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whence

We have already obtained the bound (‘?.36) for the expressions on the
right-hand sides of (8.19) and (8.20), in the course of the proof of Lemma 19.
Therefore the bound (8.5) follows on combining (8.9), (8.16), (8.17), (8.19) and
(8.20). This completes the proof of Lemma 21.

Lemma 12 now follows on combining (6.10), (6.9), (6.18), (6.20), (7.13),
(7.14) and (8.5). As explained in Section 5, with the completion of this step we
have finished the proof of Theorem 2.
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Linear forms in two logarithms
and Schneider’s method, II

by

MAURICE MIGNOTTE (Strasbourg) and MiCHEL WALDSCHMIDT (Paris)

Introduction. We consider an homogenous linear combination of two
logarithms of algebraic numbers with integer coefficients

b,loga,—b,log a,.

We refine the lower bound which was obtained in our previous paper [7] by
using the assumption that b,, b, are rational integers. Our result will be very
Sharp as far as the dependence on the heights of &, and «, is concerned. We pay
also a special attention to the absolute constant, which is important in
Numerical applications (e.g. [4] and also [3]).

1. A lower bound for linear forms in two logarithms. Our main result is
Th?orem 5.11 in Section 5. The hypotheses are a bit technical, and we give here
a simpler statement. However for concrete applications where the value of the
Constant is important, our estimates of Sections 5 and 6 below will give better
Numerical values than Corollary 1.1.

Here we consider the absolute logarithmic height h(x) of algebraic
Dumbers. Namely, if « is algebraic of degree d over @, with conjugates
g,a, ..., 6,0, and minimal polynomial

d
Xt . tey=co [[(X—00) (co>0)
i=1
then

d
h(e) =d™'(Logco+ Y, Logmax(1, |o,al)).

i=1

The measure of o is defined by
d
M (o) = |egl [T max {1,]oal} = exp {d"h(2)}.
i=1
Let «,, o, be two non-zero algebraic numbers of exact degrees D,, D,. Let

D denote the degree over Q of the field Q(«,, ;). Forj =1, 2, let log «; be any
Non-zero determination of the logarithm of a;.
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Further, let b,, b, be two positive rational integers such that
b,loga, # b,loga,.

Define B = max {b,, b,} and choose two positive real numbers a,, a,
satisfying

a;21, a;=h(@)+Llog2, a;=> (2¢/D)|log |

for j=1 and j=2.
Then Theorem 5.11 implies the following result.

COROLLARY 1.1. If a, and «, are multiplicatively independent, we have
b, loga, —b, loga,| > exp {—500D*a,a, (7.5+Log B)*}.

We shall deduce this result from Theorem 5.11 in Section 8.
Let us compare our estimate with the lower bound which is derived from
Baker’s method:

|A| > exp {—C,D*a,a, Log B},

where C, is an absolute constant. The best numerical value for C, which has
been computed using Baker's method [2] is greater than 6 10°. Hence our
result is better for B < exp(107). In particular, for computational purposes (see
[4], [3], [8] for instance), our estimate will be appropriate.

The fact that Schneider’s method yields smaller numerical constants than
Baker's was already pointed out in [7]. However, the constants in [7] are not
less than 4-10¢ (but it works also for algebraic f).

The assumption that a,, @, are multiplicatively independent is easy to
remove, and we plan to do it in a further paper, where we study |floga— in.

The constants 2e and 7.5 which appear in the statement of Corollary 1.1
could be changed without altering too much the main constant 500. In fact one
should stress the point that, for any specific example where the actual
numerical values of the constants are relevant, the best estimate is achieved by
using our Theorem 5.11 below rather than Corollary 1.1

It would be interesting to extend our estimate to linear forms in
n logarithms for n > 3. However, the natural generalization of our method,
involving Schneider’s method in several variables, yields an estimate with
(Log B\, N = n(n—1), while Baker’s method gives Log B with the exponent 1.
Even if the constants were less than 10® (which does not seem to be the case,
partly because no interpolation formula is available yet), a result with the
factor (Log B)® would not be sharper than the results of [2] even for n = 3.

Our result could be translated in the p-adic case, but we did not compute
the constant in this case (and neither the dependence in p). As far as Baker’s
method is concerned, lower bounds for linear forms in p-adic logarithms have
been produced by Gel'fond, Schinzel, Kaufman, SprindZzuk, van der Poorten,
and more recently by Yu Kunrui [10], but the best constants for linear forms
in two logarithms are still'bigger than 10''.
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The fact that we get a sharper estimate than ‘in our previous work [7]
comes from two facts. Firstly, we produce a new interpolation formula (§3
below) which we combine with sharp estimates for some finite products.
Secondly, we use a zero estimate (§ 4-below) which was shown to us by D. W.
Masser shortly after [7] was published. In the mean time, many other zero

estimates have been proved, but none of them includes Masser’s result
(Proposition 4.1 below). .

'In Section 2, we collect several lemmas from different sources. The third
section contains an interpolation formula. The above mentioned zero estimate
due to David Masser is given in Section 4. We prove the main result in Section
5. The rest of the paper is devoted to applications of this result.

2.‘ Auxiliary lemmas. We keep the lemmas used in [7] except for the
following results. The next one will be used in place of Lemma 4 of [7].

LEMMA 2.1 (Siegel’s lemma). Let a,, ..., a, be algebraic numbers of exact
degrees d,, ..., d,, respectively. Define D = [Q (a,, ..., a,):Q]. Let

PyeZ[X,,...X] (1<i<v, 1<j<p

be polynomials (not all zero) of degree at most N s in X, (for 1 < h < g). Define

i=1
and
Vi =Pijlay, .. 0) (I<i<v, 1<j<p).

If v > uD, then there exist rational integers x,, ..., x,, not all of which are zero
such that ' ‘
L hux=0 (1<j<p),

i=1
and

max |x;| < (2#[]/1 Vﬂ)n)uu_,,p,,
Where

q
V; =L, T M.
=1

Proof. Apply [5], Lemma 1.
The following lemma replaces Lemma 8 of [7].

LEMMA 22. Let a,,...,®, be non-zero algebraic numbers of absolute

eights at most h,, ..., h, respectively. If b,, ..., b, are rational integers such
that the number
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A=b,loga,+ ... +b,loga,

(where loga, is any determination of the logarithm of «;, 1 < i < n) is non-zero,
then

|4] > 27 Pexp(—D(lby| by + ... +1b,|h,)
where D = [Q (a4, ..., 2,):Q].
Proof. We may suppose |4| < 1/2. Then A¢2niZ and the number
{=ab...a"—1

is non-zero. Without loss of generality, we may suppose b; >0 for 1 <j <
and b;<Oforr<j<n. Liouville’s estimate (see Lemma 2.3 below) applied lo
{ considered as a polynomial in o, ..., &, %1, .- -1 leads to the lower
bound

1Ll =272*texp(—D(hy |byl+ ... +h,|b)).

The lemma follows using the inequality |e*—1| < 2|z| which is true for
0< |zl <1/2.
Here is the Liouville estimate taken from [7], Lemma 3.

LeEmMMA 2.3. Let a,, ..., o, be algebraic numbers of exact degree d, ..., d,

q
respectively. Define D = [Q (o, ..., 0):Q). Let PeZ[X, ..., X " have degree

at most N, in X, (1 <h<gq), and length L(P). If P(al,. - q)yéO then
q
|P(al, ooy )] 2 L(P)* P T M (ey) ™ PNwien,
h=1
LeMMA 24. For a complex number z, and a rational integer h, 0 < h < Lo,
define a polynomial A, of degree h by A,(z) =1 and
4,(2) = z(z—1)(z+1) ... (z+ (=" [h/2])/h!
={/m)[[@+0), —h2<i<(h—1)2.

Then, for |z| <R
4,@)| < R(R?+1)(R?+22) .. (R2+[(h—1)/2]?) (R +[h/2)*®3* 1= ¥/h.
Moreover, when x is real, then
|4, ()| < 2X%h!, where X = max {|x|,h/2}.
Proof. Put h =2h'+¢, €0, 1}; so that k' = [h/2]. Then
2_p2 i e =
o)=L et e

This leads at once to the first estimate. To get the second one, notice that,
for x real and keN, |x*—k?*| < (max {|x|, k})*.
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COROLLARY 2.5. For a complex number z, |z| < R,and heZ,0 < h < Ligs
|4, @)| < (e(R+h/2)/h)* < (e(R/Ly+ 1/2))*.

Since h" < &'h!, the first inequality is an immediate consequence of
Lemma 2.3.

The second one is implied by the fact that h—h(1+ Log((R+h/2)/h)) is
a non-decreasing function for h > 0.
We need also to estimate the denominator of the rational number 4, (a/b)

for a/be Q. It was pointed out to us by Dong Ping Ping that this denominator
can be larger than b".

LEMMA 2.6. Let a and b be non-zero rational integers. Put
Q(b, h)y=[]p™>="1  (p prime).

plb

Then the number b"Q (b, h) 4,(a/b) is a rational integer; for any h >0
Proof. By the definition of 4,, we have 4, (a/b) = b™". ([ ] N;)/h!, where
i

N,=a+ib, —h2<i<(h—1)2.

If m is a number relatively prime to b, then the function
imod m — (a+ibymod m is one-to-one. This implies that if p is a prime
humber, and if k is a positive integer, then the number of integers N; as above
divisible by p* is at least [h/p*]. It follows that p does not divide the
denominator of the rational number 4,(a/b). (Use the fact that h! satisfies
Yp(h!) = 3 [h/p*], where — as usual — v,(x) is the highest exponent j'such

k=1
that p/ divides the integer x.)
If p is a prime number which divides b then clearly,

v,(44(a/b)) > —hv,(b)—v, (hY),

Where v, (x/y) = v,(x)—v,(y), when x and y are non-zero integers.
The result follows, since v,(h!) =} [h/p*] < [h/(p—1)].
k

LemmA 2.7. For a positive rational integer b put

Logp
o) =) ——.
(b) g;p_l

Then, for b>2
o (b) < max {2.21,0.09+ Log Log b}.

We will use the fact that, for x > 19, we have

(2.8) Y Log:: < Log( Y Logp).

psx pPEx
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The proof of (2.8) follows easily (see below) from formulae (2.11), (3.23),
and Theorem 10 of [9] together with the estimate

Logp
(2.9 F=
) p§2 P (.p ]
Let g,, ..., g, be the different prime divisors of b, and let p,, ..., p, be the
k first prime numbers. Then, since the function (Log x)/(x — 1) is decreasing for
x =2, we have

<1

(2.10) w(b) = Z Logg; _ 5. Logp, =u, (say).
Pl [l S P.—l

The inequalities (2.10) and (2.8) imply
@2.11) w(b) < LogLogh, if k> 8.

Inequality (2.10) and the computation of u, give the following estimates
(2.12) w(b) < 2.6 <003+LogLogh,  if k=7,
2.13) w(b) < 243 <009+LogLogh, if k=6,
(2.14) wb) <221, ifk<6.

This proves the lemma.
Now we prove (2.8). By numerical computation one verifies that (2.8) is
true for x in the range 19 < x < 349. For x > 349, inequality (3.23) of [9] gives
Logp
P);', 2Logx’
with E = —1.33258... ([9], (2.11)), and also ([9], Theorem 10)

Log Y Logp = Logx+Log(0.91) > Log x—0.095.

p<x

<Logx+E+

Thus, for x > 349:

Logp _ 1 .
,,%xp— LogExLogp+0-‘o95+2 Log349+E+4F,
and the result follows from (2.9).
To conclude, we give a quick proof of (2.9):

I 2w g i

since Log(x+1) < x®* for x > 21 and 217%/0.6 < 0.27.

3. Interpolation formula. This section contains some technical estimates

which we shall use in the extrapolanon step. We replace Lemma 6 of [7] by the
following result.

Log (x+ 1)

X dx <0144 j‘ x <1,
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LemMA 3.1. Let f be a function analytic on the disk |z| < R and z,, ..., z,

points interior to this disk. Then
If(zo)l <E,+E,
where
E, =|flg (R/(R—lzol)) H (R IZo—Z,«I/IR’—Zof;I)
i=1

and

E,= jé“l |f(z})|(ljl |(R2—sz,)/(Rz—zofi)l)(llljl(zo—z,)/(zj—zt)l)

(as usual |f|g = max {|f(2)]; |z] < R}).
Proof. Consider the product of Blaschke factors

BiR) = I-IR(z z})

By Cauchy’s residue formula
IB(:(c)f(n as 3 B

Z =1 20—z
Where C denotes the circle |{] = R, and
By(2) = (z—z) B(2),

On this circle |B({)| = 1, and the lemma follows.
Lemma 7 of [7] is replaced by

LemMMA 3.2. Let B be a rational number, f = b,/b,,b,,b,eZ,(b,, b;) = 1.
Let U and V be two positive integers. Put

B(zo)f(20) =

1<j<n.

F'={u+op; (u,v)eZxZ, lul<U, | <V}
and
A=min [] W-1l
yel' y'el,y'#y
We suppose

H)  the points (u+vp), |u| < 2U and |v| < 2V, are pairwise distinct.
Then we have '
4= (V)2 by 2 (U )23V * Vexp { —(Tr?/54XV +1)* b3 2}.

Proof Let y, = uy+v,B be a point of I' where the minimum of 4 is
attained. For v in Z, jv| <V, put
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{ I |u~u0+B(v—vo]| if v# vy,
A —

lu|sU

l_[ e — o]

uFug

if v =y,

so that

Notice that if v = v, then
4, = (U—up)/(U+uy)! = (U

For v # v, fixed let x = x, be the minimum of |u—u,+ f(v—wv,)l, then 4,
is a product of the form

4,=x(x+1)...(x+A)1—x|...|4"—x|, where A+A4"=2U.
Consider the two cases: (i) A" =0, (ii) 4" > 0. In the first case,
4,=xQUN = x (U2

Whereas, in case (ii) we have 0 < x, <
value is when 4 = 4’, so that

4,2 x(1=x¥)2%2=x?)...(U*—=x?).
Using the expansion of the function Log(l+y), we get

1/2 and it is easy to verify that the lowest

Log(a®—x?) > Loga®>—(7/6)x*a”? for a>1;
this leads to
4, > x(U!) exp { — x2Tn2/36}.

Notice that the right-hand side is an increasing function of x.

Now, hypothesis (H) implies that each value of x, can be obtained at most
twice. Besides each value of x is equal to p/b, for some rational positive integer
p- Thus,

A > (V)2 b2 (U1)2@ +Vexp { —(14n2/36X1 422 + ... + V?) b3 2},
And we obtain
4> (V)2 b5 2 (U)2@¥ *+Vexp { —(Tn?/54KV +1)° b3 2}
because 14+2%4...+n* <(n+1)3/3 for n>0.

LEMMA 3.3. Let x and y and a be positive numbers such that x, y < X < a,
then

Jx—yl

5 < Xa™?
a*—xy

if xy # a*.
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Proof. Without loss of generality, we may suppose x = y.
Let f be the left-hand side. Then

2. il 2. =2
T 2V op DLoX=% on
ox (a*—xy)? dy (a*—xy)?
so that, in the domain considered,
maxf(x,y) = f(X,0) = Xa™2,

COROLLARY 3.4. Take again the notations of Lemma 3.2. Consider
R, > U+V|Bl, a real number x, |x| < R, < R. Then

nRix 7' (R /R){2u+1)(zv+u
vel"R
and |
R’—W’)( Ix—?’l) 2R*
= )< QU DRV +1)47 1 s — REUHDEV+D-1
E(Ergzux}. ﬂ,h’-vl ( X ) R*—R:!

Proof. Notice that yeI" implies —y e I'". This remark shows that the first
eXpression we want to estimate is equal to

¥l oy RIx*—9%'2
R yEF'(R4_x2 .}'2)”2’

And the first inequality follows at once from Lemma 3.3.
The same remark shows that the second expression can be written

R? [x— ?’I)
e 5

R4 4_ '2 —a2y\1/2

yel* \y'#y y# 4y = =

where I'* = I'—{0}.

Applying again Lemma 3.3, we see that this expression is bounded above by

2R*
-1 - ¥ 4 20+ 1)2V +1)—
A R(I?.U'I'IHZV‘FI) l+ A IR4 4R( + 1) +1) l.
y'el Rl
And the second estimate follows easily.

4. Zero estimate. This section is essentially the content of a letter by D.
W. Masser of June 19, 1979.

4.1. The result. This is a result intermediate between those of [1] and [6].
Let «, B, y be complex numbers, ay # 0, and L, M, U, V be positive
integers. We want to prove that, under suitable hypotheses, if a non-zero
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polynomial PeC[X, Y] is of degree at most L in X and at most M in Y, then
at least one of the numbers

P(u+0p, o*y"),

is not zero.
For that it is necessary to add the following hypotheses

(i) the numbers L, M, U, V have to verify

L QU+RVH1) > (L+IXM+1),
and even we must have

Card {(u+vB, #y"); —U<u<U, —V<v<V}>(L+1)M+1)

(if this second condition is not satisfied then a counterexample can be obtained
using only linear algebra).

—-U<u<U, —V<o<V, (u,v)eZ?,

(ii) moreover the set of the first coordinates has to be rather big:
Card{u+vf; - U<u<U, -V<ov<V}>L+l1,
(if not, then a polynomial P can be constructed which does not depend on Y).
(iii) the same must be true for the set of the second coordinates:
Card{a"" -U<u<U, -V<ov<V}>M+1.

ProrosiTiON 4.1. Let U,, U,, V,, V, be positive integers. Put
U=U,+U, and V =V, +V,.

We suppose that

(a) the points

u+vﬂ (_U!.S.u"s.ul, _Vl -<...U$V1)
are pairwise distinct, and

QU +1)2V, +1)> L;
(b)
Card {o*, —U, <u<U,, -V, <v<V}>M;
(©
Card {u+vf; —U, <u
Then at least one of the numbers

Pu+vB, ") (-U<u<U,-V<ovgV)

is non-zero.

4.2. Two preliminary lemmas. The first lemma is classical, it is obtained
by the technique of Kronecker’s U-resultant.
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LeEMMA 4.2, Let Fy, ..., F, be polynomials in C[X, Y], of degree at most
L in X and at most M in Y, without any non trivial common divisor in the ring
C[X,Y]). Let (&, n), 1 <i< N, be common zeros to F,, ..., F, in C?, with
&1y ...y Ey pairwise distinct. Then N < 2LM.

Proof. Introduce the 2r new variables U,,...,U,, V,,..., V.. Then
define the two polynomials G and H in the ring 4 =C [Ul, vy Wiy Vgoamug Vo
X, Y] by

G= ZUFj(XY] H= z Fy(X, Y).

Let ReC[U,, .. U Vis s V., X]be the resultant of the polynomials
G and H with respect to the variable Y.

Then the following is true:
(@) R#0. Indeed, suppose R is zero, then G and H have a common
Irreducible factor Q in the factorial ring 4. Since G belongs to C[U,, ..., U,,
X, Y] the polynomial Q is one of the irreducible factors of G in this ring, hence
it does not depend on V,, ..., V.. In the same way, the polynomial Q does not
depend on U,,..., U,. Then QeC[X,Y] is a common factor of the
Polynomials F,, ..., F,. Contradiction.

(B) degy R <2LM.

) RU,, ..., UV, W, E)=0fori=1,..., N, because R is a lin-
€ar combination of G and H with coefficients in the ring A4.

The lemma follows easily from these three properties.

LemMMmA 4.3. Let Qe C[X, Y] be a polynomial, and «, B, A be three complex
Rumbers, with aff # 0. Assume that

4.9 Q(X+8, aY)=20(X, Y).
Then Q belongs to C[Y].

Proof. We first notice that if Q belongs to C[X] and satisfies
Q(X +f) = AQ(X) with § # 0, then Q is a constant (otherwise it would have
infinitely many zeros).

Write

d
(X, V)= Y a(X) Y.

i=0
From (4.4) we deduce

a;(X+p) o’ = ia,(X)
hence a; is a constant for all i, 0<i<

O0<i<d),
d, and Q belongs to C[Y].

Remark. It is easy to find all the polynomials Q e C[Y] satisfying the
Telation
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Q(Y)=A0Q(Y).

We need only to know that if Q satisfies this equation with o # 1 and is
irreducible, then Q(Y) = a Y for some non-zero complex number a. Indeed we
can write

Q(Y)=aY+b, a#0.

From the relation aaY +b = A(aY +b), one deduces 4 = a (because a # 0),
and b =0 (because A= a # 1). .

4.3. Proof of Proposition 4.1. Obviously, we may suppose that Y does not
divide P, and that P¢C[X].
1° We prove that the polynomials
P(X+u+vf, a"9"Y)

do not have any non-trivial common divisor.
Let

(U, susU,, -V <svs V)

k
P=c[]oOr
i=1

be a decomposition of P into irreducible factors, where Q,eC[X] for
i=1,....,h and Q,¢C[X] for i=h+1,..., k (notice that h<L and
k—h < M). Then

k
P(X +u+vp, a*y°Y) = c [| Qi(X +u+uvp, ay"Y)"
i=1

is a decomposition into irreducible factors. If there exists an irreducible
polynomial Q which divides all the polynomials P(X+u+uvf, o'y'Y)
(-U, <u<U,, -V, <v<V,), for each (u, v) there exists an index
i=i(u, v) (where 1 <i<hif QeC[X] and on the contrary i > h if not), and
a non-zero complex number c,, such that
(X, V) =c¢,,Qi(X +u+vp, a*y"Y).
From hypotheses (a) and (b) we deduce that the number of (u, v) is
QU+ 1)2V, +1) > max {L,M} > max {h,k—h}.

Thus, thanks to condition (b), there exist two different pairs of indices (u, v)
and (u',v'), with either Qe C[X] or a*~* y*~ 3 1, for which the two indices
i(u, v) and i(«,v') are equal. Then condition (a) gives u+vp # v’ +v'f, and
there exists a AeC such that

Q(X+m—u)+(@—v)B, oy ""Y) = AQ(X, Y).
Since Y does not divide Q, Lemma 4.3 gives the desired contradiction.
2° The application of Lemma 4.2 to the set of polynomials
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{Fiy.... F,} = {P(X +u +v,,0"y'Y); —U,<u, <U,, =V, <v, <V, }
and to the points

{Cin); 1<i<NY={(u,+v,8, 0*y); —U,<u, <U,, =V, <v,<V,}
with N < (2U,+1)2V, +1) gives the conclusion.

) Remarks. 1. It is easy to see that the assumption &, ..., &y pairwise
distinct in Lemma 4.2 can be replaced by the weaker assumption ({,, 1,), ...,

(Cx» my) pairwise distinct. Therefore one can replace condition (c) in Proposition
4.1 by

Card {(u+vB, ay"); lul < U,, |v| < U,} >2LM.
But we shall not use this remark.

2. It would be very interesting to know whether it is possible to improve
the constant 2 on the right-hand side of condition (c).

5. The main result.

5.1. Common notations and hypotheses for Sections 5, 6 and 7. Let o, a, be
tWo non-zero algebraic numbers of respective degrees equal to D, and D,, the
total degree of the field we aré working in is D = [Q(«,, a,): @], loga, is any
Non-zero determination of the logarithm of ), I, = [logey, j = 1, 2. Moreover

:‘: B =b,/b, be a rational number, b,, b,eZ, 0 <b,, b,, (by, b,) = 1, such
at

A= floga,—loga,

does not vanish.

We put B=max{b,, b,}.

We denote by a,, a,, G, G, Z, 0, f positive real numbers which satisfy the
fOllowing relations:

a,b, < a,b,,
f=z1, 06=21,
a;21, a;>2h(@) and a,2fD7', j=1,2,
G' > Log(e/2+2el; 1Y),
G = Log B+ Log Log B+max {1,0.59+ G'/D},
Z < min {DG/0, Da,, Da,, Log(2ea,a,D/f(a,l, +a,l,))};
furthermore we assume
(5.0) D%a,a,G*Z~® > 2(D—1)a, +a,).
We put
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e = Z/(Log(2ea,a,D/f(a,], +a,l,))) (so that e < 1)
and
U = D%,a,G*Z73.
Notice that (5.0) and the conditions on Z imply
U > max {6DG,2D (D—1)a, +a,),0?Da,, 6*Da,};
this inequality will be used implicitly in the sequel.

5.2. Notations and hypotheses for Sections 5 and 6. We assume Z > 1 and
0>10. Put v=1-96,, (= if D equals 1then 0 else 1). Let ¢,
Cys € X1 X2 %> Co 1, 4, @, P> & be positive real numbers. Assume

15<¢c,<290, 1<¢, <48, 55c<c,—1/6,
(5.1) 2¢, +co/cB+2(1—1/8c,) < 4cé,
3<e<17, 1<y<25, (Q@Qc—1/0)=>c,,

S

(5.3) n > max {CO (2c, —1/0)—(2c + 1/0)*° E}' T2 (co—1/0)c,— 1/6y

(Notice that (5.2) implies that n is positive and 0 <p <1.)

(5.4) p= q{ﬁ+co+2cc, +0.6v}+2f+0.1v,
(5.5) {bieh Fapedepsae
‘ 20c) ~ = PTHOTT Y
(5.6) C > p+co+(4x*c?*/Z) Log(2e)+ xc 2+ 5¢, + ¢, [f) +1,

(Notice that (5.1) and (5.6) imply C > cy+ 5xcc; > 10c.)

1. 2f(1-1/200? €€
1 = i i, e lih SN )
(5.7) 0<¢<e +Log Zeie? =
CoC
(5.8) Xa=Y="2 =itk
Vot  144/col
(59) x> c " 2¢0 °

5.10) either o, and a, are multiplicatively independent or y > —“cocl+—l—+£'—-
( ) 1 2 P y pe X = PR
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Finally, we put u = w(b,)/LogB and we suppose LogB > 10. Then
Lemma 2.7 implies

uLogB < 0.09+ Log LogB.
5.3. Statement of the main result.
THEOREM 5.11. Under the above hypotheses, we have |A| > e Y.

All the rest of Section 5 is devoted to the proof of this inequality. Therefore
we assume Log|Ad| € —CU and we shall eventually reach a contradiction.

5.4. The parameters. We define L,, L,, M,, M, by
L, = [coD%a,0,GZ7%]), L, =[c,DGZ™'],
M, = [cD*Ga,Z"?], M, =[cD*Ga,Z"?].
We will often use the following inequalities
Lo > (co—1/0)D%a,a,GZ™3, L, >(c,—1/6)DGZ",
(5.12)
M, > (c—1/0)D*Ga,Z"*, M, > (c—1/0)D*Ga,Z"?,

Which are all consequences of the definition of Z.
Notice also that

(5.13)  2M,+1<(c+1/6)D*Ga,Z"%, 2M,+1<(2c+1/0)D*Ga,Z2.

) We claim that the numbers u+0vf (ju| < 4M,, |v| < 4M,) are pairwise
distinct (here and in the sequel the letters u and v represent rational integers).

Otherwise b, < 8 M, and b, < 8 M,, hence by Lemma 2.2 and the definition of
the a;’s

(%) |4] = 2 Pexp(—b,Da,—b,Da,) B!

> exp(—D(1+8 M,a, +8 M,a,)—G) = exp(—(16c+2) U/10),
by the definition of the M;’s and the inequality at the end of § 5.1, which
contradicts the assumption [A4] < e Y, since C >2¢ and ¢ = 3.

We also remark that M, < b,/33: if not, since b,a, < b,a,, (+) implies the
estimate

Il = exp(—3b,Da,) > exp(—99 M,a,D),
Which contradicts |A| < e €Y, since C > 10c, 6 > 10 and M,a,D < cU/6. This
®mark will be used in the proof of Proposition 5.19.
5.5. The auxiliary function. Like in [7] we denote by {£,, ..., {p} a basis
of Q(a,, a,) over @, where &, = adtadz, 0 < dj<D; (j=1,2).

For brevity we write o} for exp(zloga,). We shall construct an auxiliary
function of the form

Lo Ly
F(z) = Z Z Pn,tda(z)a'ix:

h=0k=~-L;

4 — Acta Arithmetica LIIL3
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where

D
Ppy = Z Phidbas Prxa€Z

d=1

and 4,(z) is defined in Lemma 24.
For rational integers u and v we put

Lo Ly
@(u,v) = Z z Pax 4s (u+vp) ﬂ:"“'&”

h=0k=-1L,
Notice that

F(u+vp)—o(u,v) = EZPM Aa(““‘”ﬁ)“‘l‘“?((aq/az)“_ l)-

With Q(b,h) defined as in Lemma 2.6, put
¥ (u,v) = @ u,v)ak Mol bl Q(b,, L).
Notice that Q(b,, L,) < exp(Lyw(b,)) < exp(uL, Log B).

PROPOSITION 5.14. There exist rational integers p,, ,, not all zero, such
that

o, v)=yYu,v)=0 for — M, <usM, —M,<v<M,,
with
LOEZZ'P&.&I <p,U/D and Lngh:;Ed:'Pn.k.d'*ssz/Dr
h ok

where p, = p—v/2f and p, = p, +vD/2f.

Proof of Proposition 5.14. We have to solve in Z a linear system of
(2M, +1)2M, + 1) equations in the D(L,+1)2L;+1) unknowns p,,,. We
shall use Lemma 2.1.

We first check

(5.15) (M, + 1)2M,+ D((Lo+1)2L, + 1)—(2M , + 1)2M, + N)<n

This is an easy consequence of (5.3), (5.12) and (5.13).
With the notations of Lemma 2.1, we have

i—=(h, k,d), j—(@u,v), N;y=2Lju+D,—1, N;,= 2L,lv|+D,—1,
' P, = 4,(u+0f) bR (b,, Lg) X1 Hhutdi el +hotas,
By Lemma 2.4, fa, <a, and (5.1):
L(P,)) < 2(X"/h)b5°Q(b,, Lo),
Notice that

X = max {Ju+vfl, Lo/2} = Lo/2.

Yy —<é,

w=o h!
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so that
LL(P,) <2DQLy+ 1)y/eb;)" 2 (b,, L),
and
V,o < 2D (2L, + 1) /eby)* Q(b,, Ly)
x exp {(Dy —142L Jul) h(2}) +(D, — 1+ 2L, o)) h(2,)}-
Now we have

S (Dy—1+2L, ) h(ey) = (M, + 1)D, — )+2L, M, (M, + D) h(z,)

- _Ml
and

2M (M + 1) h(a,) < (1/2)2M, +1)%a,.
Hence, since a similar result holds for the summation over v,

Y LogV,, < (2M, +1)2M, +1) {Log(2D (2L, + 1)/eb,)Q (b,, L))

+a,L,(M;+1/2)+(D—1)a,+a,L, (M, +1/2)+(D—1)a,}.
We notice that
(5.16) (D—1+L,/2Xa, +a,) < ¢,U/6D)+vU/2D.
Next we show
(5.17) Log(2(2L,+1)) < 0.53U/DG and DLogD < vU/10.

Put Y= U/DG. We first notice that 2L, +1<9.7Y by (5.1). The first
inequality comes from the estimates Y > 6 > 10 and Log(19.4x) < 0.53 x for
x> 10.

For D <5 we have DLogD <

0< U/IO because U > 0° >
for D>6

= 100, while

LogD <04(D—1) and

This completes the proof of (5.17).

Next we have L, (¢, M, +a,M,) < 2cc, (U/D), and, by Lemma 2.7 and the
definition of G,

U >4D(D-1).

Log((\/eb,)“Q (b, Ly)) < Lo (0.5+(1 + ) Log B) < co (U/D)—4c,U/10DG.
Hence from (5.16) and (5.17) we deduce '

Y. LogV,, <(2M, +1)(2M2+1){ +co+2clc+oé3 fgf;+06}u.

Then, by Lemma 2.1, there exists a solution p,,, in Z,
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053 4o o U nlog2
¢ 1067 Dp D

Remark that the conditions r; > 0.5 and ¢, > 15 imply that the sum of the
terms in (5.4) containing G~' is negative.
We bound (Log2)/D by 0.7 Y/0D. Finally, we show

(5.18) Log(D (Lo +1)2L, +1)) < 1.26U/DG +vU/10D.
We have only to bound (L,+1)2L,+1) < (291Y)9.7Y) < 2823 Y? and
Log(2823Y?) < 1.26Y for Y > 10.

Using (5.17), this proves (5.18).
Using the upper bounds

(D, — 1)1, +(Dy— 1)1, < (D—1); +1,) < f ~* D(D—1Xa, +a;) < VU/,
we deduce Proposition 5.14 from (5.4) and (5.18).
5.6. The extrapolation. Put
= [xcD%a,GZ"*] and M}% = [xcD*a,GZ7?].
In this section we prove that
(%) o, v)=0 for —M¥<u<M}{, —Mji<v<M}

0 < max Log|p; .4 < q{e +cot+2c,c4+——

By construction, this is true for —M, Su< M, and —M, <v< M,

We plan to use an inductive argument [indeed, we could prove () in one
single step, but an induction yields slightly smaller constants]. Define

N=Mf+M3—-M,—M,.
For each integer n in the range 1 <n < N, choose
=1 and £®=0 for1<n<Mi-M,,
=0 and &¥=1 for M{—M, <n<N.
Then define, for 0 <n<N,
M = Mj+.\i e for j=1,2.
=1
For 1 £ n< N, define y, by
M{ = y,ca,D*GZ™2, so that 1<7,.
We shall prove, by induction on n (0 < n < N), that
P, @(u,v)= for |u| < MY and |v] < M%.

As already seen, this is true for n =0, while (P)y is nothing else than ().
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We suppose that (P),_, is true for some n, 1 < n < N, and we shall prove
(P),. We consider the set '
Py ={24,..0, 2} = {u+0B; [ul < MY, | < M§~V},
m=( 2M{ U4+ 1)2ME VD +1),
and a point z,er,, zo¢l,_,.
From our assumption fa, <a, we get
(lu l)+l ?ﬂMg'_”.
Define '
R, =MP+MPB,  R=mlLyl,).
PROPOSITION 5.19. We have
|F(zo)| E,+E,
where
(5.20) LogE, < p,U/D+LyG'+1+ L, Log(m/2M, + 1}2M, + 1))—méZ
and

(5.21) LogE, < Log max |F(y)|+m L0g28+2M£."'”Log(l.3b,_/Mg"1;).

yeln-1

Proof of Proposition 5.19. Using Lemmas 3.1, 3.2 and Corollary 3.4
Wwe have

|F(zo)| < E,+E,
where

LogE, < —mLog (R/Ry)+ LOS(R/(R_Rl))+LOS |F]g
and

LogE, < Log max |F (y)|—(4M$ ™ +2) Log (M~ 1))

yeln-
+1.28(M§ ™V +1)*b52+2M§ Y Logh,—2Log(M¢~1))
+Logm+(m—1)Log R, + Log (2R*/(R* - RY)).
From Corollary 2.5 we deduce

R
Log max [4,]z < LoLog( 1)+L0,

0<h<Lo Ly 2
hence
' U R 1
Log|Flg < p; 5+ LoLog( ——+5 |+ Lo+ LyRI,.
D . L™ 2
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We first show the following four inequalities, and then we use them to complete Bl < l,+e7 %Y,
th P iti .19:
e proof of Proposition 5 and therefore
R m(e® " 1—1/2) (2c+1/0)
=l Lo S @M, + 1)2My+1) 2(co—1/0Xc, —1/6) (@ +Ba)ly < a)ly+ail +a,e™ < (a5, +a, )1 +e7P6)
—¢ —
(5.23) LogR/(eR,) > £Z, because I, > e~ % and I, > e P9,

Now U = 0DG, hence
(5.24) Log((My~")1) > (M~ P+ 1) Log((MT ™"+ 1)/e)

CU-DG > C(1—1/0)U > C(0—1)>
—(1/2) Log (MY~"'+1)+(1/2) Log 2r, =L EE-I=6

and Log(1+e™¢) <eC. This completes the proof of (5.26) in case (a).

5.25 R, /My V+1)<2.
( )Proof of (5.22): Recall tllﬁ,t ;t=m/1),.1,. The choice of G’ implies - Mf,g)_MA}: A{i} o N. In this case M3~ =M{—1, while M{™"
s " = Mt. We have
1, < (51 =1/2)2. R 2MiEMEP—1)
Hence, using the definitions of M,, M,, L, and L, we get R, P LI, (M¥+BMD)
R m m (2c+1/6) Thanks to the inequalities

—_= < J .
Ly LoLid; ~ @M +1)2M,+1l; (co—1/0)c,—1/6)

And (5.22) follows from these two inequalities.
Proof of (5.23): We have

M$ > M, +1> 2cD*Ga,Z"?,
M} > M, +1 > 2cD*Ga,Z"?,

R N (2M(ln—l}+l)(2M{zu—l)+l) Wwe obtain
R,  LI(MP+pMY) B o 2(2& 1) D*Ga,a,
According to (5.7), the inequality (5.23) we are checking reads , R, 0/ Lyl (azﬂ_gﬂn)zz'
R _ 2fcé* 1\2 . We have already seen that
(5.26) Syttt (1——) -e
R,  ec, Z 20c Log((a,+ Ba,)!,) < Log(a,l, +a,l,)+e €.
We consider two cases y s il BT AL Finally (5.26) easily follows. This completes the proof of (5.23).
thus(a) 1 <n<Mt—M,. In this case M§™" = M, while MY "' = M{"—1, Proof of (5.24): For any integer A >1 it is known that we have
4! > (A/e)* \/(2n A). Hence for any integer A > 2 we have
2MY V41 (2c—1/0)x,D*GZ *a; _ (2¢—1/0)D*GZ"*a,
MP+BM,” cx,D*GZ %a,+pM, ~ cD*GZ™*a,+fM, (A=1!>/2r (Afey* 4712,
and We apply this inequality for 4 = M{"V+1.
P i
2M,+1 S 2(c—1/20)D* Ga,Z* 1y a roof of (5.25). For 1<n<M{—M,, we have
cD?GZ 2a,+pM, " c¢D*GZ %a,+pcD*Ga,Z™* " 20c/a,+pa,” R, M{ V414 8M, BM,
- i M{n—ll_‘_lg‘ MPD 4 =1 Wﬁl
From the upper bound L, <¢,DGZ™" we get 1 N MY +1
R 1\2 Da,a, thrcas, for M¥—M, <n < N, we have
R, > *\!"28c) ez, +Bay
R, c) ¢,l,Z(a,+Pa,) R, < MY +p M3 BM% <?

The condition |4] < e €YV implies MP~D41 ™ MP-D4t = MU



272 M. Mignotte and M. Waldschmidt

End of the proof of Proposition 5.19. We first check (5.20). We
already know

R R U R 1
< - —+Log——+p, Log|{ —+= |+Lo+LyRI,.
LogE, mLogRl+ SR—R1+p2D+L° og(L°+2)+ o+ LRIy

We substitute m to L,RI, and use (5.23):
—mLog(R/R,)+L,Rl, < —méZ.

Now we use (5.22) together with the inequalities m > (2M, + 1}2M, +1) and
0<p<1; we get

; R 1 , m
L"L"g(e(f;*i)) = (G o8 oA, T XM, + 11)'

Finally we bound R/(R—R,) by e, because from (5.23) and (5.7) we deduce
R > eR,. This completes the proof of (5.20).

We now check (5.21). We prove

th
<@ Mg"“+_2) Log(M{¢~ 1) +mLog2e—(2 M§ ™D+ 1)(—0.1+ Log(2n/e)).

We already know that R/R, > e, hence 2R*/(R*—R}) < 2.04. Let us
show:

(5.28) Log2.04m < LogR, +0.19 M§~ Y.
Because of ¢ > 3, we have M{~ 1 > 30 and M~V > 30. Thus, we have
m < (2+1/30)> MOME ™Y,
204m/R, < 2.04(2+1/30)> M§~V < 8.5 MYV,
Log(8.5 M) < 0.19 M§ ™Y,

Since R, > MY, this proves (5.28).
In order to complete the proof of (5.27), we first notice that (5.24) implies

2QM$ ™ V+1)Log(MT™ 1)
> mLog((M¢~V+1)/e)+2M§F~ 1 +1) Log (ME=D+1)/e)
—2M% V4 1)Log (M1 +1)/2n)
= mLog((M{ ™V + 1)/e)+(2 M§~ "+ 1) Log (2n/e).
Thus, from (5.25) we get
mLogR, < 2(2 M§~ Y+ 1)Log(M{™V1)+mLog2e—(2 M§~ ¥+ 1) Log (2n/e)-
In § 5.4 we proved that M, < b,/33. From M, > 30 and x < 2.5, we deduce

(527) (m—1)LogR, +LongR +Logm-+1.28(M§™V+1)*b; 2
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MY V< M*—1<ycD*a,Z 2 —1 < gy(My,+1)—1<26M,.
Hence, My~ < (2.6/33)b, and
1.28(M§~V+1)3b32

We deduce (5.27).
Remarking that Log(M§~"!) > MY~V Log(MY{ ™ "/e) and using (5.27),
we get (5.21). This completes the proof of Proposition 5.19.

< 1.28(31/303(MY~1)%b52 < 001 MY~ Y.

PROPOSITION 5.29. Put A, = max{1/2, Zxﬂc/(co—llﬂ}} For y=u+uvf
€r',, we have

[F()—o(u, v)| < E;
Where
LogE, < —CU+p,U/D+2,Ly+Log(L,M%)+L,M%l,
+2Da,/f+e U+(L M5 +1)Da,+1.

. Proof. We first show that for —L, <k <L, and —M}<v < M%, we
ave

(530)  |of*—a¥)
< exp {— CU+2Day/f+e~U+Log L,M3 +(L,M% +1) Da, + L,M$Da,/CU}.
We start from the inequality |e* —e*| < |z—2| € *1¥! for z, /€ C. We deduce
of —a,| < |Bloga, —loga,|exp(Bl, +1,) < exp{—CU+2Da,/f+e~}.
Now we use the upper bound
[x"—y" < nlx—ylmax {1,|x|,|y]}""" if x,yeC and n>1,
80 that, for any x, yeC* and neZ,
- %"= < |l Ix — yl max {1, }xy| =} max {|x}, |yl bl 71, Iy 1L
In our case we get
lef* — o5’ < lof —at| Ly M3 max {1, Jofo,| ™"}
xexp({L M3 —1) Log (max {laf], la,], lef] ™, la, ~*}).
We have Logla,| <1,, Logle,l < I, < Da, and |of] < |a,|+e7CY? so that
Log|of| < Da,+e~ €V,

From Liouville’s inequality (Lemma 2.3) we deduce Loglx,| > —Dh(a,)
2 —Da,. We now show
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(5.31) Log|of| >
Clearly we have

|ef| > exp(—Da,)—exp(—CU +2 Da,+e~Y).
But exp {Da,/CU}—1> DaZ/(CU} and

—Da, (1+1/(CU)).

Da, cu Da,
=2
CcU > CU+3Da2+e Log(

Hence
exp {Da,/CU}—exp{(3+1/CU)Da,+e Y —~CU} > 1

multiplying each side by exp'{—Daz/CU—Daz} we get (5.31). These lower
bounds give

(5.32) Log(lefo,] ~*) < Da, 2+ 1/CU)
and
Log (max {|af], |, lef] ~*, ;] ~'}) < Da, (1 +1/CU),

and (5.30) follows.
Notice also that

Log2+(1/CU)L,M% Da, < Log2+yc,c/C <1/5+Log2 < 1.
Now Proposition 5.29 follows from the relation

F(}']_(D(N.U) — zzph.k Aa(u+vﬁ)a'i"(aﬁ"‘“+a§")

provided that we prove
(5.33) |4, (u+vP)| < exp{4,L,}

for 0 < h< Ly, |ul < MY, v] < MY, where A, = max {1/2,2y,¢/(co—1/0)}.
We deduce (5.33) from Lemma 2.3 as follows: if X = max {|u+vfl, h/2}
then

|4, (u+vP)| < 2X"/h! < (2/eXXe/h)*  (use h!> hte! ™% true for h = 1).
This implies
|4, (u+up)| < (2/e)e*.
We have ‘
lu+vfl < MP+M$ B < 2y,cD*GZ ™ *a,
while

Ly = co(1—1/0co) D?aa,GZ™3;

Linear forms in two logarithms 275

hence
[u+vp| < (2%.¢/(co—1/0)) L.
This completes the proof of (5.33), and also of Proposition 5.29.
Remark. Thanks to (5.1), we always have 1, < 091.

PROPOSITION 5.34. For (u, v)e Z x Z with |u| < M and |v] < MY, either
©(u, v) is equal to zero or

o (u, v)| = E
with
—LogE, <(1-1/D)p,U+(D—1)LyA,+(1+p)DL,LogB
+2DL, (a,M{ +a,M$) + D (D— 1)a, +a,).
Proof. By Lemma 2.6, the number

b5°Q by, Lo) @ (u, v) = ZZZPM.‘: 4, (u+0vP)b3° Q(b,, Lo)of* " Mo+
is the value of a polynomial in ay, 0y, 07 1, a3 !, with integer coefficients. The
length of this polynomial is at most
exp {p;U/D+(1+p) Lo Log B+4,Ly};

as shown by (5.33) and Lemma 2.7. Proposition 5.34 immediately follows from
Liouville estimate (see Lemma 2.3).

PROPOSITION 5.35. Assume that in (5.21) we have
max |F()| < Ey;
"E'rll—l
then
E,+E,+E; <E,.
Proof We use (5.5) to check

(5.36) E, <E,3,
and then we shall use (5.6) to check
(5.37) max {E,, E,} < E,/3.

The first inequality can be written
(538)  mEZ > pU+(D—1)LoA,+(1 + ) DLy Log B+2 DL, (a, M +a,M$)
+D(D—1)a, +a,)+1+Log3+LoG + Lo Log (m/(2M , + 1{2M,, +1)).

Let us prove that it is sufficient to check (5.38) for n = 1. If we replace n by
"+1, then the left-hand side of (5.38) increases by 2(2M%"+1)¢Z and the
“Bht hand side at most by (notice that (y,—y,_,)cD*a,GZ"?< 1)
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n} -1
ZDLla,+LDLog2M2_,+3+2(l—%) D%,z
0

if n< M¥—M,, while if n > M¥—M, the LHS increases by
2QMP+1)EZ
and the RHS by
2MP+3

2DLia,+L, LOg2M‘z'"+l

Therefore our claim will follow from the upper bounds

n) -1
L +3+2(l——l—-) D%*a,Z~
Oco

(539) 2DLyay+LoLogsrrr—s O :

<22MP+1)¢Z

and
g!l
L
8T MY+ 1

Now we have 2DL,a, < 2¢,D*Ga,Z" ! and

IMP+3 2L, 2L,
LyLo <
82M‘,"’+1 IMP+1 S IM 43

and the left-hand side in (5.39) is at most
(2¢, +€o/cDG +2/(1 —1/8¢c,) G)D*Ga, Z~*
while the right-hand side in (5.39) is at least
2(2M,+3)¢Z > 4cD*Ga, Z7'¢.

We have DG > 6, moreover from (5.1) ¢, satisfies 2c, +cq/c0+2/(1—1/6¢c)
< 4cé, hence this proves (5.39).

The proof of (5.40) is almost the same (but simpler). Now the proof of
(5.36) reduces to (notice that A,=1/2 by (5.1))

@M, +1)2M,+1){Z—(pU +(D—1) Lo/2+(1+ ) D Lo Log B+ Ly G’
+D(D—1Xa, +a;)+2D L, (M, +1)a, + M,a,)+1+Log3) >0

Since (2c—1/8) £ = ¢, it is easy to verify that the LHS is an increasing function
of M, and M, (in the real intervals M, >cD%,GZ -1 and
M, > cD*a,GZ~*—1) so that (5.36) is true if

(2¢—1/0*¢U = pU+(D—1)Lo/2+(1+u)D LyLog B+ Ly G’
D(D—1Xa,+a,)+4cc,U—2DLa,+1+Log3.

(5.40) 2DL,a,+L, <22MP+1)EZ.

c"Daz '

We have
D(D—1)a,+a,) < vU/2,
and (by the choice of G)

1+Log3 <2DL,
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(148D LyLog B+(D—1)Lo/2+ Ly G’ < c,U.

Therefore (5.36) is a consequence of (5.5).

i< We now prove (5.37). It is sufficient to check (as already remarked
< 091)

(541) pU+D(a,+a,XD— 1)+2Da,/f+e Y +Log9+(14u)DL,LogB
+4,Lo+Log L, M3+ L M}, +2DL, (M{a, + M§a,)
+2M§ ™" Log(1.3 B/M§™ V) +(L,M$ ™V +1)Da, + mLog2e < CU.

We have

LM%Yl < xee, Uff,
2DL, (M{a; +M%a,) < 4 yec, U,
L,M%" "V Da,
2M§~VLog(1.3B/M§™Y)

We now bound m:

MSEMI+1D2ME™V—1) SAMIME V42 MY < 432c2U/Z +2 MYV,

So that (5.41) is implied by the condition

< xee,U,
S2MEVG—4ME V< 2ycU—-4MYPD,

p+co+(4x%c*/Z) Log 2e+ yc (24 5¢, +¢,/f)+v/2+0.15/D < C
Provided we prove the upper bound
D(a,+a,XD—1)+Log9+Log L,M2 +Da, (1 +2/f)+ e~ < (v/2+0.15/D)U.
We have (since f>1 and 6> 10)

D(a, +a,XD—1)+Da, (1 +2/f) < (v2+(1+2/f)/6*) U/D < (v/2+0.03/D) U,
and, thanks to the bounds of ¢, ¢y, x given in (5.1),

Log(9 L,M$) < Log (9 cc,xU/D) < Log(1836 U/D), where U/D > 6
hlence
Log(OL,M%)+e U <0.13U/D

50 that the upper bound above is true. This shows that (5.41) is a consequence
of (5.6), because 0.15 < (1—v/2)D. .
We now complete the extrapolation argument.

PROPOSITION 5.42. For (u,v)e Z x Z, with |u| < MY and |v| <
@(u,v)=0.

Proof. We prove by induction on n, 0 <n

M%, we have

< N, that

¢u,0)=0 for |ul < M{” and |v| < MY .
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This is true for n =0 by Proposition 5.14. »
We assume that this is true for n—1, with 1 < n < N; we choose the point

Zo¢ T, 1.
From Propositions 5.19 and 5.29 we deduce
lo(u,v)] < E;+E,+E;.
Now Propositions 5.34 and 5.35 give ¢(u,v)=0.
5.7. End of the proof. The non-zero polynomial ;.ka“'k 4, (X) Y! ¥ van-

zo =u+vpel,,

ishes at the points

(u+vB, o), (W,v)eZxZ, |u<Mi, [v<M3.

According to Proposition 4.1 (zero estimate), we will obtain a contradiction
with Proposition 5.42 if we prove the following result.

PROPOSITION 5.43. There exist positive integers U, U,, V, , V, satisfying

(5.44) U,+U,<sMt, V,+V, <M3%;
(5.45) QU+ 12V, +1)> L,,

(5.46) Card {(«§o3); lul < Uy, ol <V} > 2Ly,
(5.47) QU,+1)2V, +1)>4L,L,.

Proof We define U, and ¥, by the conditions
x,cD*Ga,Z 2 —1/2 < U, < x,¢D*Ga,Z % +1/2,
x2¢D*Ga,Z"2—1/2 < V, < x,cD*Ga,Z7%2+1)2.

Since % = coc ¢ 2, we obtain (5.47).
We define now

U, =Mt-U,, V,=Mi-V,.
Therefore (5.44) is clear. We now deduce (5.45) from (5.8) and (5.9). We have
M* > ycD*Ga,Z~*—1, )
hence
2U,+1 > 2x,¢D*Ga,Z 2 -2 > 2y,¢(1—1/x,0c) D*Ga,Z 2.

Similarly .
2V, +1 > 2y,c(1—1/x,0c) D*Ga,Z">.

On the other hand L, < ¢,D3Ga,a,Z™3, and therefore (5.45) will be

a consequence of
1 \DG
493 1l—) — = ¢y
Xic ( xiﬂc) z Co
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Indeed from (5.8) and (5.9) one deduces

(5.48) 2,00 = 1+ /(cy0).
This completes the proof of (5.45).
Finally we prove (5.46). We consider two cases:

(i) The points afa$ (Ju| < U,, |v| < V,) are pairwise distinct. This will be
the case for instance when «,, a, are multiplicatively independent. In this case,
we show that (5.46) is a consequence of (5.9). We have to check

QU,+1)2V, +1)>2L,.
This is implied by (5.45) and the inequality L, > 2L,.

(i) We assume

€€ 1 ¢
x> 4t
c Oc ¢

If «, is not a root of unity, then

1
Card {af03; [u| < Uy, Jv| < Vl} Z2U,+12= lec(l —X—F’E)DIGGZZ—Z.
1

It is sufficient to notice that

cl1 ——-l >c
1 xlﬂc L
We have proved (5.46).

If «, is not a root of unity, the argument is the same.
Finally if both &; and «, are roots of unity, we write af = 1 and o} = 1,
™M and n positive and minimal. Then

4| > 2n/l.c.m.(m,n) > n/D? > exp(—CU).
This completes the proof of Theorem 5.11.

6. Numerical examples. We use the notation and hypotheses of Sections
5.1 and 5.2, and we produce suitable values for the constant C, so that the
assumptions (5.1) to (5.10) have been checked. Therefore the conclusion
4] > exp(— CU) of Theorem 5.11 holds.

From the assumptions of Section 5.1 we deduce ¢ <1 and D > 1. In the
“omputations which follow, we shall check (5.4), (5.5), (5.6) and (5.7) with
€ replaced by 1 and D by 2, which is plainly sufficient to deduce the general
Case. If either ¢ < 1 or D # 2, then better numerical values for C can actually be
Obtained. Also, since the coefficients of 1/G in the right-hand side of (54) and
(5.5) are negative, we can omit these terms.

We also choose /= 2e. We proceed as follows. We fix 6 > 10 and Z > 1.
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We choose a finite subset E of the rectangle E, = {(c,c,)eR?* 1 <c< 16,
1 <c, <48}. In practice we take E < {(c,c,)€E,; 100ceZ, 100c, e Z}.

For each (c, ¢,) in E, we compute the numbers

£ =142 'Log(4c(1—1/2c0)*/Zc,e)—Z 'e™°,

, =4c2E(1-1/20¢)* —4ccy—v/2,

ny = Qc+1/0),

L 261_1/8!

py = 2ccy+c,/0+0.6v,

p, =vfde+0.1v,

&r=p2—C¢1s

&y =1, (py—P2+ &M,

We consider the quadratic equation

xz+¢zx+¢3 =0

which arises from replacing (54) and (5.5) by equalities and solving the
corresponding equation in c,. For a suitable choice of E as above, it turns out
that there exists a non-empty subset E’ of E such that, for each (c, ¢,) in E', this
quadratic equation has real solutions x' and x”, x’ < x".

We take for c, the smallest point of the interval [x',x"] which satisfies the
conditions (5.1) and (5.2). Again, for a non-empty subset E” of E’, we can check
these conditions.

From (5.6), with the value of y given by (5.9) and (5.10), we deduce
a suitable value for C. Finally we choose (c,c,) in E” so that the corresponding
value for C is minimal.

This result is given in Tables 1 and 2 (recall that we consider only the cas¢
when the numbers «, and «, are multiplicatively independent).

Table 1. Numbers multiplicatively independent, Z = 1

8 10 11 12 13 14 15 16 17 18

C 558 | 570 | 554 | 541 | 530 | 521 | 512 | 505 ( 498

co |332 |32.58)32.32|31.98 |31.69 | 31.48 | 31.33 | 31.23 | 30.92
¢ 146| 145|143 | 142 141| 14 | 139] 1.38| 138

c 3471 344 3411 3381 3361 3341 3321 33 | 329

C 492 | 487 | 482 | 478 | 473 | 470 | 466 | 463 | 460

Co 30.85 | 30.62 | 30.61 | 30.42 | 30.45 | 30.31 [ 30.18 | 30.2 {30.1

¢y 137| 137 1.36| 1.36| 1.35] 135] 1.35| 134| 134

c 3281 3271 3261 3251 3241 3231 3221 3221 3.21

Linear forms in two logarithms 281

In Table 1 we fix Z = 1, 8 varies, and we display the optimal value of
C together with the corresponding choices of ¢, ¢; and ¢,.

Table 2. Numbers multiplicatively independent, values of C/Z*

OV 12 [ 13 | 14 | 15120 | 30 | 50 |100]| ¢ | ¢

¥4

1 | 554 | 541 | 530 | 521 | 487 | 452 | 424 | 400 | 1.28 | 3.09
143 | 341

1.1 | 477 | 466 | 457 | 450 | 422 | 395 | 371 | 352 | 1.38 | 3.5
1.53 | 3.82

12 | 414 | 405 | 398 | 392 | 369 | 347 | 327 | 311 | 1.47 | 3.89
162 | 423

1.3 | 362 | 355 | 349 | 344 | 325 | 306 | 290 | 277 | 1.56 | 4.3
171 | 4.63

14 | 318 | 312 | 307 | 303 | 288 | 272 | 258 | 247 | 1.65 | 4.69
1.8 | 503

1.5 | 282 | 277 | 272 | 269 | 256 | 242 | 231 | 221 | 1.74 | 5.07
1.88 | 541

2 162 | 159 | 157 | 156 | 149 | 143 | 137 | 132 | 21 6.81
224 | 117

3 65 | 64 | 63 | 63 61 59 | 57 55 | 265 | 9.39
278 | 9.76

5 162 16 (159 (158 (154 [149 (145 |142 | 3.25 | 12,02
3.38 1239

¢, 143| 142) 141| 14 | 137 1.33| 1.3 | 1.28
338 337| 336 335( 332 33 | 3.27( 3.25

c 341) 338) 336) 334| 327| 32 | 3.14| 3.09
1239 [ 12.36 [ 12.33 [ 12.31 ( 12.23 [ 12.14 [ 12.07 | 12,02

In Table 2, both Z and 6 vary, and we display the optimal value of CZ~3.
At the end_ of each row (resp. each column) we display the range for (c,c,)
corresponding to the given row (resp. column). For instance, at the end of the
first row in Table 2 the indication

309 <c<34l, 128<c¢, <143

Means that for Z = 1 and for the given values of 8 (with 10 < 6 < 100), we took
for set E:

E = {(c,c,); c = n/100, ¢, = m/100, 309 < n < 341, 128 <m < 143},
With (m,n)eZ x Z. |

"7. A consequence of the main result. With the notation and hypotheses of
Section 5.1, we take f=2e, 8 = 10 and we shall deduce from Theorem 5.11:

5 ~ Acta Arithmetica LIIL3
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COROLLARY 7.1. Suppose that o, and a, are multiplicatively independent,
then

|4] > exp {—2200 U}.
Proof. We first consider the case Log B < 10, and in this case we prove

the result with 2200 replaced by 441.
We use Liouville estimate (Lemma 2.2):

|4l > 272 B~ 'exp{—Db,h(a,)—Db,h(a,)}.
We notice that

h@)<a, i=12, ba, <bya,

and
2DBa,+LogB+DLog2 <(2e'°+10+ Log2)Da, < 44100 Da,.
Since
Da, 2Z° < VA

U  D%a,G* " D*G?
we get |A] > exp{—441 U} in that case.

From now on, we assume LogB > 10 (as in Sections 5 and 6), then
DG = 11.

We get the result with the constant 2200 by dividing the interval [1, 0o [ in
14 intervals. On each of them, say [Z,;,, Z...[, we choose ¢,, ¢ and ¢, so that
(5.5) is valid for all Z in the range Z_,. < Z < Z_,,, and with ¢ replaced by 1 in
the definition (5.7) of ¢, and we compute the value of the number C by
replacing Z by Z_,, in (5.6).

The numerical values we obtain are displayed in Table 3 below.

For instance, in the range 1 < Z < 1.5, one can choose

¢, =191, =55 ¢,=2631,
and one gets C = 1327.

Remarks. 1. By choosing smaller intervals, one can reduce slightly the
constant 2200 in Corollary 7.1. However for Z = 6 one gets C = 2058; notice
that in this case we have C/Z* < 10.

2. One can prove that Corollary 7.1 holds also when o, and «, are
multiplicatively dependent.

<072,

Table 3
z 1 1.5 2 25 3 35 4 45 5 55 6 6.5 1
C | 1327 | 1626 | 1849 | 2000 | 2094 | 2146 | 2170 | 2174 | 2165 | 2147 | 2123 | 2097 | 2100
co | 63.1 |92.84 [119.46] 141.4 |158.83(172.79|183.94{192.55|199.34)205.06(208.75|212.23 216._13
c, 191| 228 | 257 281] 301 3.17} 33| 341 35| 3.57| 3.64| 3.69 _315.5_
c 55| 726 87| 9.85 10.76| 11.48| 12.04| 12.48| 12.83( 13.1 | 13.32| 13.49| 13.74

S

L=\
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8. Proof of Corollary 1.1. We assume that the hypotheses of Corollary 1.1
are fulfilled, and we shall prove the conclusion by considering several cases.
Without loss of generality, we may assume

a,b, < a,b,.

_ (a) Assume Log B < 10.64. Then we prove the estimate in Corollary 1.1
with the constant 254 instead of 500. For this we use Lemma 2.2:

|Al = b3 ' |b;loga, —b,loga,| > exp {—D Log2—2DBa,—Log B}.
Since Log B < 10.64 we have 2B+ Log2+LogB < 254(7.5+ Log B)?, hence
" 2PBa,+DLog2+LogB < 254 D*a,a, (7.5+ Log B)?,
which proves our claim.

(b) From now on we assume Log B > 10.64. There is no loss of generality

;0 assume that b, and b, are relatively prime. We are going to use Theorem
11 with

f=2e and G =LogB+LogLogB+max{l,0.59+G'},
where G’ > Log(e/2+Ze/Il), l;=Jlogaj (j=1,2).
Let us prove .

(8.1) [ Ze™® (i=1,2) and 2I,>e P2,

For i =1, 2, from Liouville’s inequality (Lemma 2.5) we have, if o, # 1,
le;—1| = 272" Yexp { — Dh(a,)},

S0 that |loga,| >2"Pexp{—Dh(a,)} > exp{—Da,}, because loga; #0 and
@; 2> h(x;)+Log2.

Ifa; <a,+(1/D)Log2 then 1/21, < (1/2)exp {Da,} < exp {Da,}. On the
Other hand if a, > a,+(1/D)Log2 then b,/b, < a,/a; < 1—(Log2)/Da,; in
this case, from the inequalities I, >exp{—Da,} and Da,exp{—CU + Da,}
<Log2 we deduce .

I, <(by/by) 1, +e Y <1, —1,(Log2)/Da, +e™ Y < I,,
Which completes the proof of (8.1).

(c) Assume I, > 1/2¢>. In this case we take Z = 1, G’ = 4.41, and then
G = 5+ Log B+ Log Log B. Obviously Da,a,G?* > a, +a,. We prove the in-
€quality of Corollary 1.1 with the constant 496 instead of 500.

We use the estimates of Section 6 with admissible choices of 6.

We notice that the function F(x) = (5+ x+ Logx)/(7.5+x) is increasing
for 3<x< Xo = 39.953... and decreasing for x > x,, with F(x,) < 1.026.

To prove our claim we consider the following five cases (we put
F=F(LogB)y
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10.64 < Log B < 11.56, then 0 = 18, C = 498, F < 0.9973 and F?C < 496,
11.56 < Log B < 12.48, then 0 = 19, C = 492, F < 1.002 and F>C < 494,
12.48 < Log B < 14.34, then 0 = 20, C = 487, F < 1.008 and F?C < 495,
14.34 < Log B < 19.1, then 0 = 22, C = 478, F < 1.017 and F?>C < 495,
19.1 < LogB, then 0 =27, C =460, F < 1026 and F?C < 485.

(d) From now on we assume [, < 1/2¢%. Hence one may choose
G =241+Z,, G=3+LogB+LoglogB+Z, where Z,= Log(1/21,).
Let us check

; Daja
(8.2) 2< Z,<min {Dal, Da,, Log ﬁ}

The inequalities Z, < Da; (j = 1,2) follow from (8.1). Now a,b, < a,b,
hence a,l,+a,l, <2a,l,+e €Y. From our hypbdthesis [, < 1/2¢* we deduce
Da, > 2, hence a,l,+a,l; <2Da,a,l,, which completes the proof of (8.2).

(e) Assume DG > 10Z,and G > \/EZ.,. We prove the estimate with 500
replaced by 278. In this case we take Z = Z,. We obviously have

Da,a, }

: 1 <Z < mi G/10, , Da,, Log—————
(8.3) VA mm{D/ Da,, Da, Ogazll+a.lz

Before we can apply Theorem 5.11 we have to check
(8.4) Z*(a, +a,) < Da,a,G*.
We know that Z < Da; (j = 1,2), hence Z(a, +a,) < 2 Da,a,. Our assumption
Z< G/ﬁ yields (8.4). Now, from Corollary 7.1 we deduce
(8.5) b, logat, —b, log a,| > exp { —2200 D*a,a,G*Z " 3}.
Since Z > 2 and
G?/Z? < (5.5+ Log B+ Log Log B)?/8 < (1.04?/8)7.5+ Log B)*

we have proved our claim,

() Assume G < ﬁzo. We prove the estimate in Corollary 1.1 with the
constant 335.
We take Z = G/10. In view of the inequalities D > 1 and Z < Z,,, we easily

obtain inequality (8.3). It remains to check (8.4): since G < \/EZO < ﬁ Da,
(j=1,2), we have G(a,+a,) < ZﬁDa,az, hence
Z3(a,+a,) < 1073 (a, +a,) G* < 2./2 1073 Da,a,G* < Da,a,G>.

We conclude from Corollary 7.1 that the lower bound (8.5) is still valid.
However

G*Z~? = 103G ! < (1000/20)7.5+ 10.64)%(7.5+ Log B)?
because Log B > 10.64 and G > 20. Our claim follows from the inequality
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2200(1000/20)7.5+ 10.64)~ 2 < 335.

(g) Finally we assume \/izo <G <(10/D)Z,,.

Again in this case we shall prove the conclusion of Corollary 1.1 with the
constant 335 instead of 500.

We take Z = DG/10.

. Since Z < Z,,, inequality (8.3) follows from (8.2). We now check (8.4): we
ave

D<10/\/2 and G<(10/D)Z,<10a; (j=1,2),

hence

D?(a, +a,)G < 2(10/,/2)* 10a,a, = 10*a,a,
and
Z*(a, +a,) < (DG/10)*(a, +a,) < DG?a,a,.
We conclude from Corollary 7.1 that (8.5) holds. Now G2Z~3 = 103/D3G

and we conclude as in case (f). .
Now the proof of Corollary 1.1 is complete.

9. An example. In a paper by J. M. Cherubini and R. V. Wallisser [3], our

Previous bound [7] was applied to compute all the imaginary quadratic fields
of class number one.

The linear form which is used by these authors is

A=pLog(5+2./6)—2qLog(2+./3), p,qeZ.

By arguments of analytic number theory, they prove the estimate

|| < S0exp{—m4/24}, 4=./\d,

Where d is the discriminant of the considered quadratic field.
Moreover |p|, |q| <24. We suppose 4 > e'®°.
Take o =5+2,/6, @, =2+./3, where {i,j} = {1,2} (because of the
gondltron a,b, < ayb,, we do not know the right choice of the indices); then
=4,
Put |, = Loga; = 2.29243... and [, = Loga; = 1.31695... We can choose
% =12, a;=1, f=1. We notice that
2ea,a,D 4e
= > 6.556.
Sy +aly)  1+1/2
This shows that we can take Z — 1.88, ¢ = 1.
We can take G' = Log(e/2+2¢/l), so that G'/D < 043,
'_l‘he estimates (2.11) to (2.14) imply that w(b) < max {2.6, Log Logb} for
any integer b > 2, this allows us to choose

G=093+Log24+LogLog24.
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Thus G > 23.5, and we can take 0 = 50.
If we choose ¢, = 81.5, ¢, = 2.03 and ¢ = 6.47 then the same computation
as in Section 6 gives C = 1049. So C/Z* < 158, and we get

158-4%-a,a,(0.93+Log2 4+ LogLog24)* > n4/24—4,
or
A <3.09:10°(093+Log2 4+ LogLog2 4)*+31.
This gives 4 < 1.73-10% (< €'%97), so that
d> —3-10°,
whereas the lower bound of our previous paper gave only d > —10%,

10. Another example. Let x, y, p, ¢ be positive rational integers with
x? # 2. Let X, Y, B be positive real numbers satisfying

X >max{x,3}, Y>max{y,3}, B2>max{p,qg}.
CoroLLARY 10.1. We have
|xPy~4—1| > exp{—500 Log X Log Y (8 + Log B)*}.

Proof. We consider three cases.
(a) If x and y are multiplicatively dependent, we can write x = z*, y = 2°
where z, u, v are positive integers. Put m = up—vq. Then

IxPy~1—1] = |z"—1] = 1/z,

and the result is obvious.
(b) Assume LogB < 12.33. We have

[xPy~?—1] 2y *>exp{—BLogY},

and the assumption LogB < 12.33 implies B < 548(8 + Log B)*.

Now we have Log X > Log3 and 548/Log3 < 499. Therefore, we get the
conclusion.

(c) Now we assume Log B > 12.33 and x, y multiplicatively independent.
We shall use Theorem 5.11 with Z=e=f=D=1. We choose G
= 1.002 (8 + Log B). Notice that

Log(e/2+2e/Logx) < Log(e/2+2e/Log2) < 2.22
and
Log B+LogLog B+2.82 < 1.003(8 + Log B).
We take 0 = 20.33, ¢, = 31.18, ¢, = 1.36, ¢ = 3.28 and find C = 497. Therefore
|pLogx—qLogy| > exp {—C'Log X Log Y(8 + Log B)*}

where C' = (1.003)C.
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Now, if x? > )9, then xPy~%—1 = pLogx—gqLogy, while if x? < 4, then
1—xPy~% > (pLogx—qLogy)/2,
because e * < 1—x/2 for 0 < x < 1. Finally we have
C'+(Log2)/(16 Log3)*> < C'+0.003 = C” (say),
hence
C’'Log X Log Y(8+ Log B)*+Log2 < C"Log X Log Y (8 + Log B)?,
where C” < 500.
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