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 Introduction and results. The p-adic theory of transcendental numbers was
Initiated by Mahler in the 1930s. Mahler [20], [21] obtained in 1932 and 1935
the p-adic analogues of both the Hermite-Lindemann and the Gel-
fond-Schneider theorems; and during the course of the work he founded the
P-adic theory of analytic functions.

In 1939, Gelfond [14] proved a quantitative result on linear forms in two
P-adic logarithms in analogy with his classic work on Hilbert’s seventh
Problem relating to two complex logarithms. In 1967, Schinzel [28] improved
Gelfond’s result and computed all the constants explicitly.

In the 1960s Baker published his first series of papers [3], [4] on linear
forms inn > 2 logarithms of algebraic numbers. His method has subsequently
been employed to the investigation on linear forms in n > 2 p-adic logarithms
of algebraic numbers. To begin with, in 1967, Brumer [9] proved that if
%3 ..., a, are multiplicatively independent p-adic units then any nontrivial
linear form in p-adic logarithms

filoga,+ ... +f,loga,

does not vanish. Later, Coates [12] proved a quantitative p-adic analogue
following Baker’s result [4]; Sprindzuk [30], [31] proved p-adic analogues of
Baker's results [3], [4]; Kaufman [18] proved a p-adic analogue of Feldman's
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result [13]. Further, in 1975, Baker and Coates [7] established in the case
n =2 a p-adic analogue of a sharpened inequality of Baker [5]. In 1977, van
der Poorten [26] published a paper, containing four theorems on linear forms
in p-adic logarithms, with much more generality thar the previous work and
essentially with the same degree of precision as Baker’s result [6]. In order to
state van der Poorten’s results, we introduce some notation. Denote by
%y, ..., &, (n > 2) non-zero algebraic numbers in an algebraic number field K of
degree D over @, and of heights not exceeding 4, ..., 4, respectively (with

A;= €, 1 <j<n). Write
Q =logAd,...logA,-y, Q=QlogA,.

Denote by by, ..., b, (b, # 0) rational integers with absolute values not
exceeding B. Denote by p a prime ideal in the ring of algebraic integers Oy in
K, lying above the rational prime p; write e, for the ramification index of p and
J, for its residue class degree, so Np = Ngjop = pf". Let

g, =[+e/(p—1], G, =Np®(Np—1).

For ne K. « # 0 denote by ord, « the order to which p divides the fractional
ideal (2) and put ordy 0 = co. Then van der Poorten’s [26] Theorem 1 (the
main theorem) and Theorem 2 are as follows.

THeoREM 1 VAP. The inequalities
abn—1) > (16(n+1) D) *** VG, Q log Q' log B
b,; b, # 0 (mod p), with absolute

o0 > ords (o' ...

have no solutions in rational integers b, ...,
values at most B.

THEOREM 2 VdP. The inequalities
abn—1) > (16(n+1) D)**** 1(Gy/log p) 2 (log B)*

have no solutions in rational integers b, ..., b, with absolute values at most B.

o0 > ordp (ch! ...

Unfortunately, the proof in van der Poorten [26] involves several errors
and inaccuracies, which we should like to remark upon at the end of § 3.4 and
in the Appendix, so that a complete revision is necessary.

In the present paper we prove two theorems, which imply the results we
reported on in the Proceedings of the Durham Symposium on Transcendental
Number Theory. July 1986. (See Yu [36].) Take now

K=0Q(0,.... %)

and keep the notations D, p, p, e, fo, Np = Ngjop and ord, introduced above.
Denote by K, the completion of K with respect to the (additive) valuation ords,
and the completion of ordy will be denoted again by ordy. Now let X be an
algebraic closure of Q, Write C, for the completion of £ with respect to its
valuation, which is the unique extension of the valuation | |, of @,. Denote by
ord, the additive form of the valuation of C,. According to Hasse [17]. pp-
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298-302, we can embed Kpinto C,: there exists a Q-isomorphism ofrom K into

2 such that K is value-isomorphic to Q (¢(K)), whence we i i i
; can identify K with
Q,(o(K)). Obviously, f Y

ordyf =epord,f  for all feK,.

Further, for an algebraic number «, write h(x) for its logarithmic absolute

su : BENY bu be inte : 0 e .

(0.1) a4p("-1).
Let Visvees Voo V.t 1,Bo,B,, B, B, W be real numbers satisfying the following
conditions
V> filogp .
ji= max h(aj)‘_l)_— “ g} < HJ,
02)
<...<V-, Viog=max(l, V.,
BO 2 min |bjla Bn 2 'lbnls
03) 1€j€nb;#0
B'> max |b, B=max{lb,...,|b,] 2},
1€j<n

3 fologp/B, B felo
max<log| 1 4+— s el vl0gp
{ g( 8n D V1+V))’ log By, D },

if min ord,b;> 0,
04 w> 1<j<n

max{log(l,,_iﬂlogp ﬂ_l_g fologp
L w v’ b J’

if min ord,b; = 0.
1<j<n

(It is easy to see, by (0.2), that (0.4) is implied by

3 fologp
max {log(l e B), log B,, T}’

3 Jologp
logl 14+—
max{og( +4nB), D 5

Then we have

if min ordb; >0,
1<j<n

W=

if min ord b, =0.)

lsjsn

THEOREM 1. Suppose that
(0.5) ordpa; =0 (1<j<n),
(0.6) [K @}, ..., 239:K] = ¢,
0.7) ord,b, <ord,b; (1 <j<n—1)
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and
(0.8) ofr.. .ol 1.
Then

ordy (b ... afr—1)

2+1/p—1)

non+S/2 2, 2 b—
< C,(p,n)d}n q*"(q—1)log? (ng) (p">—1) (frlogp)y"+?

|
x D"*2 Ve I}:(%-l"lOSMD})(log(“Danl)"'%);

where

. 3%, 2<n<g],
' 18e, n=>8

and C,(p, n) is given by the following table with

C (o m)=Ci(o, n)(2+;}—1)2 RS

n 2 3 4 5 6 7 nz8

C,y(2, n) 768523 476217 373024 318871 284931 261379 2770008

C,(3, n 167881 104028 81486 69657 62243 57098 116055

Ci(p. n) 87055 53944 42255 36121 32276 24584 311077

Remark. By a little computation it is easy to verify that
C, (2, n)a} < 2770008 (8e)" for all n>2
and

C,(p, n)a} < 3“077(“;1_?)2 (B ey < 2770008 (3 e)"

forall p=23,n>2.
Thus
C,(p, ma’ <2770008(3e)" for all p and n> 2.

Therefore Theorem 1 implies Theorem 1 in Yu [36].
In the following Theorem 2, we assume, instead of (0.4),

Linear forms in p-adic logarithms 111

fmax {log(l +-—2—ﬁ logp({?!_l_ E)), log Bo,ﬁ’LODg_E},

sn D \V, ¥,
if min ord, b, >0,
{0'9) W?< 1<j<n

2 fologp(B, B'\\ frlogp
log| 1+ ——— >+~
o155 G ) 45

if min ord, b, =0.
1=j<n

.

THEOREM 2. Suppose that (0.5)40.8) hold. Then

ord, (a5 ... abr—1)

< C,(p, myasn"* 7% g*" (g —1)log? (nq) es (p'» — llw
(fologp)"

7,74 2
><D"”V1...K,(5+Iog(40)) i

Where a, = a,(p, n) and C,(p, n) are given as follows:

8
3e, 2<n<17, e, 2<n<7
a2(2: n) = 5 e 01{3,?1]: § o T
se, n=18, se, n=z=8,
fe, 2<n<l16
a (p'r n) - = 5 a
: {38, nz17, Lt
n 2 3 4 5 6 7 8<n<17 nz=18
C,(2,n) 338071 244589 202601 178202 161998 150321 141430 441432
n 2 3 4 5 6 7 n=8

C,(3,n) 61716 44650 36985 32531 29573 27442 24871

Ca(p, n)=C'z[p,n}(2+%>3, p=5

n 2 3 e 5 6 7 8<n<l16 nz=17

Cy(p,n) 14491 10484 8685 7639 6944 6444 6063 17401

~ Remark. It is easy to verify, by a little computation, that Theorem
2 implies Theorem 2 in Yu [36].

COROLLARY OF THEOREM 2. One may remove in Theorem 2 the hypothesis
(0.7), provided (0.9) is replaced by
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4B 1 .
max<log| 1+— ,logBa,ﬁ e , if min ord,b;>0,
Sn D. 1<j<n

0.10) W > 4B\ £l
To check this it is sufficient to reorder &, ..., a,; by, ..., b, as &, ..., % ;
b, ..., b, so that ord,b, = min ord,bh; and V, <... <":..-. and then to
l=j=n

apply Theorem 2.

Studies with G. Wiistholz are in progress so as to remove the Kummer
condition (0.6) and the appearance of ¥, , in the bounds of Theorem 1. This
can now be achieved by the recent work of Wiistholz concerning multiplicity
estimates in connexion with Baker’s theory of linear forms in logarithms of
algebraic numbers. (See Wiistholz [35].) Furthermore it seems certain that
a combination of Kummer theory with multiplicity estimates will yield very
sharp effective bounds.

The research of this paper was done when I was enjoying the hospitality of
the Max-Planck-Institut fiir Mathematik, Bonn, with the support of an
Alexander von Humboldt-Fellowship. I am very grateful to Professor F.
Hirzebruch, the director of the MPI, for his constant care and encouragement.
I wish to thank Professor G. Wiistholz for suggesting the topic of the title and
for helpful advice and also to thank Professors A. Baker, D. W. Masser, R.
Tijdeman and M. Waldschmidt for their encouragement.

I am greatly indebted to the referee of this paper for helpful proposals to
improve the exposition and to shorten some proofs.

Chapter 1. p-Adic analysis

In this chapter we work in C, introduced in the Introduction. Thus C, is
a complete non-archimedean valued field of characteristic zero with residue
class field of characteristic p, and ord z (zeC,) is the additive valuation of C,
such that
ord,p=1.
Throughout this chapter, the variable z takes values from C,. If ord, z > 0, we
say that z is integral.

1.1. p-Adic exponential and logarithmic functions in C,. We record the
following facts, which can be found in Hasse [17], pp. 262-274.

(a) The exponential series

L 0
exp)= Y =
n=0""

Linear forms in p-adic logarithms 113

has the region of convergence ord,z > 1/(p—1), where

exp(z, +2,) = exp(z,)exp(z;) and ord,(exp(z)—1)=ord,z
(b) The logarithmic series

log(l+2) = i %

n=1

has the region of convergence ord,z > 0, where
log((1+42z,)(1+2z,)) = log(1+2z,)+log(1 +2z,).
In the subregion ord,z >1/(p—1),
ord,log(l+2)=ord,z.
(¢) For ord,z > 1/(p—1), we have
logexp(z)=z and exp(log(l+2)=1+z.
(d) For ord,x > 1/(p—1) and integral z, we define
(1+x)* = exp(zlog (1 +x)).

(Note that, for ze Z, this definition coincides with the usual powers.) Thus, by
(c), we have

log (14 x)* = zlog(1+x).

Furthermore for integral z,z’ and x, x’ with ord,x > 1/(p—1),ord, x' > 1/p—1),
we have

(A+xP* = +xP A +x)F,  (+xF = (1 +x)F),
(L+x) (14+x) = ((1 +x) (1 +x)).
Note that for f, ..., §,eC, with

(L.1) ord, (B,—1)> 1/(p—1) (1 <j<m)

and integral z,, ..., z,€C,, we have

ord, (log B) = ord, (B, 1) > 1/(p—1) (1 <j < m),
hence

ord,(z, log B, +
Thus, by (d) and (a),
(1.2) ord, (B ... fim—1)’

oz, logB,) = 1/(p—1).

ord,(exp(z, log B, + +z,.logf,)—1)

=ord,(z;logf, + ... +z,logf,).

1.2. Normal series and functions. For the p-adic analytic parts of the proofs
of our theorems, instead of using Schnirelman integral [29] (see also Adams
[17), which yields a p-adic analogue of the Cauchy integral formula, we
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introduce a kind of Hermite interpolation formula (see the Appendix, Theorem
A); then we give, based on Mabhler’s [21] concept on normal functions, and
similarly to the work of Schinzel [28] and van der Poorten [26], a lemma for
the extrapolation procedure (see Section 4 of this chapter).

The following concepts of normal series and functions are due to Mahler
[21]. A p-adic power series

j(Z): Zf;:(z_zﬂlh‘ .fﬁecp (h=0s Is-")’
h=0

where z;, is an integral element of C,, is called a normal series, if
od,f,20 (h=0,1,...)
and
ord,fy = (h— ).
Clearly f(z) converges for every integral z.

Let z, be an arbitrary integral element in C,. By the p-adic analogue of
Taylor’s theorem, we have

w
”]_Zf (1) 2

where
S0(z) =kt Y (")f,,(zl —zf* (k=0,1,..)
h=k \K

denotes the derivative at z; of order k. Obviously

fm(zl}
k!

ord 5

>0 (k=0,1,..)

and

or d ftkl{ l]

=00 (k— c0).

Thus, if a p-adic function is representable by a normal series in a neighborhood

of an integral point in C,, then so is it in a neighborhood of every integral

point in C,. Therefore we may call a p-adic function, which is definable by

a normal series in a neighborhood of an integral point in C,, a normal function.
The following lemma is fundamental.

LemMma 1.1 (Mahler [21]). If a normal function f(z) has zeros at the distinct
integral points B, ..., B, in C, of multiplicities at least m,, ..., my, respectively,
then

h
@) =g [] =),
i=1

where g(z) is a normal function.
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Remark. If eC, satisfies ord,é > ll(p—l), then the p-adic series
exp(6z) = Z
k—(]
is a normal series, because of the well-known fact that ord, k! < k/(p—1).

1.3. Supernormality. For 0 = c¢/d, where ¢, d are positive rational integers
with (¢, d) = 1, we define

a s Qc
Where o is a fixed root of x*—p =0 in C,. Thus
ord,p’ = 0.
If deC, satisfies
1
ord,d > 0+—,
p—-—

then exp(dz) has supernormality in the sense that

o =k
exp(op~%2) = ). ) z"

k=0 k!

is a normal function.
The following lemma shows that there exists a nonnegative integer
* bounded in terms of p and e, such that for every feC, satisfying
ord,(f—1) > 1/e, the p-adic function
(B™")* = exp(zlog ")
has supernormality required for our p-adic analytic part of the proofs of our
theorems.

LemMmA 1.2, Let x be the rational integer satisfying

(1.3 P (p—1) £(1+p—;l)e, <p*lp—1)
and put
1; ifx>1and p"'(p—1)>e,;
(14 -
) g P otherwise.

2+1/p—1)e,’
If Bec, satisfies

ord_(f—1)= l/e,,
then ? p

" 1
Ol‘dp(ﬂp -1)> U+m.



116 K. Yu

Remark. By the remark at the end of the last section, (B )P
=exp(p~%zlog fF") is a normal function.

Proof. (For details see Lemma 2 in Yu [36].) By considering (y—1) it is
easy to verify that for integral yeC, we have

1.5 ord,(y*—1) = min(pord,(y—1),1+ord, (y—=1).

The lemma is evidently true if x = 0. If ¢ > 1, then we obtain by inductive use
of (1.5) that

(1.6) ord, (B” —1) = p'le,

On combining (1.6) for j = % —1 with (1.5) we obtain the required conclusion

for j=0,1,...,%x—1.

% w—1 ‘
ord, (B —1) > min(p—, Ll 1) >04+—r0.
p & p—1
For later references, note that by (1.3) and (1.4) we have
» o ]
(1.7 0<1 and P_<f’_ <2
e, & 0~ p—1

Let
G = Ngjop—1= plr—1.

It is well known (see Hasse [17], p. 220) that if m is a positive rational integer
with (p, m) = 1, then K, contains the mth roots of unity if and only if m|G. In
particular, K, contains the Gth roots of unity. In the remaining part of this
paper, let { be a fixed Gth primitive root of unity in K,.

For any integral elements o, f in K, we write

o = f§ (mod p),
if ord,(e—p) = 1. Obviously, this defines an equivalence relation on
= {aeK,| ord,a > 0}.

LEmMA 1.3. For any ae K, with ord, o = 0, there existsre Zwith0 <r < G
such that

ejord, (2f"—1) = ord(a{"—1) 2 1.
Proof. By Hasse [17], p. 153, 155, 220, we see that the set
{0! 19 C, CZ’ L | CG-l}

is a complete residue system of O, mod p. Since ord,a = 0, there exists '€ Z
with 0 <7 < G such that

a={" (mod p).
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Let reZ satisfy r= —r' (mod G) and 0 <r < G. We get then
al" =1 (mod p),
and the lemma follows at once.
14. A lemma for extrapolation.

LemMA 1.4. Suppose that 0 > 0 is a rational number, q >0 is a rational
prime with q # p, and M > 0, R > 0 are rational integers with q|R. Suppose
Jurther that F(z) is a p-adic normal function and

F[l} (1]
(18 min (ordp t{f" )+:a)

log R

(I—E)RMD+M0rd R'+(M—1)
Then for all le Z, we have

| 1
ord F —p"’) > (1——)RMO.
i (q q

Remark. Here logR and logp denote the usual logarithms for positive
real numbers.

Proof. By Theorem A of the Appendix, the unique polynomial Q(z) of
degree at most (l—l)RM-—l satisfying
q
Q“~V(sp’) = F*~V(sp?),
is given by the formula

R (t—1) &
(19) Q(Z) z ZF f;f } —I)M_‘{Z“spﬂt—l{
s=1 1= i

1<s<R, (5,9 =1, 1<t<M

"“-n
Bl
=
[}
J ..!,
P
=4 =
=
R,

(s)=1
M-t = l M
n§| Ao +1§ =M- “I_] 4! = r k)P
A=0(i<h *8 )=
A1k w

where the second line of (1.9) reads as 1 when t = M. Let

z—kp®
! (s—k)p”

1,k#s

Efz) =
(kg

A, l2) = (z—sp%)' " (EL2)™,

1 /o) Y
Bs.j(z)':E 5 {(3—'?)(55(?1)) }l:=sp“"

1=

-
=
I! i
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Then (1.9) can be written as

R M Ftl—ll
(1.10) o= ¥ 3 -1,
(—1)!
=1
M-t M-t
x 2 (=) X [1 Bsaf2)
h=1 At tilm-e=M-ti=1
Ai=0(i<h)
Az 1(izh)

We first show that for every leZ,

(1.11) ord,Q(ép")

1)
> min (rdpF‘:p}+tﬂ) M ord,RI—(M~ 1)~

1SsSR(s.q)=1
1=0,...M-1

Note that for every s with 1 <s<R, (s, g = [, we have, by (g, p

I R ek R
ord, Es(ap") =ord, [] P —Ol‘d,,kl:[l

k=1
ka)=1k+#s

> —ord,(R—1)! > —ord,R!.
Thus we get, by (¢, p) =1,

[
(1.12)  ord, A, (Ep") > (t—1)6—Mord R!

for leZ,1<s<R,(5s,9)=1,1<

On noting that
(1.13) E (sp°) =1

: 1
and for every pueZ with lapa(l—E)R—l

|

1/ad)
(1.14) E(d_n) E,(n) = E,(n) b3

1<k <...<k. <R (n—kp°).

g =1 "f*-*
1<jsp)

we obtain

1 d\"
SHEYE "
! {(d’l) s(n)}ﬁsp“ lsh-(;(knék(s_kl)“'

kj)=1.kj#s
(1=jsn)
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Observing that

ek [Iog(R—l)J - log R

logp logp’
we get

] I
(1.15) ordpm{(i) Es(q)} > _#(0+llc;gg.:)
- ,’=,pﬂ

1

1
Note that (1.15) is also true for y = 0 and u> (l ——)R—l, because of (1.13)
q

and the fact that E(z) is a polynomial in z of degree (l —1)12— 1. Now for
q
Positive ieZ

P M
e GG Eor- s () Em

wtupm=1j= 1.|qu
1y =001 < < M)

On combining (1.15) and (1.16), we get

{ d\* log R
& 7k -
(L17) ordpi!{( dq) (E,{'I))M}Fs i = ( log p)

for i1, 1<s<R, (s,q9 =1.

Note that (1.17) is also true for A =0, by (1.13). Now we estimate

ord, B, ;, (; ) By the definition of B, ,(z) we obtain for A >1

(118)  B,,(2)

i (,m.u}u ,,,.‘a—lnr{(&%)kiw’(”»"}.,ﬂ,a'

So by (1.18) and (1.17) we get

l . . log R log R
(L.19 = i —(A—
) ord‘,B,‘l(qp") = min {B A(G-}-logp) (4 l](ﬂ+ gp)}

log R
logp

for AZ1, 1<s<R, (5,9)=1.

- (1)1
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Note that (1.19) is also true for A =0. By (1.19) we see that

5 HBH.( ) _M _I)logR

M=
(1.20) ord, ¥, (=11
h=1

A+ 'uM =M1 logp
=0(i<h)
i.?l(i"h}
for leZ, 1<s<R,(s,9)=1, <M-—1.

Note that (1.20) is also valid for t = M. On combining (1.10), (1.12) and (1.20),
we conclude

|
d e
or "Q(qp)

t—1) 1
>  min {ordpww%t—l)ﬂ Mord, R1—(M —t)—o— }
1<sSR(s)=1 t—1! logp
which implies (1.11).
Now we proceed to prove that Q(z) is a p-adic normal function, that is, to
show that
Q(0)

1
(1.21) ord~——2>0 for OQmé(l——)RM—I.
m! q

By (1.11) with [ = 0 and (1.8), we see that (1.21) is true for m = 0. So we may
assume m > 1 in the sequel. We assert that

U‘J{ ]

P

(122) ord

—pb—ord,R!
for y=0and 1 <s<R, (5,9 =1
for by the definition of E(z), (1.22) is true for u=0; it is obvious for
> (l—%)R—l;and forl<pu

Further (1.22) and (1.16) imply that

LAV, oy
(123)  ord, 7 d( =) (M) >

Now we show that

1 ;
< (l _E) R—1, it follows from (1.14) at once.

—A0—M ord, R!

for A=20, 1<s<R, (s,9)=1.

o
(1.24) ord 1 LS A, (2) >(t—1—u0—-Mord,R!
Pul |\dz =0

for u20, I<s<R,(s5,9)=1,1<tsM.
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By the definition of A,,(z) and (1.23) with 2 = 0, we see that (1.24) is true for
H=0. Assume u > 1. Then

1(dV NS W& A O R
efnin- § (& (e

Azpu—1+1

This and (1.23) imply (1.24) at once. Now we prove that if | <t < M—1 and

Ay, ..., Ay—, are non-negative integers satisfying A, + ... +Ay_, = M —t, then
1 I - log R

(1.25 d,——4( =+~ —(m—p)0—(M—1)—8
) odye i) (T Bu@)p > —m—p0-(M—03

for 1<s<R,(s,¢9)=1,0<u<m
By (1.17) and (1.18), we have
(1.26) B :(z) = a,;(z—sp)+bs,; for i=0,1<s<R, (5,9 =1,
where a, ,, b, 1€C, (bs,o = 0) satisfy

1
Ordpas.). ; _;1- (n+ og R)n
logp

ord b, ; 2 —(A— l)(0+10g R)
ogp

(1.25) is obvious for u with m—pu > M —t, by (1.26). It is also true for u = m by
(1.19) with [ = 0 and the fact that A, + ... + -, = M —t. So we may assume
l<m—pu<M-—t.

Now

(@) (T e

(m—p)!

(1.27)

i=1

- 2 ( ﬂ [1 B

l1=sii<..<im—usM-1 j= 1=isM—t
r#uus;sm—m

This together with (1.27), (1.19) with [ = 0 and the fact that 4, + ... +4y_,
=M —r yields (1.25). Observing (1.10), (1.24) and (1.25), we obtain for

m=9Q,1, ...,(l—l)RM—l
q

(MJO (r—1 )
ordPQ ” min {ordpF—’(SP)
m: 1&;5:“”) 1 (t—=1)!
b i

log R

+(t—1—pw0—(m—p)0— (M—t) p}_MordpR!
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.F“} &
= min {ordp (sp )+ rﬂ}
=1
-1

t!

1=ssR.s.
1=0,.... M
1 log R
_((1__)RM_l)a—Mord,,R!—(M—l) =L
q logp

=0,

where the last inequality follows from (1.8). This proves (1.21), ie., Q(z) is
a normal function.
The normal function

F(z)—Q(2)
has zeros at

sp’, 1<s<R, (s,9)=1

of multiplicities at least M. By Lemma 1.1, there exists a normal function g(z)
such that

F(z)=Q@)+g( [] —sp™.

s=1
is.q)=1

{ ;
Note that ord, g(— p") >0, because g(z) is normal and (g, p) =1, whence
q

ordp(ép") > 0 > 0. Thus for every leZ, we have

ord, FG}p") > min (ordpQ(ép"),(l —é) RMO).

This together with (1.11) and (1.8) implies

I 1
ordpF(—p&) > (I ——) RMO.
q q

The proof of the lemma is thus complete.

Chapter 2. Arithmetic tools and estimates

We first introduce briefly the concept of logarithmic absolute height of an
algebraic number a. Let o be of degree d, a, > 0 be the leading coefficient of its
minimal polynomial f over Z, H,(a) be its usual height, i.e., the maximum of the
absolute values of the coefficients of f, a,, ..., a, be its conjugates over Q. Write

d
M () = ag [ max (1, o).
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Let E be a number field containing «. Write

2.1) Hg(w) =[] max(1,|a],),

Where v runs over all valuations of E normalized in the usual way to satisfy the
Product formula [] ||, = 1 for a 0. More precisely, for each embedding ¢ of

E into C there is an archimedean valuation v defined by |a|, = |o (2)|; and for
each prime ideal B of O (the ring of algebraic integers in E) with absolute
norm NP = N,,B there is a non-archimedean valuation defined by

o], = (N B) "%,

where P°*% is the exact power of P in the fractional principal ideal of
E generated by «. The numbers

H(@) = (Hy ()"

h(e) = log H ()

are independent of E. We call H(x) and h(x) the absolute height and the
logarithmic absolute height of a, respectively. The relation

HQ (a) () = M (a)

(see, for example, Bertrand [8], Lemma 11) shows that

and

h(x) = ;}logM(a).

For any algebraic numbers «, 8, «,, ..., @, and any 0#meZ, we have

22) h(@p) < h(@)+h(B),
(23) h(a™) = |m| h(),
(2.4) hia,+ ... +a,) <h(@)+...+h(,)+logn.

From the inequality
M(2) < (d+1)"? Hy ()
(see Mahler [22]) it follows that

h(x) < é(log H () +logd),

Since h(x) = log Hy (o) for «€Q and x+1 < x? for x > 2. By (2.1) and the
Product formula, we have

2.5) Hg(P) = Hy(1/8)

2 ~ Acta Arithmetica LIII. 2

for peE, B #0.
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Now we give a p-adic analogue of the Liouville inequality. For every
prime ideal B of Oy, let e, be its ramification index, fy, its residue class degree,
p the unique rational prime contained in PB. Write

ord, = -e—l—ord,,_
kL)

Denote by | |, the non-archimedean valuation determined by *B. Then for every
peE, we have

p T = (NP~ = B, < H(B).
If f# 0. we can apply the above inequality to 1/8 and obtain, by (2.5),

Pwmdw < Hg(B),
whence
log Hy(B) _ [E:Q]
e fulogp e f logp

For a polynomial P denote by L(P) its length, i.e., the sum of the absolute
values of its coefficients.

(2.6) ord,f <

h(B).

Lemma 2.1, Suppose P(x,, ..., x,)€Z[x,, ..., X,,] satisfies
deg, P< N, (=1),

If Byv..., Bu€E and P(B,, ..., B,) # 0, then

[E: Q] “

2T logp WOBLPYH T Nib(B)).

Proof. For each valuation v of E we have

I<k<sm.

ord, P(By, ..., B) S

(2.7) max (1,|P(By, ..., B)) < C, k]:ll (max (1, 1B,1.))%,

where C, = L(P) if v is archimedean and C, = | otherwise. On multiplying (2.7)
for all v and taking [E:Q]-th root we obtain

H(P(By, ..., Bn) < L(P) :‘U (H (B,

whence
h(P{ﬁl’ LRSS | Bm)) g IOgL{P)+ Z Nkh(ﬁk)'

This together with (2.6) proves the lemma.
We will deduce a version of Siegel’s lemma (Lemma 2.2 below) from the
following

LemMa (Anderson and Masser [2]). Let E be an algebraic number field of
degree D. For each valuation v of E let p, be an element of E and let M, be
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a non-negative real number such that M, =1 except for finitely many v. Put
M =[[M,. Then there are at most 2M'P+1)° elements & of E such that

'é _.buvlv < Mﬁ
Sor all v.

LEMMA 2.2. Let By, ..., B, be algebraic numbers in an algebraic number
field E of degree D. Suppose that

PeZ[xy,....,x,] (<i<n1<j< m)(not all zero)

satisfy
deg,kP,',j%Nj.t (lélﬁn,léjém,lékér)
Write
X = max {() L(P;))exp( Y, N;,h(B)}
1<j<m i=1 k=1
and

}’i.J = Pi.j(ﬁlﬁ sy ﬁr)

If n> mD, then there exist rational integers y,, ..., y, with

0 < max |y| < XmP/tn=mD)
1<i<n

(1<isn 1l<j<m).

Such that
L rn=0 (<j<m).
i=1

Remark. This is a slight refinement of Lemma 4 in Mignotte and
Waldschmidt [24].

Proof. Let
(2.8) A = [XNmy
For each y =(y,, ..., y,)e Z" with
0<y, <A (1<i<n)
we set A =(4,,...,4,) by
2.9) 21=‘i1}"._jyieE (1<j< m).

Further for each j with 1 <j<m and each valuation v of E, let
{E Y., 3A4, if v is archimedean,
vj = Y i=1

0, otherwise,
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and
M,y = Ay, TT max (LB
where
$AY L(P,), if v is archimedean,
Au, i= =1
1 otherwise.
Note that

2100 M;=[[M, ;= {5,4 (_; L(P,A,J,))kli[I (H (ﬂg))n,‘k} < (3 AX)P.

Evidently p, ;€ E and for each j,
have for archimedean v

M, ; = 1 except for finitely many v. By (2.9), we

! — i, 5l il = | Z ?U(J’i *A)'Iv < ‘%A z h’;jl

(l<j<sm),

< 3A(Y L(P)) [] (max(1, B = M
tal k=1
and for non-archimedean v

=ty = IZ Vi Vilo < i V4.5l
£isn

< [1 (max (LB = M,, (1<j<m)

Thus all the (A+1)" A = (4, ..., 4,), which correspond by (2.9) to the (4+1)"
Y=(Y(s.o yo)€Z" with 0 <y, < A(1 <i < n), satisfy

A= p l, <M,; forallv (1<j<m).

On the other hand, by the Lemma of Anderson and Masser, and by (2.10),
there exist at most

[T eM}P+1)° < (4X +1)"P

E=(,,..., &, E™ satisfying
€= me o <M,; forallv (1<j<m).
Now (2.8) and the fact that X > 1 imply
(AX +1)™ < (X (A+ D)™ < (A+1)".
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Thus by the box-principle, there exist two distinct integral points y’
=(¥1, .., Y and y" = (yy, ..., y;) with
0<yi<A, 0<y/<A (1<i<n)

such that

Yorgyi= Yoy (1<j<m).
i=1 i=1

Hence y = (y;, ..., y) = 01 =V, ..., Ya—yi)€ Z" satisfies

=

Yiji=0 (I<j<m)

i=1

and

0 < max |y < 4 < XmP/tn=mD)
1<i<n

This completes the proof of the lemma.
For every positive integer k, let v(k) be the least common muitiple of
L, 2, ..., k. Define for zeC

@R11) A(z; k)= (z+1) ... (z+k)/k!  (keZ k=1) and A(z;0)=1,

and for I, m non-negative integers

@12) A(z k,Lm) ~—{—( s k))'}
Lemma 2.3. For any zeC and any integers k=1, 1> 1, m = 0, we have

k ki

@13) 1425 ko )| < e )“(’z'* ) .

Let g be a positive integer, and let x be a rational number such that gx is
a positive integer. Then

(2.14) g*® (v (k)" 4 (x; k,I,m)e Z,

and we have
v(k) < 3%

Finally, for any positive integers k, R and L with k > R, the polynomials
(4(z+r; kY (r=0,1,...,R=1;1=1,..., L) are linearly independent.

Proof. Inequality (2.13) is a slight improvement of Lemma 24 of
Waldschmidt [33] and is proved below. Formula (2.14) is just Lemma T 1 of
Tijdeman [32]. His upper bound 4* of v(k) can be replaced by 3“ by using
Inequality (3.35) of Rosser and Schoenfeld [27] (see also Hanson [16] for
a simple and alternative proof). The last assertion of Lemma 2.3 is just Lemma

4 of Cijsouw and Waldschmidt [11].
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To prove (2.13), we may assume m < kl. Then

(2.15) A(y; k m) = (A0 B Y +iy) .- +i) 7"

where the summation is over all selections j,, ..., j, of m integers from the set

., k repeated [ times. Hence
i Gy kL ("') (4(2l; K < 2 (4 (al; K-
m
This together with the fact that

(2.16) 4z 0 < Azl )y < ELED \(m:k) &

implies (2.13) at once.
Let B/, B, be positive real numbers, L,, ..., L, (n

integers. Put L = max L;
1<jsn—-1

> 2), T be positive

LEMMA 2.4. Suppose that by, ..., b, Ay, ..., Ay Ty, ..., T,—y are rational

integers satisfying
bj<B  (1<j<n-1), I[bl<B
0<A;<L; (1<j<n),

1,20 (I<j<n-1), 7u+..4+7,,<T
Then

n—1 _1 BL T
2.17) ﬂ\A(b,,aj—bja,,;rj)|se7(1+(" )(B-T{“Jf «’),

i=1

Remark. This is essentially an estimate in Loxton, Mignotte, van der
Poorten and Waldschmidt [19], but we have modified their estimate

T T
I (Bui—bjhe 7)) < {2e(1 +(n—1 ,E’:_?M)}
i=1

by (2.17).

Proof Without loss of generality, we may assume 7z, >0,...,1,_, > 0.

By (2.16), we have

B,L+B L, +1,\”
(2.18) |4 (b, 4, - H) :

% gif_n— _— n ]
J.,,,‘rj)| <e ( o

From the convexity of the function f(x) = xlog x, we see that for any a; > 0
and x;,>0 (i=1,...,m)

m x b'e er +Xx X e +X
Z q ﬁlog—fz 1+ + M]Og 1+ m,
i il 0y a a;+ ... +a, a;+ ... +a,
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whence
m
a,+ ... +a
xlog P< (X + ... +x,)log— =
; X; n g:vc1+ er T
Hence

B,L+B _ :
(2.19) ): I}Iog—+§_£'_ﬂi Sttt oo th“_Jlog(“rlnr 1)(B.,L+-|;B L,,))
J n—=1

< Tlog(l Gl ”(B"LJFB’L")),

T

Where the last inequality follows from the fact that
a
gl(x)= xlog(l +;) (a>0)

increases for x > 0. On multiplying (2.18) for j =1, ...
the lemma follows at once.

; By an integral valued polynomial we mean a polynomial f(x)e C [x] such
that

, n—1 and using (2.19),

f(m)eZ for every meZ.

Write 61(x) for f(x)—f(x—1). Then
dA4(x;0)=0

(2.20)
SA(x; k)= A(x; k—1) (k=1),
for if k > 2 then
54(x: k)z(x+l).k.!.(x+k)_x...{);(-:-k—l)
_ D) b k=) (x4 k—x) A=,

k!
and §4(x;0)=0, §4(x; 1) = 4(x; 0) are obvious. Let N = {meZ| m > 0}.
LemMMA 2.5. Suppose meN, aeC, a # 0. Then
det (A (aj; k))osj.ksm #0.

Proof. The case m = 0 is trivial. So we may assume m > 1. Suppose that
the determinant equals to zero, we proceed to deduce a contradiction. Thus
there exist complex numbers Aoy Ay ..oy A, not all zero, such that

E AA@; k)=0, j=0,1,....,m
k=0
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Hence the polynomial

Y A d(x; k),

k=0
being of degree at most m, has m+1 zeros at aj with j=0,1,...,m. So
Y. 4 A(x; k) is identically zero, a contradiction to the fact that A(x;0),

k=0
A(x; 1), ..., A(x; m) are linearly independent over C. This proves the lemma.

LEMMA 2.6. Every integral valued polynomial f(x) of degree k >0 can be
expressed as

221) f(x)=a,d(x; )+a,_, A(x; k—=1)+ ... +a, A(x;1)+a,4(x; 0),
where a,, ..., a, are rational integers.

Proof By Lemma 2.5 with a =1, there exists a unique (k+1)-tuple
(@, ..., 4)€C**' such that (2.21) holds. It remains only to show that
g, .-+, @, are rational integers. By (2.20), (2.21) we get

8f(x) =a,A(x; k—1)+a,_ A(x; k—2)+ ... +a,.
Write

() =8(f(), .on  Of(x) =8(8 ().
Then

f(==a, (BfNe=cr =0, -y (S X)emcy = G

Since f(x) is integral valued, so are §f(x), 62f(x), ..., 8f(x). Hence a,, a,,
..., a, are rational integers. This completes the proof of the lemma.

Lemma 2.7. For every positive integer n, we have
n!'> \/ﬂﬂ"’r Zig=n,

Proof. By a formula for I'(x) at p. 253 of Whittaker and Watson [34], we
have
nl=Tn+1)=@n+1)+V2e T Q2u)li2 23 (>0,

Since (1+(1/n)"*'2 > e for n=1,2,..., we obtain

n!> 2rnn"t 127",

Chapter 3. A proposition towards the proof of Theorem 1

In this chapter we prove a proposition towards the proof of Theorem 1.
The proof follows the main lines of Baker [6] and Waldschmidt [33].
We use the notation introduced for Theorem 1 and let x and 8 be defined
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as in Lemma 1.2. Put

G=Np—1=plh—1
and let { € K, be the Gth primitive root of unity fixed in Section 1.3. By the fact
that ordye;=0(1 <j<n) (see (0.5) and Lemma 1.3, there exists
(ry, ..., r)eZ" with 0<r;< G (1 <j<n) such that

e,ord, (@ —1)>1 (1<j<n).
Let r,, ..., r, be the rational integers such that
rp=p*rimodG), 0<r;<G (1<j<n).

Then we see, by Lemma 1.2, that
3.1 ord, (a8 " —1) > 0+;% (1<j<n).

For later references, we give an expression (the following formula (3.3)) for
1 x
(@F¢r)"e = exp (E log (af C’J)),

where the logarithmic and exponential functions are p-adic functions, which
are well defined by (3.1) and the fact that ord g = O (see (0.1)). By Section 1.1,
(d), we have

(3.2) (" i) 1)t = o™ £,

Op comparing (3.2) with (oc}”" L)t = " ["i, where oje C,, is a gth root of a; and
b is defined by bg = 1 (mod G) and 0 < b < G, and on noting that (p*, q) = 1
(see (0.1)), it is possible to choose a gth root aj?eC, of «; such that

(3.3) (@B )M = ()P s (1 <j< ).

3.1. Statement of the proposition. We define h; = h;(n, g; ¢4, ¢,) (0 <j <7),
hg = hg(n, g; cq, ¢4, €3), &= ej(n, q;cg,€y) (j=1,2) by the fo‘llowing 11
formulas, which will be referred as (3.4):

hy =nlog(2'' ngq),
2n+1

n
hy =2%¢4(2c,9)"(q— I)T hy.,

"21!—1

hy = 2%¢4(2c,9)" 1 (g—1)

1 -n
1 =(1——
+¢g (l hz) 3

n
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hy—1
l+¢, =e'™,
(34
- kl
T o+l
" _ 28%¢,(1+e)(1+5,)
- _ 1 1
]——
\/21“1( 32ﬂ)
2%h
by = n‘,
1 9107 (n+1)log (2°hoh;)
h,~ hoh, Phohy

1 1
k5 czn(q—l)(lvm)(l —h—l),

where log (2! ng) and log (2° hy h,) denote the usual logarithms. (In the sequel,
it is easy to distinguish from the context what the symbol log (or exp) means:
the usual or p-adic logarithmic (or exponential) function.)

In this chapter we suppose c,, ¢,, €3, C3, €4 to be real numbers satisfying
the following conditions (3.5), (3.6) and (3.7):

(35 2<cy<2* 2<¢,<72, 83<¢c, <14,

ey €2, P L <2
1 1\2
on (20009
cyn h, q
= i~|—l 1+ . c,+| 1+ : l
“\hs h, co—1) 1 co—1/c,
| 1 1 1 1
141+ )log3(~ T, L
fi (i oes} (Granmn) (50
1 I 2loghs 1 1
L U A . 0 Wl & (K R
+(1+h4){ R +n( +c0-1)

1T\
+{1+— )5
p—1/4")cs

" {2+ 1 loghy 1 loggq . nlog(h0+1)}2+1/(p—l)'_l_'
hg ho ho 4 ho ng" €3
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The existence of such real numbers c,, ..., ¢, will be proved in Chapter 5.
Put

n+1 n
(3.8) Va-y = max(p/s,2"  ngr=1 D=1V, )),
(3.9) W* = max (W,nlog(2'! nq D)).

Let U be a real number satisfying

2n+1

(G10) U =(1+e)(1+e)coc, chesca——a™(a—1)

G(2+1/p—-1))
elfylogp)"*?
PropPoSITION 1. Suppose that (0.5)+0.8) hold. Then

D"V, ...V, W*logV*_,.

ord, (@} ... " —1) < U.
3.2. Notations. The following 8 formulas will be referred as (3.11):

Y= epj;l logp'
q"D

S c;nDW*
I\ Htogp |

" [Uf,,logp_ 1 ]: Y
"D  c,c,W*0 cic; W¥e, 0

L-: = [W"‘],

U,

L, = [Ue,,f,, logp 1 :Iz ¥
"D c e (L_,+1)logVi_, c,co(L_+)logVr, |

Ue,f logp 1 Y
L = Eop . = <j<
. [ gD c,emp SV, cyc,np* SV, s A

L= max Ly=L, (see (0.2)),

1<j<n
n S (L1 +1MLo+1)
Xo={D [] (L;+1)}37%-+*(2¢(2+
A I

n—1)(B,L,+B L)\" c
X(l +( )( nTl ")) exp{pxs Z LJV;-I*HD max V;}-
i=1

1<j<n

For later convenience we proceed to prove the following inequalities
(3.123.27):

(1) L, +DLe+ D] L+1-6)> ‘-‘OG(' ‘%)S(T:n)’
j=1
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- 1 1\1
(3.13) —q" STO > (1 ‘a)(“z)a""
(3.14) PSY LV,<—,
J=1 12

(3.15) T(L_,+1)< 1.|.l 2+L) 1 Y.

- ' hy p—1jc,c5 '

(n—1)q(B,L,+B'L) 1

(3.16) Tlog(l+ = p — 103

1 E e
(3.17) (L_1+l)(Lo+1)(9+p_,1) (H )( p_?cla

1
S 1\1
(3.18) (L-1+1)(Lo+1}log(2e(2+L )) (1+h—);c
- l

1 ,Jogh
(3.19) (L_1+l)(Lo+l)log(qL,,)€(l+h—4)(2 gt o ’)

0

(320) nD max V}ghl Y,
1€j%n 6
1
(3.21) log(D(L_;+1)... L+ 1) < =¥,
. T
(3.22) Tlog(L_,+1) _log(ho+1) 2+1/(p—1) 1

logp ko gt 646

log L
In (323)-3.25), J, k are integers with 0 < J < [l"g

N1, 2+1/(p—1) 1
6= ((l _E); T+1)Ol'dpb $(1+hs) ng" €1€3 &

(3-24)((1 —%)I i 'I’+l)qJ **S(Pl : (1 -—%)9) < (l+his)(2+p—1~l

"], 0<k<n-1.
0gq

J+k {1 2 4 3
029 (1-7)3” SLTALPIOE. DR LS

log hy hy q nq
(3.26) Li+..+L,_,<4T,
(327 (L_+1)(Lo+1)<4ST.
Proof of (3.12). Note that
(3.28) log V-, > max(f,logp, hy)
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(see (3.8). By (1.7), (3.28), DV, > f,logp (1 <j < n) (see (0.2)), D > e, and (3.10),

we see that

(329) Y euf; 108 14
q"Decyc,np* SV, G

; hz (l sj ““<- ﬂ),

whence

(3.30) LJ+1_G>_MS__&__G> Ue, f, logp (1_1)

q"Deyc,np*SV; ~ ~ g"Deyc,np*SV,\ b,

l -n

By (3.30), (3.11) and 1+¢, = (1—?) (see (3.4) we get
2

B3 @_,+DELe+)[]L,+1-6)

j=1
o (Ue,,f.,logp)"*1 1 1
q'D clc4logV (.r:l.f:z np*Sy*V; .

Further, by (0.2), (3.28) and the fact that

=p/—12>flogp, D=e, 0<1
(see (1.7)), we obtain
(3.32) M >
q"Dcyc,W*0~ !
This and (3.11) yield
n? n? 1
—ig A
T<h—1 b
Whence by 1+, = e!/ (see (3.4))

Tin n\* T n?\ T ™ ™
] e G Yol i/hs —_ et
( " )‘““(”T) n!éexP(T)nlse el
Thus

1 T+ n.m

By (3.11) we have

£
(3.34) sTe—l sty ggMbW

g 10 c, flogp

(l+a1)'
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In virtue of (3.31), (3.33), (3.34), to prove (3.12) it suffices to show

n2n+l 5 G px n
(3.35) U?(1+31)(1+82)00¢'103¢304—n1—q (q_l)W _e,,_ﬂ
x D"*2V, ... V,W*log Var_,.
By (1.7), (3.35) follows from (3.10) at once. This proves (3.12).
Proof of (3.13). By (3.11), (0.4) and (3.9), we have

cnDW* _ 1) 5 M(, _ L),
6= 5> q( fiogp )7 flogp \' o

By (3.32) we get

Ufylogp

337 L . (1 - L)-
B37) q"Dc,c, W*0 / q"Dc,c, W* 0 h,

Now (3.36) and (3.37) imply (3.13) immediately. ‘
(3.14) is a direct consequence of the definition of L; (1 <j < n) (see (3.1 1))

Proof of (3.15). By (3.9), W* = h,. Hence we see, by (3.11) and (1.7), that

Y(W*+1) ( 1)( 1 ) 1
<——=< |1+~ )| 2+—)—Y
T(L_,+1)<C1CSW*%9 e

Proof of (3.16). By (3.4), (3.5), we have h; > 32n, c; > 32. Hence

1 1 1
1__l~ 1_L)>1————}1——.
cyn hy cn by n

By (1.4),

So py (3.11) and (3.13) we see that

(n—1)qL, Ue, fylogp. 1
T S ST,

e, 0 f,logp n—1
é Y .
{3-38) px DVJ c n2 | _—l_ 1 _-1_
2 c3n hy
1 flogp
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Hence, on noting that ¢, > 8/3 (see (3.5)), we get

-1 ‘'L )
log(l+(n )a(B,L; +B ~))glog(l+cifv‘°gf’(§e+3))

T an D\W O,
3 fylogp(B, B

Slog{ 1+ ———(+= ]| s W< W*

og( +8n D Vl+l{, W< W

This together with (1.7) implies (3.16):

)s.TW*s ! s(2+—~] )—Y
¢ cqe,0 p—1/c cq

In order to prove (3.17){3.19), we first establish

(n—1)q(B,L, +BL,)
T

Tlog(l+

1 1 Y
% S\ Tk Jlog Vi ce
(3.39) (L_,+1)(Lo+1){(1+h4)logV:—1 €1C4

By DV, > f,logp (see (0.2), W* > h, (see (3.9) and G = p/»—1 > f,logp, we
have

Y
cica(Loy+1)logVyE_,

2 hy,

whence

Lo+1< .4 ——( 1+ ]
® Teye (Lo +D)log Vi U hy
and (3.39) follows at once.
Proof of (3.17). By (3.28) and e, < D, we have

Y  Ueflogp <E
logVs_y q'DlogVi-, ~q"

On noting the above inequality and the fact that 6 < 1 (see (1.7)), (3.39) implies
(3.17) immediately.

Proof of (3.18). Note that by (3.11) and (3.5)

S A cyngD
2 e | 5D — | <2e(2+-2
"’(“L_lﬂ) "(2+W*) ( +fplogp)
28ng D 28
<2ef2 <2ell
e( * log2) e( +log2)an
< 2'ngD < (V- y)'m,

Where the last inequality follows from (3.8). This and (3.39) imply (3.18).
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Proof of (3.19). By (3.10), (3.11) and (3.36), we see that
(1+&)(1+&)cocs 0> G(2+1/(p—1)" .,
ch —y———————F-D
A-Ticm) @ w44 )= Grlogr
I T 15 -

gL, <

On noting the facts that ¢, < 28, ¢, < 14 (see (3.5)), n! > \/ﬁ n"e”" (Lemma
27) and V, < ... <V,_, <V, (see (0.2)), the above inequality gives

n

+ nt+1 n n—1
il s{1+8'}“+82)""23(14( e ) 1nq""D"'1K,t1) GlogV™_,.
" 2mn(1—1/(csn) log2

It is easy to check that

nfin—=1) 2
14 o8 < 14(——38 ) L2,
log2 log2

So by the definitions of V2_, (see (3.8)) and hg (see (3.4)), we get

(3.40) qL, < hs(Vi— > log Vi,

Now we show that

(3.41) log VE_, < (Vr_ )9 with ¢ =1/2'" g).
Put
x+1 _x

glx)=21g"1p*" 1y} 221q for x=2.
By (3.8)
(3.42) Vi = (ng(n)* > n"
Note that
(3.43) (x*+9m_Jogxy >0 for x > n".

By (3.42) and (3.43) we see that, in order to prove (3.41), it suffices to show
(ng (m)")**9" > log (ng () (n>2)
or equivalently
(3.44) n‘(g(n))' < = logn+logg(n) (n=2).
Now by g(x) > 2''g (x > 2) and recalling ¢ = 1/(2"'" q) (see (3.41)), we obtain
n(g(m)' *<—logg(n) = (n*— 1) (g ()" **

= (n°—1)2'" g = 2'  gclogn = logn.
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This proves (3.44), whence (3.41) follows. On combining (3.39), (3.40), (3.41) and
(3.28), we obtain (3.19).

Proof of (3.20). By (3.8)+3.11), (3.5), 34) and G = ph—12>flogp, it is
readily verified that

(3.45) Y > 2°h,Dmax (hy, max V).
1=j=n
This implies (3.20). d

Proof of (3.21). Since n> 2, g = 3 (see (0.1)), we have, by (3.4), (3.5),

18.83
(3.46) hy>18.83, h,>2'3, h,>2Yx Ty
By (3.39), (346), (3.5) and (3.28), we get
1 19.83

347 < {1 Y.
A7) ("‘“J’”(L““’{zﬁ-ls.ss( +2‘9x18.83)
By (3.36), (0.2), (3.5), (3.9) we see that

ry DV, ...V,
(3.48) (c,cnp*SyV, ...V, > (clczn)"(l _J) {canw*}"m

> (cy5 (can® —n) gW*) > (2-2-(2"—2)-3-18.83)

= (37961.28)".
Now (3.29) yields

Y 1
Ll ——— A= 1<j<n),
it c-lcznp"SPj( +h2) b

whence on applying (3.46) and (3.48), we get

l+2—13 n ]4_2—13 2
(3.49 Sl Y<S|=—=) I
b )l (3?961.28) ’ (37961.28) .

(3.47) and (3.49) imply
D(L_,+1)...(L,+1)<5.76:10"13y"*1p,
This together with (3.45) implies

log(D(L_,+1) ... (L,+1)) _log(5.76:10"*D log Y

og(D( ,+Y) (L, + ))goz;( L )+(n+l)°%,
576:10"13D log(2° hoh;) 1
< mnp D Tos T Ty

3 < Acta Arithmetica LII 2
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Proof of (3.22). By the facts that

(!(—)M) <0 forx=2
x

and W* > h, (see (3.9)), and by (3.11), (1.7), we see that

Tlog(L_,+1) U f,, log(W*+1) l

N

logp q" DO W* CyCq
£ 2. 3 o) 1
T q" el hy  ciCs

< log(hy+1) 2+1/(p— l)'L
h hy q Ci1€3

Proof of (3.23). We may assume ord b, # 0, since if ord b, = 0 (3.23) is
trivial. By (0.7), we have

l(:ngBo‘< W » Ww*
logp logp logp’

ord b, <
By (0.2), (3.38) (using its second line) and the fact that p*/(e,0) > 1, we see that
N\t _, \1 T
i - zl1—=|—==
o (s
So by e,f, <D, (1.7) and (3.50), we obtain
T g N\t _, 1\ w+
- [ < _
((1 @)"q TH)ord”b"“(] Q)" ’ T(l i\ )bgp

(ih)2rten Ly
hg

ng" CyCq

Proof of (3.24). By (1.3), (1.4) we have 6 > 1/p, whence

and
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By (3.50), (3.11) and the fact that k < n—1, we see that
(C-irreiestoo (-3
(D (iet)es(ar )
(1+;3)(2+;'1_1)1 ""STOs(l+h—L)(2+}—Jl—l)lU.

Proof of (3.25). By (3.9), W* > nlog(2!'ngD) > hy. So by (3.5) we get

ngD 28
1 3 < 11 =
g(! og p) log (log 3 an) < log(2'' ngD) <

logs 1 cyngD 1 logh
—_— 1 3 * ol L g My
W* W*(og( ,,logp)HOgW ) n+ hy *

and

Hence, by e,f, <D and (1.7), we obtain

(3.51) TlogS S 1. U log$ _ (1 logho\2+ 1/(p—1) 1

logp ~DO q" cyecy W* ~\n hy | ¢ € Cy

U.

Similarly, by the fact that k < n—1,

(352 rlo8d

(n—1)Tloggq (n—l)TlW‘ (l—l) u

logp = logp  ~ logp n n)qc,c, DO
(l__)2+1/(p—l) L
n q Ci1Cy
On noting that
l°gqj <89 s>,
q q

We get (again by e, f, <D, (1.7) and (3.9)

(3.53) T logg’ . Uf, _ logg _ 1 logg 2+1/p—1) 1

1
— U.
logp @ ~@Dee, W 0 g She a " ey
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It follows from (3.51}«3.53) that
at logs I T lo
1_1 iq—Jngl(T o8 +Toqu+ . ngJ)
q/n logp n\ logp ~ logp logp ¢
g(]+logh0+i_logq)2+l/(pu—l)‘ 1 7,
hoe hy 4q ngq €1€C3

Proof of(3.26). By (3.38), (0.2) and ¢, > 8/3 (see (3.5)), ¢ = 3 (see (0.1)), we
have

1 < 1
c,n(n—1)q 8n(n—1)

L. .
e 1<j<n).
7 (1<j<n)

Hence
Lit o+ lyy 1 1

This proves (3.26).
Ll

Proof of (3.27). By (3.13) and the facts that 0 <1 (see (1.7)), c3 =27,
hy > 2 (see (3.4), (3.5)), we have

1 11 1 1 1
2 _ 2 el St P g
3T> 7 15: (“ {-3)( hl) ¢

1 1\ U U
>Z22-1) (1—5) T

On the other hand, by (3.39), (3.28) and the facts that h, > 1 (see (3.46)),c, = oo
(see (3.5)), g = 3 (see (0.1)), we obtain

1 Ue,f,logp
{_- .
(L_1+l](Lo+l)~.‘clc‘ oV ¢'D
< 1 ) U < U
"“-16q qu—lcl“““sqn—lcl‘

Now (3.27) follows from the above two inequalities. ’
So far we have established the inequalities (3.12)-(3.27). Now we introduce

more notation. For (J, 21—y, ..., Ay, Tgseees Ta—g1)ENZ"T? set

n—1
(3.58) Az, 1) = A(q ™ z+i_y; Loy +1, Ao+ 1, 70) [ 4(b,4;—b;4,; 1),

j=1
where 4(z; k) and 4 (z; k, |, m) are defined by (2.11) and (2.12). In the sequel_of
this chapter, we abbreviate (A-,, ..., 4,) as 4, (tg, ..., T,—1) @s T and write
|t| = o+ ... + T, Using a remark from Mignotte and Waldschmidt [24].
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§4.2, we can fix a basis £,, ..., &, of K = Q(ay, ..., «,) over Q of the shape
(355] Cd g a'iw a'l'mf
with

(kigy ..., kng)eN"  and ) kuy<D—1 (1<d<D).
i=1

3.3. Construction of the rational integers p,(1). We recall that Fiy..., I, are
the rational integers introduced in the beginning of this chapter,
G=p/»_1, X, is defined in (3.11).

LeMMa 3.1. For d=1,...,D and A= (A_y, ..., 4,) in the range

Bs6) o<, <L; (—1<j<n), rA+...+r4 =0(mod G)

there exist rational integers p,(1) with
0 < max |p,(4)] < Xg/~V

d, A
Such that

D n
(3.57) X X PR Eado(s, D) [T @) =0
Ad=1 j=1
Jor all (s, Ty -ve» Th—1)EN"' satisfying
1 <s< S!

Where " ranges over (3.56).
a

G.a=1, [I<T

Remark. In the rest of this chapter s always denotes a rational integer and

T a point (t,, ..., T,—;)€ N". The expression “for (s, Ty, ..., T,— ;)€ N 1" will
Omitted.
Proof. Write

Pd.l:s.r(xl’ _— x") — (V(L_l'f' I})ro Ao(S, t)x;l;nzl;s+hd . xﬁ“l,.shknd

=L+ 1))°A(s+Ai- 3 Loy+1, Ag+1, 1p)
n—1 n
x 1_[ A{bn’;'j_")j;'u; T}} l_l x_‘,-’""‘"”’“
d=1 i=1
for d, 4,5, with 1 <d <D, 7 in the range (3.56), 1 <s<§, (s, ) =1 and
ki< By Lemmas 2.3 and 2.4 we see that each P, ., is a monomial in
X15...,x, with rational integer coefficient, whose absolute value is at most

e , T=1o (L.y+1)Lp+1)
3u.~,+m.,er_r.,(,+(n lJ{B,.L.+BL,.l) (29(“ s_))

T—r1, L_,+1
g3“—-—1“‘1}7([_’_("'_"}{‘8!![‘1+B’Ln) T . . Y {(L-y+1)(Lot+ 1)
T L +1
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Further
dchJPd,).;s.t -‘;_ p*SLJ+D (l S._j “g- n)'
On noting that

zr;hx+...+r,.i.,,a = C(r141+...+r,..3.,.}s =1

for 4,,...,4, satisfying the congruence in (3.56), we see that (3.57) is equivalent to

(35?)’ zzpd.l;s.r(mp""an)pd(;") =0 1 <8< S’ (S’ q) == 1’ |T| < T
A d

1 T
In (3.57) there are (I_E)S( :") equations and at least

D(L-1+1)(Lo+1) rl [L(‘;']] Gt godilrys.iiiry, G)

j=1

zénuﬂ+num+nfng+1—m
i=1

unknowns p,(4). By (3.12), we can apply Lemma 2.2 to a,...,a,, the field
K =Q(a,, ..., ,) and the polynomials Py ;.. Then the lemma follows at
once.

34. The main inductive argument. For rational integers r,

I (-1 <j < n)and p’(2) = p(A-1,...,4,), which will be constructed in the
followlng ‘main inductive argument”, set

D n
(3.58) 0,21 =Y Y pP W),z [T (@ ),
2 d=1 j=1

where Z"‘is taken over the range of 4 =(A-y,...,4,):

(3.59) 0<4;< Iy + r A, = r'¥’ (mod G).
Note that, by (3.1), the p-adic functions

(B Cr)M* = exp(4;zlog (xf" ™))

(=1<j<n), rii+..

(1<j<n)
are normal.

THE MAIN INDUCTIVE ARGUMENT. Suppose that there are algebraic numbers
%, ..., , and rational integers b,, ..., b, satisfying (0.5)-(0.8), such that

(3.60) ord, (@} ...a"=1) = U

Then for every rational integer J with

F%L]+L
logq
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there exist rational integers rV), I} (—1 <j < n) with
0< <G, GIr,

sl __Ll LI‘J)=L 0<ﬁflgq—JL} (lgjn{.‘ﬂ),

ged.(ry, .

;m

and rational integers p§’(2) for d =1, ..., D and 7 in the range (3.59), not all
Zero, with absolute values not exceedmg X80~ such that

¢S, (s,9)=1,ltl<q’'T.

The main inductive argument will be proved by an induction on J. On
taking % = 0, I’ = L, (—1 <j < n), p(%) = p4(4), which are constructed in
Lemma 3.1, we see, by Lemma 3. 1, that the case J = 0 is true. In the rest of this
Section, we suppose the main inductive argument is valid for some J with

@05, 7)=0 for 1 <s<

sz logL, . .
SJ < oga I , we are going to prove it for J+1. So we always keep the

hypothesis (3.60). We first prove the following Lemmas 3.2, 3.3, 3.4, then deduce
from Lemma 3.4 the main inductive argument for J+1.

Let

v=A—4 (1<j<n-1)
and
P = Y p (),

d=1

Set
n—1

filz, 1) = ):”’ Z P (DA (2, 1) [T (@57 Ly
i=1

=Y (B4, t}‘”[:[l (@f" oy,
A

j=1
Note that, by (3.1) and (0.7), the p-adic functions

(@ {ryP % = exp(y;pPzlog(a?™() (1<j<n—1)
are normal.

LemMA 3.2. For any t with |1|

< T and any rational number y >0 with
ord,y > 0, we have

Tlog(L-,+1)

- —ord,b

ord,(@,(y, ) =f;(y, 1) = U— -
Proof. We first show that
(.61 byr + ... +b,r, = 0(mod G).

We use the concept of congruence modp (introduced in § 1.3) on 0, = {xe K|
Ord,a > 0}. Note that if «, f, 7, 6 in O, satisfy « = f(modp), y = d(modp),
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then ay=pd(modp); and if orda=ord,f =0, o= pf(modp), then
o ! = p7'(modp). Hence from the congruences
C'J =1l(modp) (1<j<n)

(see the beginning of this chapter) and ord,a; = 0 (1 <j < n) (see (0.5)) we get

o (> = 1(modp) (1 <j<n),
whence

{7bm = obimodp) (1 <j<n)
This together with (3.60) and the fact that U > 2 implies

c—{hr; +oetbprn) = al{| i

.. b = 1(modp).

Since {€ K, is a primitive Gth root of unity, we obtain, by Hasse [17], p. 153,
155, 220, ,
b,ry+ ... +b,r, = 0(modG).

On recalling r; = p*rj(modG), (3.61) follows at once.
Next we show that

n by
(3.62) ord, ([T @) 5~ =1) > U—ord,b,.
j=1

By (0.7), (3.1), § 1.1 (b), we see that
ord ( %) ] ylog(af” C'J)) > ord, log(af" (")

= ord, (" (" —-1) > U+;—_—l.

From this inequality and by § 1.1 (a), (b), (d), (3.61), (3.60) and the fact that
U=>=16 W* > 16, we obtain

n b n
oty B = T exp( =24, ylog@™t)
J b,

b; log(a?” {"‘))

by

i
( b E
( Z Og(a;“C‘")”’)

n j=1

"

—"ylog ﬂ (@f” C")”‘)

\.-CJ'

= exp(—lylog(a’" "“)”")

—yp*log(ed' ... obn )).
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On noting that if ord,b, > 0 then

logB, 7
%8B0 y_oweslys_L
logp ] p—1

and using (3.60), §1.1 (b), we get

U—ord,b, > U—

A
Ordp ( = -l—’lyp"log (o4

.. acﬁ")) > ord log(a}' ... opm)—ord, b,

= ord,(of' ... ap—1)—ord,b, > U—ord b,
p—1
Therefore by §1.1 (a)

ordp(ﬁ (af"C”)_”f""— 1)= ord,(exp(——g—!yp”log(a'{‘ aﬁ”})— l)
j=1 n

p)
= ordp(—b—"yp"log(aﬁ‘ ﬁ"})

> U—ord,b,.
This proves (3.62).
We assert that
ord (B TP =0 (1<j<n),
for the inequality
ord, (4;ylog(}"{™)) > ord,log(a§" ") = ord,(af" (" —1)

1
>0+—

—1
implies
ord,((@"{™)*” — 1) = ord, (exp(2,ylog(e}" (™) - 1)
= ord, (4;ylog(af" (")) > 0+E:{-T’
Whence

ord («¢"{")** = min{ord, 1, ord ((«?"{)** —1)} =0

On combining the above assertion and (3.62), and noting, by §1.1 (d), that

n=1

n n L -5
T @ ey = [T @ e = {TT @ e} ([T o) ™ -1),
i=1 =1

i=1 i=1
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we obtain
n—1 n

(3.63) ordp{ ﬂ (" e — H (ocj"'C”}“”’} > U-ord,b,.
i=1 j=1

Write y = k/h, where h > 0, k > 0 are coprime rational integers. Then
ord,;h = 0, since ord,y > 0. Note also that ord,g =0 (see (0.1)). Now by
Lemma 2.3 we have

{q.fh)-zﬂ--l + lHLa+1}(v(L_l + l))TAJ(y,T)EZ,
whence
log(L_;+1
(3.64) ord,A,(y,7) =2 —Tord v(L_,+1)> —-T %‘

Obviously for any d with 1 < d < D and A in the range (3.59), we have, by (0.5),
(3.65) ord,(p(A)¢,) > 0.

Now on noting
D n=1 n
[0 0)—0,(0, 0 =Y ¥ pPW)E A (T @ = [T (")),
i d=1 j=1 j=1

the lemma follows from (3.63){3.65) immediately.
Lemma 3.3. For k=0, 1,...,n—1, we have
(3.66) @,(s5,7)=0

1Nk
for 1<s<qg’**S,(s,9)=1,1| < (l —(l—a);)q"“'T.

Proof. We argue by a further induction on k. By the main inductive
hypothesis for J, (3.66) with k = 0 is true. We assume (3.66) is valid for some
k with 0 < k < n—1. We shall prove it for k+1 if k < n—1 and include the
case k =n—1 for later use. Thus, we see, by Lemma 3.2, that

(3.67) ord, f,(s, ) > y—riogl-itl_ oy
logp
J+k 1\k -
for 1<s<q’™S,(s,q)=1t<|1-(1-=)-)¢g'T.
q/n

Note that, by (3.1) and (0.7), the p-adic function
n—1
1'1 {af'C”')””’ "0z
j=1

J
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is normal. Further by (2.15) and ord,g = 0 we see that
p(L_|+1}{Lo+lI9((L_1 +1)!)Lu+1AJ(p—OZ, 1.)
is a normal function, whence so is
p”'"“""”“(‘“i_iT)A_,(p'“z. 7).

Thus by the definition of f,(z, 1),

(3.68) F,z,1):= p”'_'+ 1“""“’(“’*%)[,@‘92, 1)

for
[l < (1 . (1 —1)“ I)q_“"T
q n

are normal functions. We now apply Lemma 1.4 to each function F(z, 1) in
(3.68), taking

(3.69) R=g'"**s, M= [(1 —-]-)-]-q"’T:I+ 1.
q/n

Note that by (3.68)

1 d

o+=15) i
(L-1+1)(Lo+1N8+-—)-mo _~ =
P m!dz’“fJ(s’ 7).

1 4™
(3.70) g Fysp’, 0)=p

It is also easy to verify that

(3.71) 1 a

Ul dz"®

AQ@ P z+A_; Loy+1, Ag+1, 1)

_ To+ =
=q J’“’( 0“ ﬂo)A(q Y24d_ s Loy +1, Ag+1, 1o+ po)-
0

Further we note that for any t,meN, A(x; t)x™ is an integral valued
Polynomial of degree t+m, whence, by Lemma 26, there are af™
€Z (I1=0,1,..., t+m), such that

t+m

(3.72) A(x; )x™ = Y af"™A(x; ).
1=0

We abbreviate (g, ..., 4y—1)€N" to u and write |u| for g + ... + f,—y, and
recall

D
s B
D= Y A&, v =A—7.
d=1 bn
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Now By (371), (3:22) we olitain for all fy(z, To+ Mo, 0y, ..., 0,-1) appearing in (373) and 1<s<g’**s,
(s, g) = 1. On combining the above observations, (3.73) yields

(3.73) i j}(z 1) { Tl
dm og(L_,+1) 1 1 —
ord( 1% ,,,f,(s r]) s 1 =I5t T+1 )ord,b,
=Yy J@ mw{ ‘dmA(q‘Jz+l_l, _1+1,2.0+I,t0)} fis
lul=m 2 OémsM_ . S q.i'-l-kS R (S,q)=l,
SRR () o 46 ) VL
x]‘[,_r:(b,,y,,z)]'[ ,dz,u(rx ¢y il < ( (1_‘_11)“1) .
—sua[TotH tun Ty (log(af™ )P .
= M):m Ju ( 0% ")b s ’Jﬂl—#ﬂ— This together with (3.70), (3.22), (3.23) implies
14
- 3.7 i =i 2
xYDpNA) A z4 A5 Loy +1, Ag+1, 1o+ 4o) (3.74) 1ss;:.l::.q;=1 {ord"(t!dz‘ F,(sp’, r))-t—tﬂ}
A 0OsisM-1
n—1 n—1
< (TT (A 7))} TT s > Ut (Lo, 4 (Lot 104 L) TIo8E1+1
Jxl 4 p—1 logp
n=1 PN\
— -Juo t°+'u°)b"(m—ﬂo){ (.l—_Og(ar‘: »ﬂ} 11 g
= " —{{1==]=
Iulz;'mq ( Ho ;l;lx Kyt p =4 T+1 Jord,b,
T+ thn-1+in-1 n—1 t ; ( } 2 l
Aehil) Z, To+ Moy Gps -+vs On—1)-
’ '“);0 ’"'z':"’ {‘E[‘a Al sl l {1 nloglh+1)] > p=1 1
S R
By (3.1) and §L.1 (b), 8 0 1€3
for
! (log@f ¢ | s L\ # _
H e L e d e L SRR ITI%(I_(IJ)H])(I_T
q/ n
For Where
k+1\ _, [( 1)1 » ] 1\1
< —— T, sm<M-1=|{1—)-q°T _ Jtk - L R
and (see (3.69)).
(Gys..es Opy)eN""'  with o, <74, (I1<j<n-1), On the other hand, by (3.24), (3.25), we see that
we have (3.75) (l—:})RMO+MordpR!+(M 1)——'0g‘:
n—1 l k _ :
+po+0  + ...+ 0,1 < ) (1;+ j=|r|+l,u|-.§(l—(l——)—)q g -
R B (D terraes((o s (oo s
q/8 9/ p-1 q/n logp

whence by (3.67),

1

Tlog(L-,+1) 1 1 \1 loghy, 1 lo il =1 1
ord f(S,T + Hoy Ty vees Op—1) = U_—---—-——Ol'dpb,, ‘:(1"‘_ 2 e i T el 4 "
pJu\S: To+ Hos T4 logp A hg +p-—~l ci Ci{ 14 hy +ho q ng" c‘nCaU
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Now we see from (3.74), (3.75), (3.7) that each F(z, ) in (3.68) satisfies the
condition (1.8) with R, M given by (3.69). Thus by Lemma 1.4 and (3.68) we
obtain

1
ord, f, G r) > ord,F, (2 P, r)—(L, L+ (Lo + 1)(9+p_ 1)
1 1
> (1—5) RMO—(L-y+1)(Lo+ ”(BJ“ﬁ)

V1, 1
LA —(L_y+1)(L
>(1 q) g STO— (L, +1) 0+1)(0+p_1)

IWk+1
for seZ, 7| < (Iw(l ——)—+")Q_"T-
q n

By the second inequality in (3.74), we have

U_Tlog(L_1+l)_

1
Fics ord b, +(L-y +1)(Lo+ 1)(94-—‘—)

p—1

1
24—
p

1 nlog(hy+1) -1 1
= —31+—
=¥ { +h5+ hy ng" c,c;3

The right-hand side of the above inequality is, by (3.7), at least the right-hand
side of (3.75). Thus by Lemma 3.2 and the fact that ord,g = 0, by the above
observation and by (3.75), we get for s > 1

s s Tlog(L— 1+ 1)
Ol'd,(%(q; 'r) f,(a, ‘8)) =U logp ord,b,

> (1 —l)RMO—{L_l +1)(Ly+ 1)(6+L)
q p—1

1=V L rsTo— (L + 1)L +1) 0+—1—)
> ) (L-1+ 1)Ly i/

Hence

(3.76) ord,(pJG, r) = min(ordpj}G, 1:), ordp((p,(z, 1:) —f,(;}, t)))

> (I —é)ziq*STﬂ—(L_ 1+ 1)(Lo+ l)(9+~l—)

p—1
Y i1V (1= L) (1= L
>clq ! q . c3n 1 h,

Linear forms in p-adic logarithms 153

1\k+1
for s> 1,11 < (l— l—a —n—)q"'T, where the third inequality follows

from (3.13) and (3.17). From now on we assume that 0 < k < n—2.
On the other hand, by (3.59), we see that for 1 <s < g’ ***!S, (s, q) = 1,

I < (1_(1 —1)’—c+—l)q‘JT,
q n

C"!{Jjaq}‘Z‘L- 1+ 1) Lo+ l](v(L_ 5 + l))ro(DJ(s, T}

D
= {;m 2 P(A)g B D Dy (L 4 1)) A(q s+ A-y; Loy +1, Ao+1, 15)
d=1
n—=1 n
x { 1‘[1 A(byAy—byd,; 1))} [] af dssthss,
i= i=1
Which is the value at the point (a,,...,) of a polynomial, say,
Q;;,,,(xl, s X,) in Z[xy, ..., x,] of degree at most
pa (;]qJ+k+ls+D ‘q’:p"quSLJ+D

'ile X; (1 <j<n). Note that by the main inductive hypothesis for J and
mmas 2.3, 24, for 1 < d < D, A satisfying (3.59), 1 < s < ¢’ ***!'§,(s, q) = 1,

|Tl€(l—(l—l)w)q_"7‘, we have
q n

J’ -
|P§ i(,m < Xéﬂcu lJ’
qz.m.-l+nu_o+11 < Lz"u.-.+1;u,o+ n

_ k+1 (L-y+1{Lo+1)
l4(g~?s+2A-1; L_y+1, Ag+1, 1,)] <[ 2¢ 2+-2 3
L_;+1

wil's S gt ML=y + Lo+ 1)
< | 2e
) (o) ,

(ML + 1)) TT 145, 25— ;4,5 7))
j=1

J
< -1+ ”‘“erﬁ“’(l _l_("_ 1)(Buﬁn+B'ﬂi]))T

q’'T
< 3(L-.+nr(1+("‘1)(BuL1 +B’Ln)):r
T L]
Where 1) — max I}. So the polynomial Q,., (x,, ..., x,) has its length at

1€j<n

Most

(D l—"] (Lj+l))*XS““’_”IE,"'"”“L"“)(Ze(Z-I— S ))qn-{n_wuuaﬂ}
L%l

i==1
X 3(1--—1 +: I)T(l +(n o I)(‘B!ILI +B"L"))T

T
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Now assume there exist s, T with

1<s<g*™*s, .9=1, i< (1—(1—$)k—+—l)q_"'r

h

such that
@,s,7)#0,

and we proceed to deduce a contradiction. By Lemma 2.1 and the definition of
X, (see (3.11)), and by (3.14)3.16), (3.18)-3.21), the assumption ¢,(s, 7) # 0
implies that

ord,¢,(s, 1)

& Ordp(c—r{'”sqz.ﬂ.[.—: +1)Lo+ ll(v(L_ L+ 1})’0¢J(S, T))

{log(D 1‘[ (L;+1))

i==1

<
e, f,logp

(n—1)(B,L, +B'L.1)
T

1
= 1logX{,+log3-’I‘(L_ D+ Tlog(l +

Co

+2(L_ g+ 1)(Lo+ DlogL, +¢" (L s + (Lo + ”‘03(2"’(“1, S+ 1))

+p ¢S Z L;V;+nD max V}

1<jsn
+1=-n an 1
ol flogp{ (1

1 1
+(1+¢1(co 1))fSZLJ‘G (H‘ 1)1083'T(L._1+1)

1 1 (n—1)(B,L,+B'L)
el i)

: S

+1-2(L_ y+1D)(Lo+ l)logL..}
+1-n 'l 1 l 1 1
<L {(ket) (am{r )
1 1 1 1 1
+(1+(1+h )1033)( _1)(“;;-1)&

t=— )(log(D 1 (L;+1))+nD max V)
o

j==1 1=j=n

1 1 \11 1 1 1 2loghs\ 1
*(”m)(” l)ncﬁq(”h)(“ ng " hy )c}
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This together with (3.6) implies

BT ord,g,5. 0 < — 4‘“ "{(1“) ('_q_n)-(]_hi.)
L) (i

1 1 1 2loghs\ 1
1= 1+ 4+=5— 2 —
(=) (e 55E)
On noting that

e 1 1 2logh
l— =+ 1= )4+ 55— 2
(- )
1 \1 1 1 \1 1 |
5. 1+_)ﬁ+4(1_-) (H_) > (1
( p—1)q" q -1/q +p—l q**

(3.77) yields
ord,¢,(s, 1)

[ (SO OB e

Contradicting (3.76). This contradiction proves

@5, 7)=0

1<s< s, (,q)=1, hl< (I —(I —1)":’—'-):;'«’1

q) n

for

Thus the proof of the lemma is complete.

LEmMMa 34.

Jor

1€s<*8, (5,9=1, Ild<gqg V'V

4~ Acta Arithmetica LIN. 2
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Proof. We recall that (3.76) holds for k =n—1. This is

(3.78) Ord,,fp;(g, r)> (1 —;:—)z;l]-q"_‘STG—(L_ ' +1)(L0+1)(0+p—1~1)
2103 (- (=)
()t
h, p—1/q" c,
for s=1,|7l<q YHUT

On the other hand, on noting that, by §1.1 (d) and (3.3), we have fof
(Ays ..., A,)EN" satisfying

riAy+ o+ 14, =rY(modG),

(.79) [T = [1 (e
- Jﬁ. (g
= { - (/e Aus). SR+ ot rne)
i=1
= 0 [T iy,

we see that for 1 <s<qg’*'S.(s,q9)=1,t|<qg V*UT

{p !+ R Do (L 4 D) g, (57q. 7)

D
=T Y PRIt DLt D (g U543 L+ 1, Ao+, o)
P d=1
n—1

X (v(L-y+ D))o [T 4(ba4;—b;24,; 1)) [ (af/ayr ass+akse
j=1 i=1

J

is the value at the point (x}9,.... }) of a polynomial, say, Q%s.«(X1,.--» Xu) in

Z([x,,...,x,] of degree at most
p*q’ 'S +4¢D < p*qSL;+ gD

in x; (I €j < n). By the main inductive hypothesis for J, Lemmas 2.3, 24
we have for 1<s<¢'"!S,(s.9)=1,l1|<q V*VT,1<d<D, i in th°
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range (3.59),

P < XD,

2(J+ LMLy + 1 Lo+ 1 2L +1 +1
q 1+ 1IN 'é{qL')‘ 1+ 1MLy l‘

] S {(L-1+1)Lo+1)
lA(g~Y*Vs4+4_,; L—1+1-‘10+l’r°)|“{“(28(2+1.. +|)) ,
-1

(ML-y+ 1)) ”[:[ |[4(b,A;—b;A,; )|

i=1

< 3([._ L+ l}toe%:r"tn(l +(ﬂ— l)(B”ﬂ-"l-i-B'ﬂ:l})Q'{-h 0T

q—(J+uT

1
< 3#r(!--|+ll(l +(ﬂ— l)q(B}Ll-!-B,LH))qT

So the polynomial QJ,.(x,, ..., x,) has length not exceeding

n r 1
{D ]_I (LJ+I)} Xéﬂcg—n3lq'?(.[.-|+l}(l+[n_l)q(B}Ll+BLn])qr
i=-1 :

s ettty 2(L-1+1)Lo+1
2e| 2 = L,

Now we assume that there exist s, T satisfying

1<s<q’*'s,

.9 =1, l<q¥*T

such that
(PJ(s/q! t) ?ﬁ 0!

and we proceed to deduce a contradiction. In Lemma 2.1, let E
= K(ai", ..., ai’%), P be a prime ideal of O, lying above p. Thus

[E:Q] = [E:K][K:Q] = ¢"D
(see (0.6)) and
fo2 1,

eﬂ ? .eps

1 .
Note that h(a}"“)=ah(aj}. Then by Lemma 2.1 and the definition of X,
(see (3.11), and by (3.14)(3.16), (3.18)«(3.21), (3.6), we see that

,,,,G"‘)#O with 1 <s<q’*'S, (s,@=1, kl<q VT
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implies

5
ord,,cpj(a. r)

q"D { n ' 1 n
< — log(D (L;+ 1) +- logX,+p*S ) L;V,+nD max V;
e, flogp ( j=I]1 : ) co—1 g ;';1 7d 1<j<n X
{ﬂ_l)q{BnLl+ELn,)
T

| I
+(Iog3)aT{L_ ol I]+ETIog(I +

— l)) $2(Loy +1)(Lo+ l)log(qL.,)}

QE{(L'F“I—)(I'F—I‘)L +(l+ l )i
¢, \\hy h, Co—1) " co—1/c,
SE G o) G
(i) r e (4552
Y-

a contradiction to (3.78). This contradiction proves

+(L_+ 1)(Lo+ 1)]0g(2€(2+

m,(g.r)zo for 1<s<q’*'S, (s,q)=1, lhl<q V'V

The proof of the lemma is thus complete.
LEMMA 3.5. The main inductive argument is true for J+1.

Proof. Similarly to (3.79) we have for (uy,..., f,, r)eN"*! satisfying
rody + ...+ r,pu, =r(mod G) the equality

n
(a}J"Cu)u slg — Cfm n (G}M)P"M’_
1 i=1

:::

(3.80)

i
Writing
(1<j<n),

W= i.?+qﬁ.j, 0<i¥<gqg

we see that

(3.81) (M layprmss = R ass(gllap i (1 <j < n).
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By Lemma 3.4, (3.80), (3.81), we obtain

g—1 g=1 n

(3.82) y ... ¥ H(a}M)pxﬂ’
=0 an=0i=1
L9 gk

D
X ¥ Y ¥ Y-, Agr At +qhys ooy AFHaA)E,
A-1=040=0 Aj..ey And=1

XAlg YV Vs+Ao s Loy +1,2,+1, 1)

n—1 n
x [ 4(qb,4;—bi)+(b, 2 —b2%); t) [T o2 =0
i=1 j=1

Jjin
i

for 1 <s<q’*'S, (s,9)=1, tI<q Y*VT, where Y
Alvererdn

ranges over the

Tational integers 4,, ..., 4, satisfying

Iy _ ;4
(3.83) 04, < I*VaL, ..., 4% = [M] (1<j<n)
q
and
(3.84) Y r(AF+4i) = r'(modG).
N J= !
We emphasize that, by (0.1) (¢, G) = 1, hence (3.84) is equivalent to
(3.84y ridy oo+ A, =YY, L, AX)(mod G),

Where /(3% A¥) is the unique solution of the congruence
gx =r"—(r, At + ... + r,i¥*)(modG)

'“‘the range 0 € x < G. Now by the main inductive hypothesis for J, there
CXists a n-tuple A%, ..., i* with 0 < ¥ < g (1 <j < n), such that the rational
Integers

P (A1, Aoy AT +qAy, ..oy AX+44,)

for1<d<D,0< A, < (j=—=1,0),4,,..., 4, satisfying (3.83), (3.84)’. are

J
Mot all zero. Fix this n-tuple A%, ..., i¥, take

el R S 7 .
which is obviously divisible by g.cd.(ry, ..., r,, G), and set
Kf*v_h—L (j=-1,0),

PTG e A R

U1y _ pI+ 13 3 :
Li*D = B{*UL, ., A8 (1<j<n),

] jm) - pfi”()‘—lu )'0! ;'T +q;‘ls LALRE ;': "HI},J
for

I<sd<D, O0si4ysLi™™ (-1<j<sn),

(3.85)
Ay + .o+ 14, =Y modG).
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By the condition (0.6) and the fact that (p*s, g) = 1, we obtain from (3.82) that
D .
(3.86) YU Y pi A ATV s Ao Loy + 1, Ao+, 1)
: .

d=1

n—1 n
x |1 A(q(b,ij—-bj.ln)-f-(b“i}‘—b_fi.,’f); ‘r_,)' naf""i' =0
i=1 i=1

for 1<s<q’"'S.(s,9) =1, 1| <g "*VT, where YV*! denotes the sum-
A

mation over the A's in (3.85). By Lemma 2.6 for each j with 1 <j<n-1 and
0<k<ry,

A(q(byi;—bji,)+(b,AF —b;Ax); k)
is a linear combinz;tion of the k+1 numbers

AbAj=bjdzt), 1=0,1,..,k,

with coefficients independent of 4,,..., 4, where the coefficient of
A(b,A;—bji,; k) is non-zero. Hence for each j with 1<j<n—1,
A(b,4;—b;A,; T;) is a linear combination of the t;+1 numbers

A(qb,4;—b;A)+ (b, 23 —b, A k), k=0,1,...,1,

1

with coefficients independent of 4,,....
(3.86) implies

4,. By this observation we see that

C_"‘““‘PJH(& 1)=0

for
1£s€q1+|s’ (S"I)':I' lﬂéq_u+“T'

This completes the proof of the lemma.
Thus we have established the main inductive argument for J =0, 1, ...

[logL"j,+ 1.
logg

We should like to make some remarks on van der Poorten [26]. Recall that

1

and let ' be a G,-th primitive root of unity in C,. It is asserted in [26], p. 35
that for € K with ord,« = 0 there is an integer r, 0 < r < G, such that
(3.87) ord,(a{"—1) > g, + 1.

Note thal-._,.lhis is false. A simple counter-example is the following. Take
K=Q,p=3Z,thene,=g,=1, G, =6. Let {’ be a 6-th primitive root of
unity. Take a = 2/5, then ord,a =0 and it is readily verified that

ord,(@{"—1)<1<g,+1 for r=0,1,...,G,—1.
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We should also point out that the assertion (3.87) does hold for the special case
Where g, = 0, by virtue of our Lemma 1.3; but even in this special case, there
are still some inaccuracies in [26]. For instance, in the proof of Lemma 7 in
[26]. pp. 46, 47, which corresponds to our Lemma 3.5, the author of [26] does
M0t put an additional restriction on g that

(3.88) (4 G)=1,

Which seems to be essential to make his proof work. On the other hand, if one
does assume (3.88), then by Hasse [17], p. 220, K, whence K, does not contain
the gth primitive roots of unity, and we cannot understand the arguments
felated to Kummer theory in Section 5 of [26], pp. 49 51. The same remark
Xtends to the proofs of Theorems 2, 3, 4 of [26].

3.5. The completion of the proof of Proposition 1. We suppose that
F ?Dosition 1 is false, that is, there exist algebraic numbers a,, ..., «, and
fational integers b,, ..., b, satisfying (0.5)40.8) such that

ord (a}f ... ab"—1) > U,

then we proceed to deduce a contradiction. By the main inductive argument for
logL,
J=J0=[ = "J+l,
logg
We have

(3.89) @s8,7)=0 for 1<s<g’™S, (s,9)=1,

ltl<q™™T

Sm‘{:e 0< I < gL, we see that I}® = 0. Further if t = (z,, ..., T,-1)
satlsﬁes

0<1t,<3q7°T,
then we see, by (3.26), that

0<t,<If? (1<j<n-1),

=10+ ...+ Ty <3g7°TH+IL? + ... + 2,
<ig7°T+q Ly +...+ Ly-y)<q T

D
By these observations, (3.89) implies (writing again pY9(i) = ) p{9(4)¢,)
d=1

(3.90)

Wy
il (B )
Lh 1 0 7 Al

Z p”ol(){_l,_.., AH_I,O)A(Q_JOS'FA_]; L._|+l‘ ;..0+l, TO)

S1=0 A_,;=0 An-2=0

n—=1

n—2
x(T1 Ay 7)) TT @ T} Abyn 15 ta-1) = O
=1 =1
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for 1<s<q’S, (s,9)=1,
where we have set

Sto<3g7 T, 0< ;<L (1<j<sn-1),

PR sy oo Ay 1, =0
for A_,,..., A,—, satisfying
O0SA4<SE (-1<j<n=1) and 1, +... 4 Fyoyie-y #rY9(mod G).
By Lemma 2.5 we have

del(d(bnj.“_l; rﬂ—l)) # 0

0€An-1.ta-1 SLYO)
So (3.90) implies that for each 4,_; with. 0 < 4,_, < ]9,

[E ] [N ]
Lo LY '

Z, { Z Z puo‘(‘" Laissan An—l; O)A{q_ios-‘-}'—l; L_

An-2=0 A-1=0 An-3=0

1+1, Ao"'l, Tn)

n—3 n—2
x [I Ab, Az ) [1@F Y *} Abydn-2; Ta-2) =0
j= J=1

for1 <s<q’S,(5,9)=1,0<1,<4q7’°T,0<
repeating this argument n—1 times and noting

Ko=L, (j=-1,0),

<L (1<j<n-2).0n

we obtain

Z ): PYA- 1, Ao, *‘*1’ i A1, AT+ A Loy +1, Ap+1,7) =0

A-1=02o=0
for
0<A<IY (1<j<n-1)
and
s<q°8, (5,9 =1,
This implies that each polynomial
(391 Q... 1.‘ ()

L-,

Z Z p(-’oi(,t 1:"’0! ‘*‘1:---’ '{a—l!o)d(x""l'—l; L_
A-1=040=0

with 0 < 4; < I (1 <j<n—1) has at least

(1 —é—)q’“S([&q"“T]+ 1)> 5(1 —é)ST) i1ST

zeros. But (3.27) yields
aST> (L +1)(Lo+1) > deg Q;,....a,-,(%).

0<ty<3q T

11, 4,+1,0)

So
(392) Qarin () =0 for 0OS4,<L (Ijsn-1).
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According to Lemma 2.3, the polynomials
Ax+A_y; Loy+1, 4g+1,0)=(4(x+4_,; L-
0<i- <L, 0<<L,
are linearly independent. Thus (3.91) and (3.92) imply
PYYAy, Aoy Ayy vy Ay, 0) =0 for 0S4, < I (—1<j<n—1),

that is,

1+l) A°+Is

PiAy, ooy dyey, 0)=0 for 1Sd<D, 0S4 <SP (=1<j<n—1),

Contradicting the construction in the main inductive argument. This contradic-
tion proves Proposition 1.

Chapter 4. A proposition towards the proof of Theorem 2

In this chapter we prove a proposition towards the proof of Theorem 2.
The proof goes along the same line as in Chapter 3. Since we do not introduce
“_\6 polynomials A(x; k, I, m) in our auxiliary functions, we have some
Simplification. We use the notations introduced for Theorem 2 and those
Introduced at the beginning of Chapter 3.

4.1. Statement of the proposition. We define
hj=h;(n, q;co,c;) (0<j<5), hg=hen,q;cy,cy,c3),
g =¢;(n,g;co,¢;) (=12
by the following 9 formulas, which will be referred as (4.1):

= nlog(2'! ng),
ﬂ2n+2
hy = 16¢4(2c,9)" (g — I)Thm

h, = 16¢c,(2c,9)" ( l)ﬂ—h 1+¢ =1 L -
- Tha oleC2q q nl’ & = I, ,
h,—1 -1
(4-1 = 1 = 3
) hy = 14+, =¢e",
25h
h4=Tl,
_, 102x107'° nlog(2°hyh,)
h51= + ’
hoh, 25hyh,

1 1
he =cyn(g— I)(l -—m)(l —h—l)
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In this chapter we suppose c,, ¢;, ¢;, ¢4 to be real numbers satisfying the
following conditions (4.2), (4.3), (4.4):

4.2) 2€e, €2, 2€e, <72 252 P<e, €%

O R BN

24—
1 1 1 logh, 1 logy p—1 1
44 =1 24— 24— — : —
@9 n= (+h6)( +P—1)+{ +ha+ ho +hn q ng' ¢y

The existence of such real numbers ¢, ¢,, ¢,, c¢; will be proved in Chapter 5.
Let

(4.5) W* = max (W, nlog(2'" ngD)),

where W is a real number satisfying (0.9), and let U be a real number satisfying

2n+2

(46) U= (14+¢)(1+e)coc,c3¢3 "l—qz"lq— 1)

GR+1/p—1y
(f,logp)"*?

ProrosiTION 2. Suppose that (0.5)10.8) hold. Then
ord, («}' ... o= 1)< U.

D2V, ..V, (WHP.

4.2. Notations. The following 6 formulas will be referred as (4.7).

e, f,logp
q"D

S |:c3 uDW"‘:I
f,logp

" [Ufplogp_ 1 ]:[ Y ]
"D cyc; WrO cc3W*e 0

Ue, f,logp 1 Y T
= ' =|—a I<jsn),
b [ q"'D ¢, c,np SV, ¢, c;np*SV; Usjen

L= max L;= L, (see(0.2)),

1=j<n

Y= U,

4.7)
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n o 1 T
Xo=(0]] (L;+1))ef(1 Pl L"’)
i=1

T

xexp(p*S ), L;V;+nD max V).
i=1 1sj=sn
The following 11 inequalities (4.8)-(4.18), which can be established in
almost the same way as in § 3.2, will be required later. We give only the proofs
f (4.11) and (4.14), and omit the proof of the rest.

4.8) (LI+1—G)...(L,,+l—G);cOG(l—é)S(T:j;l),
4.9 Ly My
) =g ST9>(1 c_,_n)(l hl)cl U,
(d.10) p*S E LV, < 1 Y,
4.11) T< ( ) Y,
hq C1Cy
(412) Tlog(1+(" 240 L”“"’) ( ) —¥.
CyCy
4.13) . nD max ii",
lsjsn h4
(4.14) log(D(Ll+l)...(L,,+l))-€.h Y,

5

(4.15) ((1—1)1q“’7‘+1)0rdpb,,$(l+l)2+1m:—”- Ly,
q/n he hq €16,
4.16 _IN sengf 1 1
) ((1 q)nq T+1 )q’**s p_!+ 1 ; 0
1 1 1
< (] +I!:) (2+;?—_l)— U,

@) (l—l)lq log(q‘“*S]\( +logh0+_l__logq)2+1f(p—l)_ 1 i7.
q;n logp ho ho q ng" €1 C3

log L,

(In (4.15)44.17), J, k are integers with 0 < J < e

,0<k<n-1)

(.18 Li+ ... +Ly-y ST
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Proof of (4.11). By (4.5), W* = nlog(2'* nqgD) = h,. Hence the definition
of Tin (4.7) and (1.7) imply

Y 1 1 1
€——< 24— Y.
IS c,c, W* eG h(+ l)c,c;,

Proof of (4.14). By (0.1), (0.2), (0.9), (4.1), (4.2), (4.5)44.7), we have
> 2log(2''-2:3) > 18.832,
Y= 2%hyh, D,
Y
oo = hohy,
cic;np*SV; b
¢y conp*SV; 2 cycyn(csn—1)gW* > 17513.76.

q=3, W*>h, hy > 2°15,

Thus we see that

l:[ (L;+1) < ﬁ (—Y,,+ l)
i=1

j=1\€1 c,np* SV,

" Y 1
;1] { cynp* S"’J(l-'-hohz)}

1+6.9143-107%\2
‘{\ Yﬂ e A—————
! 17513.76

<3.2603-107° Y.

So
log(D [1 (L;+1)
"=1‘, é?(log{3.2603- 10°D)+nlog Y)
L1010 s
< 1.02-10 nlogs(Z hoh,) ey
ho hy 2% hyh,
This proves (4.14).
In the sequel we abbreviate (4,, ..., 4,)e N"as 4, (t,, ..., T,- JEN" "' as 1,

and write

,Itl = 1'-1'|' % +tn—l’

A@) = 1 4(b, 4, —bji: 7).
j=1

We also use the basis ¢, ..., &, of K = Q(a,, ..., a,) over Q of the shape (3.55).
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4.3. Construction of the rational integers p,(4).
Lemma 4.1. For d=1,...,D and i = (4, ...,

(4190 0<i<L; A<j<sn), rii+ ..

g

A,) satisfying
+r,4, =0 (mod G)
there exist rational integers p,(1) with

0 < max|p,(4) < Xg'™ !

d.d
Such that

D n
L2 P A@ [l =0

id=1 Ji=1

Jor 1 <s<8, (s, q)=1,|t| < T, where Z denotes the summation over the range
2
(4.19).
Proof. Similar to the proof of Lemma 3.1.

4.4. The main inductive argument. For rational integers r'’, I')'(1 <j < n)
and pi" (4) = p§’(4,. ..., 4,), which will be constructed in the following “main
mmductive argument”, we set

(4.20) @,(z,7) = z“' z PPN &A@ ] (@ Loy,
j=1

a

Where 2{” denotes the summation over the range of 1= (4,,..., 4,):
A

@21 o< (1<j<sn), ri+..

]

+r, 4, =r’’(mod G).

THE MAIN INDUCTIVE ARGUMENT. Suppose that there are algebraic numbers
%y, ..., o, and rational integers b, ..., b, satisfying (0.5}~0.8), such that
n b 1 n ying

4.22) ord, (o} ... —=1) 2> U

Then for every rational integer J with
0<J< ['E}g;}rl
there exist rational integers r, L) (1 <j < n) with
Q€M< G, Eoidlrys s TGO,
0<IL’<q’L;, (1<js<n),

and rational integers p§’ (2) for d = 1, ..., D and A satisfying (4.21), not all zero,
With absolute values not exceeding X'~ ", such that

0,5,79)=0 for 1<s<q’S, (s,q9)=1, hl<q™’
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The proof of the main inductive argument is similar to that in § 3.4. So weé
only give a detailed sketch. We prove it by an induction on J. On taking
r®=0,L)=L; (1 <j<n),p”(})=p,(A)(1 <d <D, 4satisfying (4.21)), we
see, by Lemma 4.1, that the case J = 0 is true. In the remaining part of this
section, we assume the main inductive argument is valid for some J with

0<J< [log—L]
logg

and we shall prove it for J + 1. So we always keep the hypothesis (4.22). We first
show the following Lemmas 4.2, 4.3, 4.4, then deduce the main inductivé
argument for J+1.

Let b
Y= J’j_gij'n

(1<j<n-1)

and put

n=1

D
=" p W) EA@ [ @y
d=1 ji=1

F
D
We write p?'(4) for Y pi (1) ¢,
d=1

LemMMA 4.2, For any © = (14, ..., T,—1) With |1| < T and any yeQ, y>0
with ord,y > 0, we have

ord, (¢, (v, )= f;(y, ) > U~ord,b,.
Proof. By the definitions of ¢,(z, ) and f,(z, ), we have
n n—1
@0, D=L, 0 =T PPN A ([T " Y =TT (@ ).
i i=1 i=1

It is easy to see ord,A(z) = 0 (since A(r)eZ) and ordpp‘j’{l) >0 by (0.5)
Similarly to the proof of (3.63), we can readily show that

n n-1
ordp{ n {a}-’"C’J}‘J’- n (a:j-’" C’J]”"] =2 U—ordpb,,.
i=1 =1
Now the lemma follows from the above observations at once.
LemMMA 43. For k=0,1,...,n—1, we have

(4.23) ¢,(5,7)=0

for 1<s<qg’**s, (s,9)=1, I7l < (l——(l—l)‘—‘)q""r-

q/n

Proof. We argue by an induction on k. By the main inductive hypotha'?is
for J, (423) with k=0 is true. Assuming (4.23) is valid for some k with
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0 <k <n-—1, we shall prove it for k+1 if k <n—1 and include the case
k =n—1 for later use. Thus, we see, by Lemma 4.2, that

(4.24) ord, f;(s, ©) = U—ord,b,

I
forl <s<q¢’**S,(5,9)=1,]1 < (I u(l —‘—;)g)q‘-’ T. By (0.7), (3.1) and the

remark below the proof of Lemma 1.1,

“]:I (™ {r9)rsp” oz

=1

is a p-adic normal function, whence so are
(4.25) F,iz,ty=f,(p7%z,7) for |1] < (1 —(I ~1) f'i—jtl)q_" T.
q/ n

We now apply Lemma 1.4 to each F,(z. 1) in (4.25), taking

I\1
(4.26) R=gq'**s, M=[(I—--)—q"'T]+I.
g/n
Similarly to the proof of Lemma 3.3, we see, by (4.24), (4.25) and (4.15), that
) 1 d°
4.27) min {ordp (—1—,1-‘-,{3;;“, r})+tt)}
1<s<R(s.)=1 tldz
osrsM -1

1 —
2U—((I——)lq”?}l)ordpbﬂ;U—(l+l)2+”(‘: 5.3 U
q/n hg ng CyCy

for g(l-(l—l)k“

p _n_) q~7 T, where R, M are given by (4.26). On the other
hand, by (4.16) and (4.17)

logR
logp

1 1 1 logh 11 2+1/(p—1 1
g(|+—)(2+“—)—u+(1+ S i °g") Al ) SIS
hy p—1/¢c, ho ho 4 ng €1€C3
By (4.27), (4.28), (4.4), we see that cach F,(z, 1) in (4.25) satisfies the condition
(1.8) of Lemma 1.4 with R, M given by (4.26). So Lemma 1.4 and (4.25) imply

(Gre)> (1-3)rmo= (1)
ord,f,(=, ) >(1—=)RMO>1—=) ~¢*STO
q q q) n

for seZ, |7 < (I —(l —1)kil)q""r.
q/ n

1
(4.28) (] —E)RMG-FMordFR!-i-(M—l)
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By the second inequality of (4.27), we have

—(I +L)2+l/[p—l)_ 1 U,
he nqg" ¢64

The right-hand side of the above inequality is, by (4.4), at least the right-hand
side of (4.28). Thus by Lemma 4.2 and the fact that ord,q = 0, by the above
observation and by (4.28), we get for s> 1

2
ordp((p_, (f, r) —~f,(£, T)) > U—ord,b, > (1 J)RMO > (1 -1) L gsT0.
q q q q/ n

Hence

(4.29) ord, e, G ‘t) >min (ord},fJr G ) ord, ((o_, (3 r) —f; G, -r)))
>(l—1 L *STO
a) n?
U ii1-n 1? 1 1
>ae (13 (-53)(-5)

1\ k . .
fors> 1,71 < (l —(1 —-E> L‘)q" T, where the last inequality follows from
n

U—ord, b, > U

(4.9). From now on we assume that 0 <k <n-—2.
Now assuming there exist s, t with

N\k+1
1<s<g’ ™18, (5,9 =1, |T|“{‘(l“(l_5) +)q_JT

n

such that
er (sv T) :}é 09

we proceed to deduce a contradiction. On applying Lemma 2.1, in a way
similar to that in the proof of Lemma 3.3, to the polynomial in Z[x,, ..., X,
whaose value at the point (a,. ..., %,) is {7 @, (s, 1), we see, by (4.10)4.14),
1PYAA)] < X301 (from the main inductive argument for J) and the definition
of X, in (4.7), that

=pldly

ord, ¢, (s, 1) = ord ({ o,(s, 7))

D 1
£ ———<log(D )...(L+1)+——logX,+T

i Tlog(l +{n— 1)(B, L, +B'L,,))

T
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+p*gk*ti s E L,V,+nD max If}}

1€j<n
‘.sqk+l—n q"D {I (1+
e, f,logp

e _1)(log(D(Ll+l)

0

1
1+
( (co—l))"’sz”

1 1 (n—1)(B,L,+B'L,)
q(1+c0_l)(T+Tlog(l+ T ))}
_I_j_ +1-n l _1_ 1 l

ot ) (ram)e(am):

<t (a) (w0

(Where the last inequality follows from (4.3)), contrary to (4.29). This contradic-
tion proves

(L,+1))+nD max V)

1<j<n

+
+

@;(5,7)=0 for 1 <s<gqg’* 1§,

s (1-(1-) 5o

thereby establishes the lemma.

(E r) =0
Py 7

Jor | < <s< @S, (5,9) =1, [t]<q YT

(5,9 =1,

Lemma 44,

Proof We recall that (4.29) holds for k = n—1. This is

430) d (E ) E( 1 2( _ LYt
or P‘PJ’ qvt )Cl l q ! I "3” I h]

for > 1, [f| < q YYD T Assuming that there exist s, T with

1<s<q’*!s,

= Acta Arithmetica LIIL 2

(oq)=1, [d<q V0T
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5
o (a’ ’) 0

we proceed to deduce a contradiction. On applying Lemma 2.1, in a way
similar to that in the proof of Lemma 3.4, to the polynomial in Z [x,, ..., x,],
whose value at the point (a1, ..., a2/9) is {*"” @, (s/q, 1) (recalling that b is
introduced in (3.3)) and whose degree in x; (I <j<n) is at most

p*Lf"¢’* ' S+qD < q(p*SL;+D) (1 <j<n),

and on utilizing (4.10)4.14), |p{” (1) < X~V (from the main inductive
argument for J) and the definition of X, in (4.7), we obtain

§
ord, ¢, (E, r)

gﬂ{(u 1 ) log(D(Ly+1) ... (L, +1))+nD max Vj)

co—1

such that

e, f,logp 1<j<n
l n
+(1+ )p"S 2 LY
co—1 =1
+(1+ : (T+Tlog(l+(n_l)Q(B”Ll+HL")))}
q co—1 T

<U i+i l+—1 +| 1+ L .
1 1 1 1 1
it (”ﬁ;)(“p—-n)a}
2
<2
¢ cyn h, q

(where the last inequality follows from (4.3)), contrary to (4.30). This contradic-
tion proves

‘PJ(‘S—I, t):O for 1<s<qg*S, 5,9=1, t<qV*VT,

thereby establishes the lemma.
LEMMA 4.5. The main inductive argument is true for J+1.

Proof. Similar to the proof of Lemma 3.5.
Thus we have established the main inductive argument for

J=0,1,...,[%]+1.
logg
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4.5: .The qompletinn of the proof of Proposition 2. We assume that
Proposition 2 is false, that is, there exist algebraic numbers «,, ..., ®, and

rational integers b,, ..., b, satisfying (0.5)0.8), such that
ord, (@} ... "—1)> U,

and we proceed to deduce a contradiction. By the main inductive argument for

log L
J=J0=[Og n}_'_l'
logg
we have

431) @, (5,7)=0 for 1<s<qS, (s,9)=1, |t|<q’°T.
. Since 0 < LY? < g7’°L,, we see that LY = 0. Further if t = (t,, ..., T,-;)
satisfies
0<7; <Ly (1<j<n-1),
then by (4.18)

kl=t4+ ... +1p-1 < gL+ ... +Lp-) < g7 T

D
Thus (4.31) implies (writing p*’ (1) = Y. P () E)
d=1

Fo) (o) Fa)
L,y L, L n—2

432) T (S . 5 Py Ao ) T] A(byA51)
j=1

An-1=0 A;=0 An-2=0
n=1

x TT " 0} A(b, A-1: Tamy) = 0
=1

for 1 <s<¢8, (5,9)=1,0 < 1; < L2 (1 <j<n—1), where we have set
PPy, ooy Ag=1,0)=0

for 2,,...,4,-, satisfying 0SA4;<E (1<j<n-1) and r i+ ...
oo +Py_y gy #1rY(mod G). By Lemma 2.5 we have

det("j (byAn-1; Tn—l)) wor # 0.

0<dn-1.tn-15L,

So (4.32) implies that for each 4,_, with 0 < 4,_, < I,

o) o) {Fg)
n-2 1 nE—J n-3
{Jg)
¥ pUoAy, .y Ay, 0) ] A(B, A T
An-2=0 A;=0 An-3=0 ! " Jl:ll 4 j)

n—=2
X l_l (a}’"C”)‘f‘}A (byAn-2; Ta-2) =0

i=1

for 1 <5< "8, (s,9)=1,0< 5, < I (1 <j<n-2).
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Repeating this argument n—1 times, we obtain
PIO(Gyy ony gy, 0) = for 0S4, <L (1<j<sn-1),

contrary to the construction in the main inductive argument. This contradic-
tion proves Proposition 2.

Chapter 5. Completion of the proofs of Theorems 1 and 2
5.1. Solving the system of inequalities (3.5)—(3.7). We solve the system of
inequalities (3.5143.7) in the following cases:

(la) p=2,2<n<T;

(lb) p=2,n28;

(2a) p=3,2<n<T7,

(2b) p=3,n=8;

(3a) p=25,2<n<6;

3b) p=5,n=17;

(3¢c) p=5 n=8.

n W

We abbreviate h;(n, q; ¢y, ¢;) as h; (0<i<T), hy(n, q; ¢y, €5, €3) as hg,
(n, g; ¢, c5) as & (i=1,2).
We first deal with the cases (1.a), (2.a), (3.a), (3.b). In these cases

nz2, gq=3
and we fix
o =8, ¢, =156/15.
Then we have the following inequalities:
h, = he(2. 3) > 18832756,  1/h, < 5.3099- 1072,
0 < 1.5587732-107", l°g(g?-tl-’ 0.1586245,
0 0

Iy, > h, (2, 3; 8. 56/15) > 7.74103- 10", 1/h, <

ho(2, 3) < 18.832758,
log h,,

1.291818- 1078,

(2. 3 8. 56/185) = 1215 (h,(2, 3: 8, 56/15))"' < 2.17983-107%,

T4, < 140,02, 308, 56/15) < (1—2.17983-1077) 7% < 1 +4.35986- 1077,

{h,02. 3: 8, 56/15)) ! € =——

4
<5.167273- 1078,
7 741031071
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146, < 1+2,(2, 3; 8, 56/15) < 1+5.167274- 108,
(I+&,)(1+¢e,) < 1+4.366-1073,
I/hy < (hy(2, 3; 8, 56/15))! < 1.291818- 1078 19.832758 < 2.5620315- 107,
loghs < loghs (2, 3; 8, 56/15) < 6.3749002,
1/he < (hg(2, 3; 8, 56/15))" < 4.03694-10~1°,
1/h, < (h,(2, 3; 8, 56/15))~! < 8.1217- 1019,

a The above inequalities will be repeatedly used in the cases (1.a), (2.a), (3.a),
.b).

Case (lLa):p=2,2<n<7. It is easy to verify that
Co=8, ¢, =32119513, «¢,=56/15, «c,=47.766502,
Satisfy the system of inequalities (3.5)(3.7).

Case (2a):p=3,2<n
that

¢y = 79.102681

< 7. By (0.1), we have g > 5. 1t is easy to verify

o =8, «c, =25889785, ¢, =756/15,
Satisfy the system of inequalities (3.5)~(3.7).
Case (3a):p=5,2<n

(’3 =(‘4 =32

< 6. It is easy to verify that

Co=28,

1 56
0 23192(2+ ]) €2 =17o

= 16.457689 (2 + Bl_l)’ ¢y = 71.89776

Satisfy the system of inequalities (3.5) +3.7).
Case 3.b):p=>5, n=7 1Tt is easy to verify that

co=8, ¢, =10192253 (2+”I'T)’ ‘= 5‘_;

p— 1
1
cy = 16 2+ﬁ s

Satisfy the system of inequalities (3.5)(3.7).
Now we treat the cases (1.b). (2.b), (3.c). In these cases n > 8, g > 3 and we
X ¢y =16, ¢, = 8/3. Then it is easy to establish the following inequalities:

ho > hy(8,3) > 86.42138,  1/h, < 1.157122-107%, K, (8, 3) < 86.421384,

lo_g_{,!? < 5.1598793- 10 2 Iw

o h,,

¢y = 069994513

< 5.1731917-1072,
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h, > h, (8, 3; 16, 8/3) > 2.1226-10%%,  1/h, <4.711204-107%,

76
57-9
14e, < 1+¢& (8, 3; 16, 8/3) < (1—4.1689994-10721)78

2
msTvﬁ < 301517031072,

1+e, < 14£,(8, 3; 16, 8/3) < 1+3.0151704- 10724,
(14&)(1+¢,) < 1+4-107%°,

87.421384
2 1226-10%° ¥

loghg < loghs (8, 3; 16, 8/3) < 63630211,
1/hg < (he(8, 3; 16, 8/3))™" < 5.889006- 10727,
1/h, < (h,(8, 3; 16, 8/3)) ! < 5.13132:107%".

The above_ inequalities will be repeatedly used in the cases (1.b), (2.b), (3.c).
Case (1.b):p=2, n>8. It is easy to verify that
co =16, ¢, =30703894, c,=28/3, c;=11651153,

satisfy the system of the inequalities (3.53.7).
Case (2.b):p = 3, n > 8. By (0.1) we have g > 5. It is easy to verify that
co=16, ¢, =252941225, «c,=8/3, ¢;=32, «¢,=35671814
satisfy the system of inequalities (3.5)+3.7).
Case (3.c):p>5, n>8. It is easy to verify that

+—l—l), ¢, = 8/3,

1
¢, = 39.253842 (2+ﬁ)’ ¢y = 19263692

h,(8, 3; 16, 8/3) = (h,(8, 3; 16, 8/3)) ' < 4.1689994- 10722,

< 1+3.3352-1072°,

(hy(8, 3; 16, 8/3)) ! <

< (h(8,3;16,8/3)7' < < 4118599210724,

1
h,

c, = 192.64207

co=16, c, = 10234756 (z

satisfy the system of inequalities (3.513.7).
On summing up all the cases (1.a)-(3.c) and applying Proposition 1, we
obtain the following
PrROPOSITION 3. Let
4366-107%, 2<n<7,
'°'=“(")={4-10—=°, n>8

and c,, ¢y, C,, Cy, C4 be positive numbers given by the following two tables.
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Case Co ¢y ¢, ¢ Cy
2<n<7 8 | 32119513 | #§ | 47766502 | 79.102681
p=2 n=8 | 16 | 30703894 | & | 11651153 | 19264207
2<n<7| 8 | 25889785 | ¥ 32 32
i n=8 | 16 |252941225 | § 32 35.671814

1 1
Case o /(2 + —) cy ,/(2 +—) Cq
1 p—1

2<n<6| 8 1.0723192 =1 16.457689 77.89776
p=3 n=7 8 10192253 % 16 69.994513
n=8 16 1.0234756 8 39.253842 192.63692
Le;
I+t G2+ 1/p=1))
U= 1+accc"cc" "(q— 1)~ D"t 2V, * *
(1+e)coe, chese, (- . 1) e.Uologp™ V. W*log V.
Suppose that (0.5)40.8) hold. Then
ord, (o ... &&r—1) < U.

5.2. Solving the system of inequalities (4.2)—(4.4). We solve the system of
inequalities (4.2){4.4) in the following cases:

(la) p=2,2<n<17,
(l'b) p=2; H?Sv
(2a) p=3,2<n<7,
(2b) p=3,n=>38,
(Ba) p=5,2<n<7,
Bb) p=>5,n=8.

We abbreviate hi(n,q;¢c9,¢;) 0<i<S5) as hy, hg(n, q; ¢y, ¢, €5) as hg.
&(n, q;cq,€y) (i=1,2) as g,.

We first deal with the cases (1.a), (2.a), (3.2). In these cases n > 2, ¢ > 3 and
We fix ¢, = 16, c, = 8/3. Then we have the following inequalities

ho > hy (2, 3) > 18.832756, =. < 530991072, 28
hy ho

hy > hy (2, 3; 16, 8/3) > 78990303, 1/h, < 1.26598-10"%,

® < 1.5587732-107%,

(h2(2, 3; 16, 8/3)) ™1 = 2716 < 1.52588- 103,
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14¢&, < 1+£,(2,3; 16, 8/3) < 14+3.05192: 1075,
(h3(2, 3; 16, 8/3)) "' < 1.26598-107%,
148, < 14+&,(2, 3; 16, 8/3) < 1+1.266- 1078,
(1+¢&,)(1+¢,) < 143.0532-1073,
1/hy < (hy(2, 3; 16, 8/3)) 7! < 7.91238-1071°,
1/hs < (hg(2, 3; 16, 8/3))* < 1.03297-107°.
The above inequalities will be repeatedly used in the cases (1.a), (2.a), (3.a).

Case (l.a) p=2, 2<n<7. It is easy to verify that

16, ¢, =3.2968387, «c,=8/3, c;=33.433683
satisfy the system of inequalities (4.2)(4.4).

Case (2a)yp=3,2<n
that

Co

< 7. By (0.1) we have q = 5. It is easy to verify

co=16, ¢, =2627191175, c,=8/3, c3=16

satisfy the system of inequalities (4.2)+4.4).

Case (3.a): p=5, 2<n<7 It is easy to verify that

1
co =16, ¢-,=1.1010155(2+ﬁ), =83, ¢ ‘“97?397(”"_?)

satisfy the system of inequalities (4.2)-4.4).

Remark. Note that the inequalities for hy, ..., hs, hg, &, &, we used in the
cases (1.a), (2.a), (3.a) depend on the fact that n > 2, but not on n < 7. Hence the
solutions ¢,, ¢,, ¢, ¢ of the system of inequalities (4.2){4.4), which we
obtained in the cases (1.a), (2.a), (3.a), are also the solutions of the system
(4.2)4.4) for the cases (1.b), (2.b), (3.b).

Now we treat the cases (1.b), (2.b), (3.b). In these cases n = 8, ¢ = 3 and we

fix ¢, =16, ¢; = 5/2. Then we have the following inequalities
ho = hy(8,3) > 86.42138,  1/h, < 1.157122:1072,

log hy
ho

hy > h,(8, 3: 16, 5/2) > 5.06661-10%5,  1/h,
I, (8, 3; 16, 5/2) > 6.1068935- 10%°,

< 5.1598793-1072,

< 1.974-10726,
(h,(8, 3; 16, 5/2)) 7" < 1.637494- 10721,
14+e, < 1+4€,(8,3;16,52) <1+1.31-1072°,
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hy(8, 3; 16, 5/2)> 50666 1023, (h4(8, 3; 16, 5/2))"* < 9.67112-107 23,

1+e, < 1+4¢,(8, 3; 16, 5/2) < 1+9.68-107 2%,
(1+¢&)(1+&,) < 141.4-1072°,
1/hs < (h4(8, 3; 16, 5/2))7' <4.935-10727,
1/hs < (hs(8, 3; 16, 5/2)) ' < 3.835-10727.
The above inequalities will be repeatedly used in the cases (1.b), (2.b), (3.b).
Case (1.b: p=2, n>8. It is easy to verify that
co=16, ¢, =3.0751334, ¢, =75/2,
satisfy the system of inequalities (4.2)4.4).

¢y = 71.406058

Case (2.b): p =3, n > 8. By (0.1) we have g > 5. It is easy to verify that
co =16, ¢, =25314965 ¢,=5/2, c¢;=16
satisfy the system of inequalities (4.2)(4.4).

Case (3.b): p=5,n=>8. It is easy to verify that

1 1
Co=16, ¢, = 1.0250654 (2+;:), ¢, =52, c¢3=24322856 (2 +ﬁ)

Satisfy the system of inequalities (4.2)-(4.4).
~ On summing up all the cases (1.a}{3.b) and the remark at the end of the
discussion of the case (3.a), and applying Proposition 2, we obtain the following

ProrosiTioN 4. (i) Let

gl 143.0532:107%, 2<n<7,
- T l141.4-10720, n=8

and ¢, c,, c,, ¢, be positive numbers given by the following two tables:

Case o £y c; Cs
2<n<7| 16 | 32968387 | § | 33.433683
p=i n=8 16 | 3.0751334 3 71.406058
2<n<T| 16 | 262791175 | § 16
p=3 n=8 16 | 25314965 | % 16
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1 1
Case Cy Cl/(2+ﬁ) Cy (2+_1)

2<n<7| 16 1.1010155 g 11977897

n=8 16 1.0250654 3 24.322856

Let

w2t G2 +1/p—1)
T (q—l)m?f—

(5.1) U=(1+¢)cyc,chcl D"V, ... V(W*)2.

Suppose that (0.5)-0.8) hold. Then
(5.2) ord, (e}’ ... ap"—1) < U,
(i) Suppose that (0.5)0.8) hold. If in (5.1), &, cq, ¢,, C,, C4 take the values

(given in the above two tables) for the casesp=2,2<n<T;p=3,2<n<T,

p =5, 2 <n <7, respectively, then (5.2) holds also for the cases p=2, n = 8;
p= 3, n=28; p=S5, n= 8, respectively.

5.3. Estimates for log V¥_, and W*.
LEMMA 5.1. Let
v, = 52336533, v, = 3.81275,
v, = 2.66939, v, =2.5681639 (n=>8);
w, = 3.7909562, w, = 3.2245056, w, = 2.9347108,

w, = 2.5278708,

v, = 3.2814667, v = 2.9909667,
v = 2.8030858,
wy = 2.7523294,
we = 26242173, w, = 2.4519668 (n > 8).

Then for n > 2 we have

1
(53) log VX, < v,nlog(ng) (log(4DV+ 1)+—£P:£)

W* < w(n)nlog(ng)- ( +log(4D))

where
_ log(2'':3n)
G M) = joga-log (3n)
and
w
(5.5) W* < w,nlog(ng) ( +log(4D))
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Proof. Note that by ¢ = 3 we have

(56) log(2™! nq"*"' DT Vi) =log(2° uq%)+log (4Dﬁ vty
n+ 1

l g(Z*T‘_ ﬂq)+—10g((4V,.,+ 0 "4DV 1)

< log(ng)-log(4DV ;)
. n+1 log(2"':"-'”n_“'%")+ 1 i n 1
n—1\ logd-log(ng) log4/ n—1log(ng)
log (2°"~Yn=2)+(n+1)log(3n)+nlog4
log4-(n—1)log(3n)

< log(ng)-log(4DV,}_,)

= log(ng)-log(4DV ;)
(n—1)logn+log(2°" M +(n+1)log3+nlog4
x log4-(n—1)log (3n) -
= log(ng)-log (4DV,_,)v(n) (say).

It is easy to verify that v(n) decreases monotonically and by a direct
Computation we see that

(5.7) vim <y, (M=2).
Now by the definition of V*_, (see (3.8)) and by (5.6), (5.7), we have

logV*_, < ir:log(Z“imquﬁ Va-)+ f,logp

f,logp )

< 0t Tog ()
v, nlog(ng) (108 (4DVy-1)+ nv,log(3n)

This together with the fact that v, log(3n) > 8 (n > 2), which can be verified by
a direct calculation, yields (5.3) at once.
Further, we have

9
(58)  log(2! ngD) = log(ng)-log (D) 282 108 (nd) + logiAD)

log (ng)-log (4D)

. log2° 1 .
< log (ng)-log (4D) {l og4-log(3n) log4 103(3")}

log(2!*-3n)
g4-log(3n)
= w(n)log(ng)log(4D).
Obviously w(n) decreases monotonically and by a direct calculation we see that
(5.9 wn)<w, m=2).

= log(nq)’ log(4D)
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Now by the definition of W* (see (3.9) and (4.5)) and by (5.8), we get

w
W* < W +nlog(2!* ngD) <w(n)nlog(ng) (m

+log (4D)) ;

This together with the fact that
1,
log(2''-3n) s
log4

implies (5.4) immediately. Now (5.5) follows from (5.4) and (5.9). The proof of
the lemma is thus complete.

w(n)log(3n) = 6 (n=2)

5.4. Completion of the proofs of Theorems 1 and 2.

Completion of the proof of Theorem 1. By Proposition 3, Lemma
5.1 and Lemma 2.7, we see that, in order to prove Theorem 1, it suffices to show

(5.10) (14+&)cqgc,e3cqv,w,/</2n < C,(p,n),

where ¢, ¢, ¢,, c3, ¢, are given in Proposition 3 and v,, w, are given in Lemma
5.1. We can easily prove (5.10) by a direct calculation, thereby complete the
proof of Theorem 1.

Completion of the proof of Theorem 2. Theorem 2 is a direct
consequence of Proposition 4, Lemma 5.1 and Lemma 2.7.
(1) p=2. If 2<n <17, it suffices to show that

(5.11) (L+e)coe, cdw?//2n < C,(2,n),

where ¢,, ¢, ¢5, € are given by Proposition 4, (ii).
If n> 18, on noting that w(n) = w(18), it suffices to show that

(5.12) (1+8)cge, & (w(18))2//2n < C,(2,n),

where ¢y, ¢, ¢4, &€ are given by Proposition 4, (1), w(18) < 2.1001457 (see
Lemma 5.1).
(2) p=3. It suffices to show that

(5.13) (1+e)coe, c3wa//2r < C,(3,n),

where ¢,, ¢,, ¢;, ¢ are given by Proposition 4, (i).
(B)p=zs U 2<n< 16, it suffices to show that

(5.14) (1+e)cyc, Aw?//2n < C,(p,n),

where ¢,. ¢,, ¢3, € are given by Proposition 4, (ii).
If n > 17, on noting that w(n) = w(17), it suffices to show that

(5.15) (1+8)coc, 3(w(17)?/y/2r < C, (pom),

Linear forms in p-adic logarithms 183

Where ¢, c,, ¢4, € are given by Proposition 4, (i), and w(17) < 2.1201893 (see
Lemma 5.1).

Now the inequalities (5.11)5.15) can be easily verified by a direct
Calculation. This completes the proof of Theorem 2.

Appendix. Hermite interpolation

Let E be an algebraically closed field of characteristic 0. Suppose that
h>22 1t,>0,...,7,>0 are integers,

T=1+... +7,.

Let B,,...,8, (B;#B; for 1<i<j<m)and g, (1<i<n 0<t<t)be
8lven elements in E.

THEOREM A. The unique polynomial Q(z)e E[z] of degree at most T—1
Satisfying

) Q“_n(ﬁi)—_"?i.:—l

IS given by the Jormula

{2) Q(Zj s i iqh.‘_l(_”m*l[z_—ﬁh)l__i{ﬁ (Z_ﬁk)tk}

h=11=1 =1 =3 \B— B
k#h

(I<isn l<ti<r)

2 \M 3
. . (—a;) {(Z—)’)kIJl (}’_ﬁk)'k}ﬁh
x Z (_'1}5_1 Z n . k#h !
s=1 Atitdy e=th—t j=1 Aj!kl;ll (ﬁh_ﬂdfk i

A=00j<s)A;Z21(jzs)
k#h

Where the second line of (2) reads as 1| when t =1,.

I am indebted to R. Tijdeman and R. J. Kooman for giving an elegant
Proof of Theorem A (see below). It is simpler than the proof given in the
Appendix to Yu [37]. The argument is based on the following lemma.

LEMMA. If g is k > 1 times differentiable, then
2G)- 2 (1 £ 2)er
—l=)= 2 (1Y O et
dxk ) ng 3|+...Z+).J=t j’l e Aj g{ g g
21> 0,0 43> 0

Proof. By induction on k. For k = 1 the formula is correct. Assume the
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formula is correct for k=1,...,1— 1. Then

o - 00

= (l)m_l_ LU E () - i g ¥
g i=1 P +a}-n
J.l>0. wdj=0

‘)gulr' g gi=t

l 1] l -1
g(—) g+ L=y X
g g j=1 Ayt dya =l
Ay=>0,...4541>0
Hence
1\® o 1 . I .
(_) - _9_2_ Y (—1)-t )y ( ‘)gu.a_”gm;g i1
9" =2 Ao dag=1 Voo A

g

A1>0,....45>0

I ; B
=Y (—-1y 3 ( )g(m e g™ gL,
i=1 Ayt A=l Asvsady

A >0,...,4;>0

Remark. A. Schinzel supplied further reference on the formula for kth
derivative of 1/g(x), namely Faa di Bruno [10] and E. Goursat [15], p. 80.

Proof of Theorem A. According to Mahler [23], pp. 84-85, we have

. P@) (2 -8 }
ge) = hzlrg:l - 1)!{"'*—‘]!(3?) {(Z—}’)P()’) ¥=pn

where
P(z)= n (z—B™.
h=1
Put
_ _E=NPO) _ T (e B,
g0) = T y)k[ll(y B

k+#h

By applying the lemma with s =k—j+1 and k =1,—1 we obtain

e L
ay* " \e=»PO)/)y=p ¥y \g)

=“‘-t —1yntmstl Tt o () —fti+s—2
’;1[ l) z:l ‘I'h_l(ll ..-s)(!;[xg (y))r=ﬂa(g(ﬁh]) '

Atiatdn —p= il

A= 0. .Am__')
— (1Y I(T" D!y —1y" 'h_'((guﬂ(y))r=ﬂ").
=(-1) (B,,) Z( 1yt N_““‘Zh_lm_‘ ,.l:[, Atg(By

Aj=00j<sii;=0(=s)

( L )gunmgcmgwmg—j-l,
Ay Ay
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Hence
00= % 3 s ot i B 1)1§n(%)
¥ -1y Y ]—[( G520y )
=1 (A j=1

1 1T 6B
k#*h

This proves Theorem A.

Remark. van der Poorten [25] gives a similar formula, but his conditions
of summation and some signs are inaccurate; a simple counterexample can be
Obtained in the case n =2, (1) = t(2) = 2. Consequently, the interpolation
formula in Lemma 1 of van der Poorten [26] is incorrect also.
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ACTA ARITHMETICA
LIII (1989)

Integers with identical digits
by

T. N. SHOREY (Bombay)

In memory of Professor V. G. Sprindzuk

¢ 1. For an integer v > 1, we denote by w(v) the number of distinct prime
aCt0r§ of v and we write w(1) = 0. Let N > 2 be an integer. Let S(N) be the set
?f all integers x with 1 < x <N —1 such that N has all the digits equal to one
;1 1ts x-adic expansion. We write s(N) for the number of distinct elements of
(N). Goormaghtigh in 1917 observed that s(31) = s(8191) = 2; =

h 25_1 53_1 13 _ 3_
31 = =— 3191=2_1=M_
2—-1 5-1 2—-1 90—1

It has been conjectured that
(1) s(NNS'l, N=#31 and N #8191

c?‘ Weaker conjecture states that s(N) < 1 whenever N is a prime number
ifferent from 31 and 8191. See Dickson [3], p. 703 and Guy [4], p. 45. For
X€S(N), we have

x—1
and
3) N-1 =xﬁ
x—1

for some integer p = 3. We write
O u=I(N;x) = 3.
We prove

co THEOREM 1. Let N >2, N # 31 and N # 8191 be an integer satisfying
(N—1) < 5. There is at most one y€S8(N) such that I(N;y) is an odd integer.
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