k—1]
S [Nee s+ Ne—s+k+ 1, ip=Ne g+ 03— Ny 3—k+1]

then n has at least k distinct representations in the form n = x+y, where
x€P,. yeP,_,. From (2)(5), we conclude that if ne[N,_,+2k—1, N,—k],
then n has at least k distinct representations as a sum of two elements of
B,uB, ;uUB;_,.

Let ne[N,—k+1, Ny—1]. Then n = N,—w for some we[l, k—1] and
n=(m—m_y—=3ku+1)+(m+nm_,+3ku—w)eQ,+ R, < 2B,

foru=1,2 ..,k Let ne[N,_,+1, N,_y+2k—2]. Then n= N,_, +w for
some we[l, 2k—2] and

n=(m-y =My =3k=Du+1)+(me_y +nm_,+3(k—1u+w)
€Qx-1+Ry-y =2B;-,
for u=1,2,...,k. Thus, if ne[N,.,+1, N,—1], then n has at least k
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representations as a sum of two elements of B, uUB,_, UB,_,. This com-
pletes the proof of Lemma 3.

LEmMA 4. Let B be the set of integers defined in Lemma 3. Let rg(n)
denote the number of representations of n in the form n = b+b', where b, b’ €B
and b <b'. Then rg(N,) =0 for all k, and rg(n) =00 as n =0, n# N,.

Proof. This follows immediately from Lemma 3, since rgz(n) =1t for
n>N,_;,n# N,.

THEOREM 2. For any integer t, there exists a set A of nonnegative integers
such that r4(n) >t for all sufficiently large n, and, for any subset S of A, the
set A\S is an asymptotic basis of order 2 if and only if S is finite. In particular,
A does not contain a minimal asymptotic basis of order 2.

Proof. Let |n,| be a sequence of integers that satisfies the conditions of
Lemma 3. Let B be the corresponding set of integers constructed in Lemma
3 from this sequence |n,|. Then n, > 8n,_, implies that

BA[N,—Ni-1, Nl €Bn[m+Ny_,+1,NJ=0

for all k > 1. Choose j so large that [B [1, N;_,]| > t. Let F; be a subset of
Bn[1, N;-,] such that |Fjl=t. Let G;= |N;—f| feF;), and define A;
=BuUG;. Then G;=A;n[N;—N;_,, N;]. It follows that N;e24; and
rqaj(N;)=t.

Suppose that for i =j, j+1, ..., k we have determined finite sets F; and
G; and infinite sets B=A;_, € A; S A4;,, <... € A, such that

Fi <A n[l,N;_,], G,= N;—f|feF), A =A4_,uG

and |F| =|G;| =r. Then r4 (N;) =t. Choose F,., < A4, n[1, N;] such that
[Fy+1] = t. An additional condition on the choice of the subset F,,, will be
imposed shortly. Let Gyyy = |Nyuy—f| f€Fiq). Let Ayyy = A, UGy,
Then |Gk+l| =1t and Gk-l—l E[N;H.I—Nb NI:+IJ- Since

A*\B-:GJ-\JGj.plU...UGI E[l, N*]
and
BA[Ns1 =Ny, Nyioy1 = A0 [Nysy =Ny, Ny 1=0,

it follows that Tay4, (Ni+1) =t. By induction, we obtain sets Fy, G, and A4,
for all k = j. Define the set .4 by

s o] o

k=j k=]
Then A is an asymptotic basis of order 2 such that r (N,) =t for all k > j,
and ry(n) —c0 as n =00, n# N,.
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We now impose the following additional condition on the choice of the
sets F,: We must choose every t-element subset F of 4 exactly once. Thus, if
F <A and |F| =t, then F = F, for some unique integer k > j.

Let S be a subset of A. Suppose that S is finite. Since r (n) = o as
n—o0, n# N, it follows that neA\S for all n sufficiently large, n # N,.
Since S contains only finitely many subsets F with |F| =, and since each
such F destroys exactly one N, with k >j, it follows that A\S is an
asymptotic basis of order 2. If S is infinite, however, then S contains infinitely
many subsets F with |F| =1, and so S destroys infinitely many integers N,,
hence A\S is not an asymptotic basis of order 2.

Since the infinite set A4 contains no maximal finite subset S, it follows
that A4 does not contain a minimal asymptotic basis of order 2. This
completes the proof of Theorem 2.

DEerINITION. Let 1 = 1. An asymptotic basis A of order 2 is t-minimal if
A\S is an asymptotic basis of order 2 if and only if |4 N S| <t.

Tueorem 3. For any integer t, there exists a set A of nonnegative integers
such that r (n) =1t for all sufficiently large n, and A is t-minimal.

Proof. The construction of 4 is exactly the same as in Theorem 1, but
with a different condition on the choice of the finite sets F,: We must now
choose every t-element subset S of A infinitely often. This means that if
S<A and |§| =1, then S = F, for infinitely many k, and so S destroys
infinitely many integers N,. Since r,(n) >t for all sufficiently large n, it
follows that if |S| <, then S destroys at most finitely many n and so 4\S is
an asymptotic basis or order 2. This completes the proof.

The following simple observation is interesting as a contrast to The-
orem 2.

THEOREM 4. Let A be an asymptotic basis of order 2 such that r(n) — c0.
Then there exists an infinite subset I of A such that A\I is an asymptotic basis
of order 2, and r,,(n) = 0.

Proof. If F is any finite subset of A4, then r,(n) > r,(n)—|F|, and so
FA\.F(H} — 0.

We shall construct an infinite subset I = }a;,a,,...] of A and an
increasing sequence of positive integers N, N,, ... such that N, <a; <N,
<a, <Nj <..., and such that, if we define 4, = 4\ |a,, a,, ..., 4}, then
ra(n) =k for all n> N,.

Choose N, such that r (n) = 2 for all n=> N,. Let a, €4 with a; > N,.
Define 4, = A\ \a,!. Then rg(n) =r,(n)—121 for all n> N,. Suppose
that for some k > 1 we have determined integers a,, ..., a, €A and integers
N,,..., N, such that 0 <N, <a; <... <N, <aq,and, for j=1, ..., k, if A;
= A\ lay, a,, ..., a;}, then ra;(n) = for all n> N;. Since r,, (n) = r,(n)—k,
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it follows that ra,(n) =00, and so there exists N,.; > a; such that r4, (1)

> k+2 for all n> Ny, . Choose a;,,, > N,,, and let A,., = A, \ la;4,].
Then Fagy,(n) 2 k+1 for all n > N,.,. This completes the induction.

Let I = \a,,a,, as, ...] and define A* = A\I. Since A* N[0, N,,,]
= A, N[0, Ny ,], it follows that if N, <n < Ny, then r,(n) =r4 (n) 2k,
and so rye«(n) = oo. This completes the proof.

Erdos and Nathanson [5] proved that if A is an asymptotic basis of .
order 2 such that r (n) = c¢-logn for some ¢ > 1/log(4/3) and n = ng, then A
can be partitioned into two disjoint sets, each of which is an asymptotic basis
of order 2. The following result is a simple corollary of Theorem 2.

THEOREM 5. For any integer t, there exists an asymptotic basis A of order
2 such that r(n) =t for all n = ng, but A is not the union of two disjoint sets,
each of which is an asymptotic basis of order 2.

Proof. Let 4 be a minimal asymptotic basis of order 2 such that
r(n) =t for all n = ny. Since no subset of 4 is an asymptotic basis, it is clear
that A cannot be partitioned into a disjoint union of two asymptotic bases of
order 2.
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