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multiplicities of the zeros equals 2h is the exact analog for Maass wave forms of
the theorem of Hecke for holomorphic forms mentioned in the introduction.
This follows from the result about zeros of Selberg zeta functions mentioned at
the beginning of Section 2.

The theorem also gives the surprising result that all other zeros of Z(s, =)
and Z(s, ) are equal and occur with the same multiplicity. The author has no
explanations for this.
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1. Introduction. Let f(X) denote a trinomial of the form
(1) f(X) = X"+aX"+b,

where g an.(i b are rational integers. We always assume that f is irreducible
:‘Lel' Q_ \_vhlch implies that G(f)(= Gy(f)), the Galois group of f over @, is
v ransitive subgrpup of the full symmetric group §, acting on the zeros of f.
anol.}s authors, including Uchida [12], Yamamoto [13], Ohta [9] and Nart
and Y!la [8] have shown that, when r = 1, then, under certain specific simple
conditions, G(f) = S, itself. (See also Yamamura [14].)
Recently, H. Osada [10], [10a], in extending these results, has shown that

for arbitrary r, necessarily with n, r co-prime, ie.

() (n,n=1,

a similar conclusion can be drawn under conditions which we summarise.
Let d = (a, b) and put a = da,, b = db,. Assume that

(3)

(a,n) =1,
(4) d =c¢" for some integer c,
(5) d is a unitary divisor of b, ie. (d, by) = 1,
(6) (r(n—r), by) =1.

Then G(f) = S, in either of the following two situations.
L. by = b} for some integer b, (e.g. r=1) or r = 2.

. IL. For some prime p, p|| b, (i.e. p|by but p? ¥bg) and the integer |Dy(f)| is
non-square, where ’ '

Do(f) = by "+ (= 1)~ P (n—ry " ayd"
1§ related to the discriminant D(f) of f by
D(f) = (=1~ "2bg™ "™ Do(f).

(The restriction of » to certain values in [10] was dispensed with in [10a].)
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In this paper we focus on situation Il with essentially arbitrary r ( > 1),
supposing that p|b, for some prime pYa but greatly easing the other
constraints. We dispense with (3}(5) (thus allowing (a, n) > 1 or (a, b) > 1 to
hold in a significant sense). Moreover, (6) (which ensured that much underlying
ramification was tame) is weakened to an assumption merely that pY(n—r) or
p = n—r (thus permitting (r, b) > 1). Typically, for all r with 2 < r < n—3, we
can show that G(f) contains the alternating group A4,. Combining these
arguments with the well-known fact ([6], Theorem 41) that G(f) = A, if and
only if D(f) is a square yields useful sufficient conditions for G(f) = S, to hold.
To check these, it is by no means always necessary to calculate D(f) —
notably, it is usually enough for r to be even. (Incidentally, if (3), (5) and (6)
hold, then D(f) cannot be a square when |D,(f)| is itselfl a non-square, in
agreement with -Osada’s findings.)

We state the main theorems. These extend the result sketched above to the
case in which p*|b. Otherwise, they involve notation already introduced.

THEOREM 1. Let f(x) given by (1) and satisfying (2) be irreducible over Q and
such that b = p*b* for some prime p fab* and k > 1. Suppose that 2 < r < n—3
with (r, k) = 1 and p ¥(n—r). Then (with possible exceptions whenn = 11,r = 8,
p=2o0r n=23 r=20, p=2 or 5) G(f) contains A,. Further G(f) =S,
provided D(f) is a non-square which certainly is true if any one of the following
(T)~9) holds.

) r is even (provided pir or p=2 =r),
(8) n is even, d is a non-square and (d, nb,) = 1
9) D(f) <0 (eg. n=3(mod 4) and a and b are positive).

THEOREM 2. Let
f(X)= X"+aX""P+p*b*, pknab*k, p<n-3,

be irreducible over Q. Then G(f) contains A,. Indeed G(f) = S, provided p = 2
or D(f) is a non-square (which occurs if either (8) or (9) holds).

Illustrations of the theorems are legion and can readily be written down.
For instance, by using Lemma 9 of [10] or Eisenstein’s criterion to guarantee
irreducibility, we can state unconditionally that G(f) is the full symmetric
group for each of the polynomials listed below.

X"y X"42, (r,m =1, r, m odd;
X"+X?+2, n odd;
X"—X""24+2, n odd;
X"+X*+2, (2ryn)=1and n =3 (mod 4), or
n=1(mod4) and n/4 <r < (n—1)/2;
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X"+3X"+3p, (n,r)=1, p¥3(n—r), 2<r<n=-3,
n = 3(mod4) if 2p|r,
n#0,1,5 or 6 (mod 12) if r odd.

Note (inserted at revision). This paper was prepared before the sequel
(10a] by Osada to [10] appeared. While there is some overlap between
(10a] and the present article, essentially they are complementary. It is
Suggested that the reader’s appreciation of either would be enriched by a
study of the other.

2. G(f) is primitive. A special case of a result of Fried and Schinzel ([4),

mma 1 with n=0) implies that, in our situation, the trinomial f is

rlllllctionaﬂy indecomposable which, as we now see, is equivalent to G(f) being
Primitive.

LEMMA 3. Let f be an irreducible trinomial of the form (1) satisfying (2) over
a field K of characteristic zero. Then G(f) is primitive (as a permutation of the
2eros of f in a splitting field L).

Proof. As stated above, it suffices to assume that G is imprimitive and
deduce that f is functionally decomposable.

Let the zeros of f be «,, ..., «,. Suppose that G is imprimitive and that
A={a ..., a,} (say), where s|n and 1 < s < n, is a subset of imprimitivity.
Put G, = {ge Gy(f): o(A) = A}. Then the fixed field L, of G, is a proper
subfield of K («,) ([11], Prop. 3.4) and hence L, = K(B,), say, where f, = h(x,)
Or some polynomial h(X) in K[X] which can be assumed to be monic. Since

G(f) is transitive it contains Gyy..., 0, such that o(a,) =0a;, i=1,...,5
¥“d€ed, by the nature of 4, 0,6 G, and h(x,) = 0,(8,) = B, = h(x,) for each
B I) . A

.Now apply G(f) to the polynomial h(X)—f, to produce in all ¢t = n/s
Conjugates h(X)—p ; each of whose zeros comprise s of the zeros of /. Moreover,

g.]eir product is invariant under G(f) and therefore has coefficients in K.
carly

JX) = n (h(X)—B,) = g(h(X).

Where g(x) = (X—=p,) ... (X—p,) has coefficients in K by the construction of
t»-+., B,. Thus f is decomposable and the proof is complete.

3. Cycles and transitivity. Within the proof of Theorem 3 of [10], Osada
Shqwed that in the circumstances, for r prime, G(f) contained a permutation
-'iCtlr_[g as an r-cycle (by which is meant a cycle of length r) on the zeros of . Our
keyisa significant extension of this idea based on a study of the ramification of
P working in the p-adic field Q, and its extensions. For this, we refer, for
€Xample, to [7], Chapter 6.



46 S. D. Cohen

LEMMA 4. Let f(X) be the trinomial (1) with b = p*b*, where k > 1 and
p ¥ ab*. Suppose that f, irreducible over Q, has a zero « in a splitting field. Then,
over Q,, f(X) factorises as

(10) f(X) = g(X) h(X),

where degg = r, g(X) = X" and h(X) = X"~ "+a (mod p). Corresponding to this
factorisation the prinicipal ideal (p) in Q(«) splits as a product

(11) (p) = ab
of relatively prime ideals such that p|a for any prime ideal p dividing a and
pla"""+a if p|b. More precisely,
(i) if (r, k) = 1, then g is irreducible over Q, and a = p’ for some prime ideal p;
(i) if n—r = p'm and p.y km (when t > 0) then any irreducible factor of h has
degree divisible by p' and b = by for some square-free ideal b,.

Proof. The factorisations (10) and (11) can be deduced by Hensel’s lemma
from
f(X) = X"(X"""+a) (mod p).

To add to this description consider the normal extension K = Q(y, {),
where y" = —a and { is a primitive mth root of unity, a field in which p is
unramified. Let B be a prime ideal of K dividing p and K, the corresponding
completion. Once more by Hensel’s lemma, we have a factorisation

h(X) = hy(X) ... h,(X)
over K, where
h(X)=X—{"'ymodP), i=1,...,m.
This yields, in the first place, the result of (ij) when ¢ = 0.

Now let p be any prime ideal dividing p in L= Q(a) with completion L.
With reference to (i) and (ii), we consider two cases.

(i) L,=Q,(«), where g(@)=0, and (r, k)=1. Clearly p|e and
deg [L,: Q,] <r. Let v, denote the (additive) p-adic valuation on L, Then
v, (2" "+a) = 0 since pta and

rv (@) = vp(a'{a:""+a)) = v,(—p*b*) = kv (p) < kr;

indeed equality holds here because (k, r) = 1. Hence g is irreducible over Q,

and (i) follows.
(i) L, = Q,(«), where h(a) = 0, and ptk. Let p in L(K) divide both 9§ and
p and L, be the corresponding completion. Clearly

kvg(p) = vp(—p*b*) = v,(o" (0" " +a)) = p'w,
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:’here w =‘vﬁ(a—c‘y) with « = {'y(modp). Since ptk, then p'|v,(p) = v,(p)
€Cause p is unramified in K. This completes the proof,

Write G™(f) for the stabiliser of m of the zeros of f regarded as
2 permutation of the remaining n—m zeros.

C'OROLLARY 5. Suppose that f is an irreducible trinomial as in Lemma 4.

({] If (k,r)=1 and pfn—r, then G"~"(f) is transitive. Indeed G(f)
Comafns an r-cycle if p¥r or p=r.

(i) If pXkn and r = n—p, then G(f) contains a p-cycle.

o Pl‘oof.. Let p be a prime ideal of the splitting field Lof f dividing p with
: rresponding completion L, Naturally, Gal(L,/Q,) can be regarded as
subgroup of Gy(f). We also have a tower of extensions

pSELlpsLcsl, L,

‘n‘;l;efem L, and L, are the decomposition and inertia fields of p and L, is the

Thmm-al tamt':ly ramified extension of @, in L, itself a normal extension of L,.

. ¢, In particular, Gal(Ly/L,) is cyclic of order prime to p and Gal(L,/L,) is
P-group (see [7], § 6.2). Some implications of this for the factorisation (10) are

as follows.

" (ra) Suppose that pY(n—r)and (k, r) = 1. Then, over Ly, g is irreducible (of

(CB e('::‘r) and_ remains so over L; and h splits completely. Thus Gal(L,/L,)
S G"77(f)) is transitive and indeed cyclic of order r if pir.

irred(b)‘ Suppose that p = r,ﬂfn. Then, over Ly, h splits completely while g is

G ucible of degree p, remaining thus over L. In this simple case, the p-group
al(L,/L;) must be cyclic, a generator yielding a p-cycle in G(f).

pleteiCJ Suppose that p = n—rfkn. Here g (irreducible over Lp) splits com-

th Y in L;. On the other hand h is irreducible of degree p over L,. We
erefore obtain a p-cycle as in (b).

b th:‘ §ynt§esis. We draw together our previous conclusions and apply them
i l:ltuatmns of Theprems 1 and 2. For convenience, simultaneously denote
Mar corem 1 and p in Theorem 2 by m so that certainly 2 < m < n—3. By
is o Egnl;aﬂ'; s theolie.m (see [11, § 160), because G"~™(f) is transitive, then G(f)
Bbm bei+ tlx;ansnwe; a separate consequence when m = 2 or m is even and
S rll‘g that G(f) ¢ A4,. The classmca_tlon theorem of finite simple groups
oy plies (see [2], Corollary 5.4) that either 4, = G(f) or n—m+1 < 5, ie.
= n—4. The only 4 or 5 transitive groups, however, are the Mathieu groups
I':)t(»:ni: 11, 12, 23, 24) which are contained in A4, and yet (as was known to
lheoremlslsf [f]) possess no cycles .of length n—3 or n—4. Accordingly, the
theorun 'al only if m > n—2 which was excluded (along with m = 1). Both
§ are therefore proved.
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5. Extension. Once more assume that f is an irreducible trinomial of the
form (1) where b= p*b* ptab* and k >1 but finally drop the basic
assumption (2) and suppose that (n, r) = s. For s > 1, of course, G(f) is no
longer primitive and evidently G(f) # S,. Nevertheless, provided pts and
(s, k) = 1, it is possible to give a description of G(f) which, while wishing to
keep the present study simple and not extend it unduly, we reckon is worth
briefly recording here.

Write F(x) = X" +aX" +b, where n = sn*, r = sr* and note that the
splitting field of f contains M = Q(f, {), where f* = (—1)"b and { is an sth
root of unity.

THEOREM 6. With [ an irreducible trinomial as above with pfs = (n, r) and
(s, k) = 1, suppose that Gy(F) contains A,

Then G,,(f) is an extension of Ci ~' by G\(F) (= A, or S,.), where C, is
a cyclic group of order s.

Theorem 6 is well-suited to apply in harness with Theorems [ and 2 or the
results of [10] and [10a]. Its proof combines ideas from [3] with modifications
of Lemma 4 and Corollary 5 (from which the demand (2) was absent). We leave
the details just now.
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