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Abstract. It is known from P. Daniels [Da] that normal locally compact zero-dimensional
metacompact spaces are subparacompact. It is also known an example of locally compact meta-
compact space which is not subparacompact, see [Bu, 4.2]. In this paper, we shall give some charac-
terizations of subparacompactness in locally Lindeldf (or locally w,-spread) spaces. As a corollary,
it will be shown that locally w,-spread (or normal locally Lindeldf) submetacompact spaces are
subparacompact.

1. Introduction. In this paper, all spaces are assumed to be regular T;. P. Daniels
proved that normal locally compact zero-dimensional metacompact spaces are sub-
paracompact, see [Da]. It is also known an example of locally compact metacompact
space which is not subparacompact, see [Bu, 4.2]. In this paper, we shall characterize
subparacompactness of locally Lindelof (or locally o, -spread) spaces. As a corollary,
it will be shown that locally w,-spread (or normal locally Lindel6f) submetacompact
spaces are subparacompact. )

In the rest of this section, we remind some basic definitions and introduce some
notations. '

For a regular uncountable cardiral x, a subset of x is said to be closed unbound-

_ed (abbreviated as cub) if it is closed and unbounded in its order topology, and a sub-

set of % is said to be stationary if it intersects with every cub set of ». For a set X
and cardinal x, we shall use the next notations, [XT*= {Yc X: |Y] = x},
[X1¥* = {Y= X: | Y| <}, and similarly [X 1% For a collection % of subsets of
a set X and xe X, (%), denotes the collection {Ce®: x& C}.

For a pairwise disjoint family & = {F,: « € 4} of subsets of a space, an expan-
sion % = {U,: o € A} of F is a family of subsets such that F,c U, foreverya e 4
and U,n Fy = 0 for every a, f & 4 with « # B. An open expansion is an expansion
whose elements are open. A. (open) separation is a pairwise disjoint (open) expansion.
A subspace Y of a space is discrete if there is an open expansion of {{y}: ye Y}
A disjoint family & of a space is said to be separated if it has an open separation.
A subspace ¥ of a space is said to be separated if {{»}: ye Y} has an open sepa-
ration. -
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Let  be a cardinal. A space X is (strongly) x-collectionwise Hausdorff (abbrevi-
ated as (strongly) »-CWH) if every closed discrete subspace of cardinality » has an
(discrete, respectively) open separation. When x is a regular uncountable, a space X
is said to be (strongly) stationary % - collectionwise Hausdor[f (abbreviated as (strongly)
%-SCWH)) if for every stationary set S of x and closed discrete subspace {x,: a e S}
of distinct points indexed by S, there is a stationary subset S’ of % such that S’ < S
and {x,: « €S’} has an (discrete, respectively) open separation. A space is (strongly)
CWH if it is (strongly) »-CWH for every cardinal s. A space is (strongly) SCWH
if it is (strongly) %-SCWH for every regular uncountable cardinal .

A space is countable chain condition (abbreviated as ccc) if there is not pairwise
disjoint family of uncountably many non-empty open sets. A space is w,~compact
(wy-spread) if there is not a closed discrete (discrete) subspace of size o ;- Then the
implications “Lindeldf - w,-compact « ,~spread — ccc” hold.

Let P be a topological property. A space is said to be Jocally P if every point
has an open neighborhood whose closure has the property P. Note that if a space is
locally w,-spread, then so is every subspace.

A family ¥” of subsets of X is called a weak refinement of a cover % of X pro-
vided for each V'in #", there is an U in % with ¥ = U. If in addition ¥" is also a cover,
¥ is called a refinement of %. A space X is said to be submetaLindelsf (submeta-
compact) if for every open cover % of X there is a sequence {#,: ne w} of open
refinements of % such that for every point x in X, there is an new such that
(@)l <o (<o, respectively). Clearly submetacompact spaces are submeta-
Lindelsf.

2. Results. Z. Balogh showed that locally Lindelsf (locally ccc), strongly CWH
(CWH respectively), submetaLindelsf spaces are paracompact, see [Ba]. By a similar
argument, we can prove the next result.

TueoreM 1. Locally Lindeldf (Jocally cec), strongly SCWH (SCWH, respectively),
submetaLindeléf spaces are strongly paracompact.

DeFmaITION. Let m be a natural number. A family % of subsets of a space X'
is said to be point-m if |(#).|<m for every x in X,

Lemma 2. Let D be a closed discrete subspace of a space X and n be a natural
number. If D has a point-n open expansion U = {Us: x€ D} such that each member
of U is cce, then D is separated,

Proof. Assume that D has such an expansion %. We shall show that % is star-
countable (i.e. for every Uof %, {U'e¥: UnU' # 0} is countable). Then by the
usual chaining argument, D is separated. Fix a point x in D. For every natural
number i with 1<i<n, put o, = (¥ e [U]: U,e¥, v # 0}. By downward
induction, we shall prove that . 2 is countable, thus 4 is star-countable. First, to
show that &, is countable, take ¥, %" ¢ o, with ¥" £ ¥, Since % is point-n,
¥ and ¥~ are disjoint hon-empty open subsets of U,. Thus &, is countable,
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since U, is ccc. Now assume that o, is countable, where 2<i+1<n o, can
be decomposed into two parts %, and %,:

B, =U{7 el e}V ey},
@, ={vel@f: UeV,N¥ #0, and VVeZ—¥((N¥Y)AV = 0)}.

By the inductive assumption, 4; is countable. As in the first step, %; is also countable,
since U, is ccc. Thus &/; = %, U ¥, is countable. Therefore o7, is countable.

The above lemma implies that every closed discrete subspace having a point-7
open expansion for some natural number 7 of locally ccc spaces is separated. Next
we shall prove a similar result for normal locally Lindelsf spaces, But to do it,
we need more delicate arguments.

LemMA 3. Let X be a normal space and Y = {x,: a.€ S} be o closed discrete
subspace of distinct points, where S is stationary in a regular uncountable cardinal s.
Assume Y has an open expansion % = {U,: « € S} such that U covers X, each clU,
is Lindelof, and for every a, B € Switho # B, {ye S: U,n Uy~ U, # 0} is countable.
Then there is a stationary set S' = S in x such that {x,: « € S’} is separated.

Proof. Identify Y with S. Foreacha € S, define H, = X—) {Up: f &S, 8 # o}.
Since % is a cover of X, {H,: a € S} is a discrete family of Lindeldf closed sets.

Cram. 8’ = {xeS: accl(U {Us: BeS, B<a})} is not stationary.

Proof. Assume on the contrary that S’ is stationary. First we shall define
g: 8" —{0,1} as follows. Let g(minS’) = 0, and assume that for all f<« with
BeS’, g(B) are already defined, where o € S'. Here min.S’ denotes the minimum
of § under the usual order on «. Define g(&) = 1if a e cl(U {U;: g(B) =0, f <o,
BeS’}, and g(a) = 0 otherwise. Set S; = {fe&S’: g(f) =i} and

T,=U{H,;: ae S}

for i = 0, 1. Then T, and T, are disjoint closed sets in the normal space X. Thus
we can take disjoint open sets W, and W, such that T; = W, for i = 0, 1. Assume
that S, is stationary (the rest case is similar). Let o be in S,, then

a¢cl(U{Ug: g® = 0,B<a,BesS}H =c) {Ul,: ﬁeSohoz})

holds. Since « is in S’, we have aecl(U {Us: feS;na}). For ae.S,, define
V. = U,n W,. Since each ¥, is an open neighborhood of «, there is.a B in Sy na
such that ¥, Uye 5 0. Noting f(x) <a for each o & Sp, and using the pressing
down lemma, we can take a stationary set Sy =S, in % and a f is S such that
U, V, # 0 for each « in Sp. Since ¢l Us— W, is Lindeldf and % is an open cover
of X, there is an Fe [S—{8}]%® such that {U,: y & F} covers U~ W;. For each y
in F, define F, = {§eS UznU,nU; # 0}. By the assumption, eac'h F, is count-
able. Next take a-in Sp—({f}U(UyerFy), and take x in ¥, n Uj,. Since ¥V, = Wo,
xeclU,— W,. Hence there is a y F such that xe U,. Thus xe Uy U;n U,.
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Since « ¢ F,, UynU,nU, =0 holds. This is a contradiction, The proof of the
claim is complete. .

Next using the claim, take a cub set C in % such that S'n C = 0. Then since
for every o in S C, which is stationary, o is not in cl(U {U: Be S, f<a}), we
can take an open set ¥, such that e« e V,c U, and V, misses U’s (B S, f<a).
Then {¥,: e SN C} is an open separation of Sn C. Thu. the proof of the lemma
is complete.

LemMa 4. Let n be a natural number, X be a normal space and T = {x,: o € S}
be a closed discrete subspace of X of distinct points, where S is stationary in a regular
uncountable cardinal x. Assume T has a point-n open expansion % = {U,: a e S}
such that each clU, is Lindelsf. Then there is a stationary set S' < S in % such that
{x,: 0. €S} is separated.

v T,

Proof. We shall use induction on n. If » = 1, point-n means “disjoint”. Thus
the lemma for n = 1 is valid. Assume the lemma for i = 1, ..., n. We shall prove
for n+1. We identify {x,: ae S} with S: Let % = {U,: xe S} be a point-n+1
open expansion of .§ such that each cl U, is Lindeldf. Define ¥ = {x e X: |(@)| < n).
Since Y is closed in X, Yis normal. Then {¥n U,: ¢ S} is a point-» open (in ¥)
expansion of S such that each cly(¥Yn U,) is Lindeldf. By the inductive assumption,
there is a stationary subset S, =S in % such that S, is separated in Y. Using the
normality of X, for each « in S, we can take an open set W, in X such that
ae W,cdy W, U, and {clyW,nY: xe Sy} is pairwise disjoint. Take an open
set Z’ in X such that SycZ' cclyZ' <« {W,: w€ S,}. Then in Z = clyZ’,
{ZnW,: aeS,} is an open expansion of S, and covers Z, and cl;(Z n W,) is Lindelsf.
We shall show that {ZnW,: a e S,} satisfies the properties of the hypothesis of
Lemma 3.

CLam. For each o,feS, with o # 8, {yeSy: ZNW,AWyn W, # 0} is
countable.

Proof. Fix «,feS; with a # . Let 4 = cl(Zn W)ncl(Zn Wy). Since
cxWonclyW;nY =0, AnY = 0 holds. Put

L F= {S"e[S—{o, }T': A N {U,: ye S} # 0}.

And for §” in F, define Vg, = () {U,: ye S’}. Then it is not hard to show that
{Vs:: S’ e F}isa disjoint open cover of 4. Since 4 is Lindelf, F is countable. Then
for every y in So—U F, ZaW,n Wyn W, = 0. Because, if there is a point x in
ZnW,nWynW,, then x is not in ¥. Thus there is an S’ in [S—{x, B}I"~* with
y€ 8’ such that x € 4N V.. Therefore .S” € F and thus y € | F. This is a contradic-
tion. Thus the proof of the claim is complete.

Now we can apply Lemma 3 to take a stationary subset S; .S, in % such
that .Sy is separated in Z = clZ", Since Sy =Z’ and Z' is open in X, actually S, is
separated in X. Thus the proof is complete.
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Now we are prepared to give characterizations of subparacompactness in locally
nice spaces.

TerORIM 5. Let X be a locally Lindeléf space. Then the following assertions
are equivalent.

(1) X is the countable closed sum of (strongly) paracompact subspaces
(i.e. X = UncoX,, where each X, is closed in X and (strongly) paracompact).

(2) X.is the countable closed sum of normal metacompact subspaces.

(3) X is the countable closed sum of normal submetacompact subspaces.

(4) X is subparacompact.

Proof. (1) —(2) and (2) — (3) are evident. To prove (3) —(4), let X be the union
of X,’s (n€ o), where each X, is normal submetacompact and closed in X. Since
local Lindeldfness is closed hereditary, each X, is normal submetacompact and
locally Lindelsf. We shall show that each X, is the countable closed sum of para-
compact subspaces, since the countable closed sum of subparacompact subspaces is
subparacompact. From now on, we proceed in X,. By submetacompactness and
local Lindeldfness, there exists a sequence {#,,: me w} of open covers of X, such -
that each member of # = |J %, has the Lindel6f closure in X, and such that for

mew
each x in X, there is an m(x) in @ With [(#mnx)sl < @. For every m, k in o, define

X = {x € X, (%) <k}, which is closed in X, (hence in X). Thus each X,
is normal, submetacompact and locally Lindeldf. Thus if we can show that each
X, is SCWH, then we know that each X, is strongly paracompact by Theorem 1.
Assume that {x,: « € S} is a closed discrete subspace of X, of distinct points,
where S is a stationary subset in a regular uncountable cardinal x. Identify
{x,: « e S} with S. Since each member U of %, has the Lindeldf closure, SN U is
countable. Furthermore since S < X, for every a in S, |(%,).] <k. Define an
equivalence relation ~ on § by o =~ o' iff there is finite elements Uy, ..., U; of U,
such that ce Uy, ¢’ € U;, and U;nU; 0 S # 0. Let S/~ be the quotient of .§
by ~. It is easy to show that the cardinality of each equivalence class is at most
countable. Thus S, = {minE: Ee §/=} is stationary in » and S;=.S. For each
o €Sy, choose a V, & (%,,),. Then {V,0 X, o € Sp} is a point-k open expansion
of S, in X4, and each ¥, X,y has the Lindeldf closure in X,,. Thus by
Lemma 4, there is a stationary set S; =S, in » such that §; is separated in X,
Hence X, is SCWH. This completes the proof (3)—(4).

To prove (4) - (1), assume that X is subparacompact and locally Lindelsf. By
subparacompactness and local Lindelofness, take a o-discrete cover U {#,: ne w}
by Lindelsf closed sets (i.e. each &, is a discrete family of Lindeldf closed sets).
Since each X, = |J &, is the free union of Lindel6f closed sets, each X, is strongly
paracompact. Furthermore each X, is closed, since &, is discrete. Thus X' is the
countable closed sum of (strongly) paracompact subspaces.

Remark. Since w,-compact submetaLindeld{ spaces are Lindelsf ([Aul),
the above equivalences hold for locally w;-compact spaces.
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Noting that the countable closed sum of submetacompact spaces are submeta-
compact, we can prove the next result by a similar argument.

TreoreM 6. Let X be a locally w,-spread space. Then the following assertions
are equivalent.

(1) X is the countable closed sum of (strongly) paracompact subspaces.
(2) X is the countable closed sum of metacompact subspaces.

(3) X is submetacompact.

(4 X is subparacompact.

The equivalence (3) «» (4) of Theorem 3 or 4 implies the following corollary.

COROLLARY 7. Locally w,-spread (or normal, locally Lindelof) submetacompact
spaces are subparacompact.

Remark. The Example 4.2 of [Bu] is locally compact 2-boundedly metacom-
pact (for definition, see below), but neither subparacompact nor locally w,-spread,
The example (ii) of 4.9 of [Bu] is normal metacompact but not subparacompact,
hence not locally Lindelof.

In the rest of this paper, we shall look at paracompactness of locally nice spaces.
It is known that normal, locally compact, boundedly metacompact (or normal,
locally Lindelof, screenable) spaces are paracompact, see [Da] ([Bal, respectively).

DErINITION. Let m be a natural number.

(1) A space is m-boundedly metacompact if every open cover has a point-m
open refinement.

(2) A space is boundedly metacompact if every open cover has a point-m open
refinement for some m in .

(3) A space is o-boundedly metacompact if for every open cover %, there are
a sequence {%,:new} of weak open refinements of % and a sequence
{m@): new} of natural numbers such that each %, is point-m(s) and
U {%,: ne o} covers X.

Note that bounded metacompactness -(or screenability) implies ¢-bounded

metacompactness and also that o-bounded metacompactness implies (sub)meta-
Lindelfness.

TueoreM 8. Locally cce, o-boundedly metacompact spaces are SCWH (thus
strongly paracompact by Theorem 1).

Proof. Let X be a locally ccc, o-boundedly metacompact space and
{x,:' @ €S} be a closed discrete subspace of distinct points indexed by S, where S is
stationary in some regular uncountable cardinal x. Identify {x,: « e S} with S.
Let % = {U,: ae S} be a ccc open expansion (i.e. each U, is ccc) of S. Since X is
o-boundedly metacompact, take {%,: ne o} of weak open refinements of
%U{X—S} and {m(n): new} of natural numbers such that each %, is point-m(n)
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and U {#,: ne w} covers X. Put S, = Sn(|) %,) for each n in ©. Then there is
an » in o such that S, is stationary. For each a in §, take ¥ in %, such thatw e V.
Then ¥, = {V,: « € S,} is a point-m(n) open expansion of S, and each V, is ccc.
Thus S, is separated by Lemma 2.

In a similar way, we can prove:

THEOREM 9. Nowmal, locally Lindeldf, o-boundedly metacompact spaces are
SCWH (thus strongly paracompact).

Remark. Using Theorem 8, 9 and the Dowker Theorem (in the sense of
[En, 7.2.3]), we can prove that a locally ccc (or normal, locally Lindelsf) space X is
paracompact and dimX<n—1 if and only if X is n-boundedly metacompact.

Remark. S. Watson proved that it is consistent that there is a locally compact
perfectly normal metaLindel6f space which is not paracompact, see [Wa]. Thus we
can not replace ¢-bounded metacompactness by metaLindelofuess in the above
theorems. Here note that perfectly normal locally compact spaces are locally ccc.
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