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The Banach-Tarski paradox for the hyperbolic plane
by

Jan Mycielski (Boulder, CO)

Abstract. Every two bounded sets with nonempty interiors in the hypeibolic plane are equiv-
alent by finite decomposition.

1. Introduction. In 1914 Hausdorff proved that there is no finite, nonzero,
finitely additive and rotation-invariant measure over the family of all subsets of the
two-dimensional sphere S2. In 1923 Banach showed that there exists a finitely addi-
tive measure p over all bounded subsets of the plane R> which is invariant under
all isometries of R? and satisfies u(I?) = 1, where I? is the unit square. In 1924
Banach and Taiski improved Hausdorff’s theorem by showing that any two bounded
sets 4 and B with nonempty interios in R* (n>3) or in S" (n3> 2) are equivalent
by finite decomposition, i.e., there exist finite partitions of 4 and B into disjoint sets
A= A,U..U4,, B= B,u...UB, such that 4, is isometric to B; fori = 1, ..., m.
(Moreover the underlying isometries can be assumed to preserve the orientation
of R" or S" respectively.) Of course the number m depends on 4 and B. For an
attractive presentation of this subject see the book of S. Wagon [2].

1t is also known that the theorem of Banach and Tarski is true for the hyperbolic
space H" for n>> 3, and the proof is the same as for R” (since the group of rotations
of H" around a fixed point act upon H" in the rame way as SO, acts upon R").

It is the purpose of this paper to extend the theorem of Banach and Tarski
to the hyperbolic plane H? (Theorem 2.8). Again the underlying isometries will
be sense-preserving. (This problem for H? was raised independently by Andrew Haas
and the author.) I am indebted to Stan Wagon for his stimulating influence.

In Section 2 we state the preliminaries. All arguments given in that section are
essentially known and stated only for convenience of the reader. Only Lemma 2.7
requires an original proof, which is given in Section 3. Additional remarks and
problems are stated in Section 4.

2. Preliminaries and the main theorem. We shall use the Poincaré disk model
for H?, so H? = {z] |z] < 1} and all its sense-preserving isometries are generated
by rotations z b ez, where 0<a <2z, and translations z & (z+a)/(@z+1),
where |a| < 1. We put 1,(2) = (z+4a)/(@z+1) and recall that the diameter line of the
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unit circle passing through a is invariant under 7, and circular arcs passing thréugh
the ends of this diameter are also invariant under z,.
The following lemma is due to Klein and Fricke (see [0]).

1 .
2.1. LEMMA. If 1 >a= —=, then the two isometries T, and 1, are free generators

N7
of a free subgroup of the group of isometries of H 2, Moreover no element of this
subgroup except the identity has any fixed points in H>. ; ’

Proof. Consider Fig. 1. The translation 7, maps the hyperbolic straight line L,
onto L, and 7;, maps L, onto L. Since a3 1/,/2, it is easy to check that the four
closed regions A, 4,, B, and B, are disjoint (the A;’s touch the B/’s at infinity if
a = 1//2). Let C be the central region with the lines L, and L, but without L,
and L,, 4, and B, be open and 4, and B, be closed. Then 7, maps CUB, UB,
into A4, and 1, maps Cu 4, U 4, into B,. Let w be a nontrivial reduced group word
in 1, and 7. It is clear from the above, by induction on the length of w, that
w(C)< 4, ud, or w(C) < B, UB, (depending on the first term of w). Thus w has
no fixed points in C. Since C is a fundamental domain this proves Lemma 2.1.

i

-1 1

-

Fig. 1

" 2.2. Lemma. Almost all pairs (a,,a,) of reals in the open square (—1,1)%, in
e sense.o{ rizeasure 0{' category, are such that for every finite sequences of integers
Piji @y, 1=1,c,n, j=1,2, where nz2 and p,+p, #0 for all k>1 and
91+ k2 # 0 for all k<n, the function
WEO Rl A N A A b €

is not the identity map of H, onto itself,

a Prﬁof. By Lemma 2.1, the equation f(0) = 0 defines a proper subset of the
agonal a, = . .Hence S (0) = 0 defines a proper subset of the square (—1, 1)2
Moreover this set is algebraic and hence it is meager and of measure zero.

icm

The Banach-Tarski paradox 145

The following lemma is obvious.

2.3. LtMMA. An orientation-preserving isometry of H? different from the identity
has at most one fixed point.
= will denote equivalence of sets by finite decomposition,

2.4, LrmMA. If A < H?, A has interior points, CS A and C is countable and
bounded, then A = A—C.

Proof. Let D be a circular disc such that D 4, c is the center of D and c ¢ C-
Since Cis countable and bounded there existsa C; < Dsuchthat¢¢ C;, C;nC =@
and C—D = C;. Now let C, = (CnD)uC;y. 1t is clear that C = C,. Let ¢ be
a rotation of D such that C,, (C,), 0*(C>), ... are disjoint from each other. Since
0(Cyup(Cr)u..) = 0(C) (v ... we see that D= D-C,. This implies
A= A-C

2.5. LemMa. If F is a free nonabelian ‘group of transformations of a set S that
acts without fixed points upon S (i.e. for each o € F, ¢ # e and each 5€ S, o(5) # 3),
then S can be split into two disjoint parts such that each of them is equivalent to S by
finite decomposition using the transformations of F.

See [2] Corollary 4.3 for a proof of this lemma. Many stronger related facts
are proved there and in [1] and [3].

26. LeMvAa. If ASB< C and A= C, then A = B.
See [2] again.

2.7. Lemma. For every ¢>0 there exists a set B< H? with nonempty interior,
diameter <e such that B is equivalent by finite decomposition to two disjoint copies
of B.

This lemma is the main new step made in this paper and it will be shown in the
next section. It yields easily our main result:

2.8. TuroreM. If X, Y < H? are bounded and have nonempty interiors, then
X=7Y.

Proof. We can find a set B satisfying the conclusion of Lemma 2.7 such that
both X and Y contain isometric copies of B. Of course B = nB (n disjoint copies
of Bin H?). Since X is bounded, there exists an X~ such that ¥ = X' and X' = nB
for scme #. So, by Lemma 2.6, B = X. By the same reason B=Y and X=Y
follows. I

3. Proof of Lemma 2.7. We define B as the shaded part in Fig. 2, where the
points o, B, y, & are the corners of a square of diameter <e centered at the origin,
but the sides of B are not hyperbolic straight segments but are segments of equi-
distants to the real or imaginary axis respectively. Since the diameter of B is small,
Bis close to an ordinary Euclidean square. The point o and the half open sides [, )
and [«, &) are in B. The closed sides [B, y] and [y, 0] are in the complement of B.
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Fig. 2

Now we will define a bijection ¢ of B onto itself (see Fig; 3). Let
—S<—ugL—v<vsu<s ‘

3&: such that ¢ tra1:151ates the lens B, s, y, u, B onto the lens o, —u, §, —s, o ¢ translates

e curved .quadrﬂateral o 4, v, 6, 8, —s§, o onto the curved quadrilateral ¢, B, s

¥ 7, =, &; finally ¢ translates the curved quadrilateral n, B, u, v, o, v, § onto ’th;
> 3 el 3 3 b

curved quadrilateral «, &, ~v, 1, & ij
¢ , &, > T, 0, —u, o.. Thus the bijection ¢ consists of t
translations, and hence it is a piecewise isometry. ¢ e

Fig. 3

Let us exami i i
ikt :,11;; thz action of ¢ upon a curve Z, equidistant from the real axis.
e L by arc length. Let —s'< — ¢ < -1 <v'<u' <5 be real

numbers i i
corresponr;iires;nﬁng points of L such that their differences are the lengths of the
g segments of L (see Fig. 3). Hence, in terms of this parametrization
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@ acts upon L in the following way

o(x) = x+(s'—v) for xe[-5,7),
o(x) = x—@+u) for xe[v', ), and
o(X) = x—@W+s) forxeu,s),

where + and — are ordinary addition and subtraction of real numbers.

3.1. LemMa. For every positive integer n and every x € L there exists nonnegative
integers n,+n, zn such that

PG = xtmy (s =) —my(ur +57) .

Proof. By the previous discussion for every x € L there exist three nonnegative
integers k,+k,+ks = n such that

@"(x) = x+ky(s' =0k (0" +u)— k(W' +5)
= x+(k; +k5) ("= v)— (ko +Ea) @' +57) .
So the integers n; = ky+k, and n, = ky+k; satisfy the conclusion of 3.1.

3.2, LemMa. If (5'—0v")/(' +5") is irrational, then @ (x) # x for every integer
k # 0 and every xeL.

Proof. An obvious consequence of 3.1.
Let d denote the distance from L to the real axis. Then (s'—v)/(u'+ ") is a func-
tion of d, s and v.

3.3. LemMa. We can fix s and v such that the ratio (s'—v)[(' +5') is irrational
except possibly for a countable set of values of d.

Proof. We can choose s, and this determines u (since the curve f, u, y is a trans-
late of the curve &, —s, 6). Then we can choose v & (0, 4] such that (s—v)/(u+5)
is irrational. In this case (s'—0")/(u'+5s") is an analytic function of d whose value
for d = 0 is irrational. Hence 3.3 follows.

Now we shall conclude the proof of 2.7.

Let s and o be such that » <u < s. Re(o) >0, the diameter of B is less than &
and the conclusion of Lemma 3.3 holds. Let ¢ be defined by those parameters as
above. By Lemma 3.1 there exist two translations, namely

@1 = TsTeyp and P2 = T—-sT—_u

such that for every positive integer n there exists a finite partition of B into sets S;
such that @" restricted to any S; is of the form @7 ¢, where ny,n, >0 and
nyt+n, 2z n

Notice that

Q102 = Q291
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and that
91 =7, and @y =1,
where
: - —Ss—u
a; = 7(—v) = pp—t and g, = t_(—u) = PR

By the definition of B and ¢, u is a function of s, u~> 0 as s+ 0 and u > o
as s — co. It follows that @, — 0 d@s s » 0 and so @, is a nonconstant function of
5. And, of course, for a fixed s, @, is a nonconstant function of v.

So we may still refine our choice of s and v such that the pair (a,, a,) is not in
the exceptional set of measure zero of Lemma 2.2.

Then, using the same values s and v, we define a bijection v of B onto itself
in the same way as ¢ except that i will consist of translations preserving the im-
aginary axis of B. Then we have two translations i, and i, with the same relation-
ships to ¢ and ¢, and ¢, to o.

Therefore, by Lemma 3.1, for every nontrivial reduced word W of the form

(Pm l/lql - (Pp"‘//ll"

there exists a finite partition of B into sets S, such that W restricted to any S; is of
the form

(pr# 0 for k>1, g, # 0 for k<n),

. qJ?.XI §05u|//?1‘ lpglz . (pl;nl (0;“2 (ﬁ‘qlnl lpgnl
where p;; and g,; depend on §; but are of the same sign as p, or g, respectively and

IPatralZpl  and  gu+gul 2l .

So by our choice of the parameters s and v in terms of which @; and ; are defined
and by the Lemmas 2.2, 2.3, 3.2 and 3.3, W restricted to S; has at most one fixed
point. Hence W has only finitely many fixed points in B.

It follows that ¢ and y are free generators of a free nonabelian group F
of piecewise isometries of B onto itself. Also the set C of all fixed points of all ele;
ments of F except the identity is countable. Of course C < B and F acts without
fixed points on B—C. Hence, by Lemma 2.5, B—C = 2(B— C) and by Lemma
2.4, B—C = B. Therefore B = 2B, which concludes the proof of Lemma 2.7.

f“ Remarks and problems. 1. The above proof yields a free nonabelian group
of piecewise isometries of B onto itself. Answering a question of S. Wagon and the
‘author, Craig Squier found a free nonabelian group of piecewise translations of an
infinite cyclic group onto itself. However many elements of such groups must have
mz?.ny fixed points since, by the theorem of Banach stated in the introduction, there
exists no paradoxical decomposition of [0, 1] and since abelian groups are amenable.

2. The proofs of the lemmas 2.5 and hence 2.7 use the Axiom of Choice. This

cannot be avoided since the parts of a paradoxical decomposition of B cannot be
Lebesgue measurable.
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3. Marczewski’s problem (see [2]): Is the Banach-Tarski Paradox possible if
the parts of the underlying decompositions are required to have the property of
Baire? This is unknown for all the spaces R" (> 3), S” (n=2) and H" (n>2),

4. We can prove that H? = (a half-plane of H?) and that H> = (any solid
angle of H?). This follows from a cancellation law of type nd = nB= A4 = B
(see [2]) and a theorem proved in [1] which tells that H? can be split into two sets
each of which is equivalent to H? by decomposition into two parts. Moreover the
proof of [1] does not use the Axiom of Choice and all the parts are countable unions
of disjoint convex sets. Can one establish the above theorem about hyperbolic half-
planes and solid angles restricting the decomposition to Borel sets? (The problem
is open since the cancellation law is based on the Axiom of Choice and we do not
know if the parts of the finite decomposition which it requires can be made
measurable or have the property of Baire. We know only (by a theory developed
in [3]) that, if equivalence by decompositions into countably many parts is comsi-
dered, then Borel parts can be secured.)

References

0] R.C.LyndonandJ. L. Ullman, Pairs of 2-by-2 matrices that generate free products, Michigan
Math. J. 15 (1968), 161-166; and Groups generated by two parabolic linear fractional transfor-
mations, Canadian J. Math. 21 (1969), 1388 1403.

[1] J. Mycielski and S. Wagon, Large free groups of isometries and their geometrical uses,
I’Enseignement Mathématique, 30 (1984), 247-267.

[21 S. Wagon, The Banach-Tarski Paradox, Cambridge Univ. Press, 1985.

[3] A. Tarski, Cardinal Algebras, New York, Oxford 1949.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF COLORADO
Boulder, CO 803035-0426

Received 9 July 1987,
in revised form 21 September 1987


Artur




