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Flipping pmpertiesr énd huge cardinals *
by

Julius B. Barbanel (Schenectady, NY)

Abstract. We develop flipping properties related to hugeness. This involves the consideration
of notions strictly between n-hugeness and #+1-hugeness, and generalizations of closed and un-
bounded to this context. We also consider natural ideals associated with these properties, and relate
this to generalized notions of ineffability.

0. Introduction. Flipping properties were first defined and studied by Abramson,
Harrington, Kleinberg, and Zwicker in [1]. They showed how strongly inaccessible,
weakly compact, ineffable, and measurable cardinals may be characterized by
filipping properties. Henle and Kleinberg [8] established a flipping characterization
of Ramsey cardinals. Di Prisco and Zwicker [7] showed that supercompact and
strongly compact cardinals can also be characterized by flipping properties. In this
paper, we present flipping properties related to huge cardinals,

In section one, we show how the standard method of using uitrafilters to charac-
terize elementary embeddings witnessing #-hugeness (for some positive integer 7)
or supercompactness, can be generalized so that we can -use ultrafilters to charac-
terize elementary embeddings witnessing something strictly between 7-hugeness
and n+1-hugeness. In section two, we review and generalize results of Di Prisco
and Marek [5] regarding a notion of closed and unbounded related to hugeness.
In section three, we use the ideas of the first two sections to define and study flipping
properties related to hugeness. Tn section four, we study flipping properties related
to almost hugeness and almost supercompactness. In section five, we show that thfare
are natural ideals associated with our flipping properties, and conclude by shovfrmg
that our flipping properties, and their associated ideals, are related to generalized
notions of ineffability.

Our set-theoretic notation is quite standard. ¥ denotes the universe of all sets.
Greek letters o, § and & refer to ordinals, while 9, #, », 4 and ¢ are reserved for
infinite cardinals. ORD denotes the class of all ordinals, and CARD denotes_ the class
of all cardinals. For any set X, |X| denotes the cardinality of X, and, if X is a set of
ordinals, X denotes the order type of X. By the term <inner model”, we shall always

* We wish fo thank the referce for many useful suggestions on an earlier version of this paper.

1 — Fundamenta Mathematicae 132.3


Artur


172 J.B. Barbane

mean a transitive class which satisfies ZFC. If M is an inner model and 1 is an in-
finite cardinal, we say that M is closed under A-sequences if and only if for any
Xc M, if | X|< 2, then Xe M. 2% denotes sup(2’). By the term “inaccessible”, we
shall always mean “strongly inaccessible”.

1. Between n-huge and n41-huge. For <21, we define P ()
= {X<c 2 |X| = u}, and for % < 2, we define P,(3) = {X <= A |X| < x}. Then, » is
huge with target 2 if and only if there exists & normal, fine, x- complete ultrafilter
on P_(J), and x is A-supercompact if and only if there exists a normal, fine
#-complete ultrafilter on P, (2).

Hugeness and supercompactness can also be characterized by embedding pro-
© perties. » is huge with target 2 if and only if there exists an elementary embedding
it V- M, where M is an inner model closed under A-sequences, x is the first car-
dinal moved by i, and i() = A. x is A-supercompact if and only if there exists an
elementary embedding i1 ¥V — M as above, except that i(3) > A.

The notion of hugeness can be generalized. Let » be a positive integer. We
say that x, is n-huge with targets %y, %,, ..., %, if and only if there exists an el-
ementary embedding i: ¥ — M where M is an inner model closed under %,-sequences,
sp is the first cardinal moved by 7, and i(s5) = sy, i(3;) = %5, ..., {(,_1) = #,.
This property is equivalent to the existence of a normal, fine, »,-complete ultra-
filter U on P, _,(x,) satisfying that

{XeP.,, () foreach r = 1,2, ...,n, [Xru,] = %,_,}e U,

A study of n-hugeness and supercompactness can be found in [12]. We assume
familiarity with the standard techniques involving these notions.

It will be convenient to consider a cardinal to be 0-huge if and only if it is
measurable. For our present purposes, we need to study notions strictly between
n-hugeness and n+1-hugeness, for n<w. Consider an elemertary embedding
i V- M, where M is an inner model closed under 1-sequences for some cardinal
A>3, where %, is the first cardinal moved by 7, and i(xg) = %, i(%,) = %3, ...

By a result of Kunen [10] we cannot have x, < A for each # <w. Fix 1 such
that %, <A <, ;. We show that this situation can be characterized by the existence
of an ultrafilter. We consider two cases: .

Case 1. J = i() for some cardinal %. Then, for fixed n>1 and cardinals
Koy #is o, %y, %, and A, the existence of such an embedding is equivalent to the
existence of a normal, fine x,-complete ultrafiter U on P.(4) satisfying that
{XeP_[(2: for each r = L2, ,m | Xnw| =%} e U. We write
Hotg, %y cony 23 %, A)
to indicate that such an ultrafilter and elementary embedding exist.

Case 2. 4 is not in the range of 7. Let » be the least cardinal such that i(x) > 4.
Then, for fixed n and cardinals %y, %y, ..., %,, %, and A, the existence of such an
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embedding is equivalent to the existence of a normal, fine #g-complete ultrafilter U
on P,(%) which, for n> 1, satisfies the following two conditions:

a. {XeP,l): for each r=1,2,...,n, [Xnx| =3%,_,}eU and
b. For any y<:, {XeP,(A): |X|>y}e U

For n = 0, we must have » = », and hence our embedding simply witnesses
that % is A-supercompact. In either event, we write Sy, %y, vy 2,3 %, A) to indicate
that such an ultrafilier and elementary embedding exist. We note that condition b
above guarantees tha. U does not concentrate on P,(4) for any y <. In terms of
the associated embedding, this condition guarantees that the “leastness” assumption
on % holds.

The “H” and “S” in our notation are meant to indicate that the strength of the
embedding above n-hugeness is, in the first case, “huge-like”, and in the second case,
“supercompact-like”. Although we shall not consider it here, it is also possible to
study strengthenings above n-hugeness which are “strongly compact-like”.

We note that x, is n-huge with targets 2, %,,..,%, if and only if
H(xg, Hs oons 25 Hyy 5 %), %0 IS A-supercompact if and only if S{(xq; %y, 2), and %,
is measurable if and only if' S(x,; %y, %)

The proofs of the equivalence between the ultrafilter and elementary embedding
characterizations involve standard techniques. Given an ultrafilter U of the appro-
priate type, let M be the transitive collapse of the ultrapower IT¥]U, and let i be
the composition of the canonical embedding from ¥V into IIV/U by constant
functions, and the collapsing isomorphism from IT¥/U into M. For the reverse
direction, given an inner model M and an elementary embedding i: ¥~ M of
the type described, define U as follows:

For AP, (%) (for case 1) or 4 <P, (2) (for case 2), Ae U if and only if
i[A] e i(4). .

We note that i[A] € M by closure considerations. The details are similar to those
found in [12]. ‘

We wish to thank J. Henle for helpful discussions regarding the contents of
this section.

2. Generalizing closed and unbounded. The notion of a closed and unbounded
subset of an uncountable cardinal has been important to set theorists for many
years. In [9], Jech showed that this notion may be generalized to the context of P, (1)
in a natural way, so long as x is regular. If C < P,(4), we say that C is closed if and
only if for any directed 4 < C, if U4 e P,(}), then U4 e C. Equivalently (see, for
example, [11]) Cis closed if and only if for any 5 < » and any increasing #-sequence
(X,: o< 7y of elements of C, | X, & C. C is unbounded if and only if given any

a<n
XeP,A), there exists ¥, e C such that X < ¥,. Jech showed that every normal,
fine, x%-complete ultrafilter on P,(4) contains every closed and unbounded subset
of P,(%). We define D < P,(%) to be stationary if and.only if DnC # @ for every
1*
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closed and unbounded C < P, (4). Clearly, every element of a normal, fine x-com-
plete ultrafilter on P, (/) is stationary.

In [5], DiPrisco and Marek generalized these notions to the P_ (%) context.
For each 4 € P (%), let 4% = {UB: Bc 4, B is directed, and UB e P_ (1)}, Define
Fy = {EeP. (1) A* < E for some closed and unbounded 4 < P,(%)}. Then F,; is
a normal, fine, x-complete filter on P-(4), and every normal, fine, x»-complete
ultrafilter on P.,{4) contains every element of F,;. Di Prisco and Marek also show
that F,, remains unchanged if we change the definition of 4* o

= {U X1 (X,
a<x

T a<wx) is an increasing x-sequence of elements of A},

It is appropriate, at this point, to comment on our choice of the definition of

P_(A). If we wish only to look at the ultrafilters and embeddings associated with
hugeness, we could equally well have defined P- (1) to be the collection of all sub-
sets of A having order type x, instead of cardinality . For our present purposes, the
difference is crucial. As is shown in [5], if we had used the “order type” deﬁnition,
the construction of F,; would not work. In particular, {¥eP. (3): X = »} ¢ F,

We wish to generalize this notion of DiPrisco and Marek to the context 01
H(stg, %y ooy %5 %, 4) and S(s¢g, %y, .., 5,5 2, A). We consider the following index
sets, whe1e Ho < Hy < oie < Hpmq <Xyl

First, suppose x,_; <% <, < 4, where »,_, = % if and only if 5%, = A. Then,
we define Iy(xp, %y, -0es %3 %, A) = {Xe P (2): for each r=1,2,..,n,|Xnx,]
= #,_1}.

Next, suppose »,.q <x < x,< i Then, we define

Lotgs %y s ey 4y %, A) = {X € P,(A): for each r= 1,2, ..., n, | Xnx) =%_,}.

In the definition of (. %5, ..., %,; %, A4), we insist that »>0. In the defi-
nition of Zi(%g, %y, ..., %, %, &) we allow the possibility that n= 0. In this case, we
insist that » = x,, and we ignore both the “|Xn | = %,_,” condition and the
“st,—1” in the preceeding inequality. Hence, we have that Lz, 2; 2, ) = P.(3)
and I(x; %, 1) = P, (A).

By definition, if H(xo, %;, ..., %, %, A) or S(Cty, %, ..., %,5 %, A), then every
ultrafilter witnessing this concentrates on (g, %1, ..., %,; %, ) or T(%g. %10 ey
a,; %, 2) respectively. Hence, if we wish to define such ultrafiliers, we may restrict
our attention to subsets of these index sets.

For each 4 = P, (1) we define 45 (g, %1, ..., #,3 %, A) and A¥(e,, 3y,
as follows:

weuy 3 Ky A)

Ao, Ky ey tyi %, 1) = {UB: BS A, B+ @, Bis directed, and
UB e I(xy, %y, .05 3,3 %, D)} and,

{UB: B 4, B # O, B is directed, and

UB € I(xg, %15 vy 25 %, W)}

A:(”O: Hisweey M3 ¥, A’) =
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We shall write Aj: or AF for short, when the index set is clear by context, and
shall call these sets the sets generated by A

We note that, in contrast with the P.(4) and P,{3) situation, we apparently
do not have the option of considering unions of increasing chains from 4, rather
than unions of directed subsets.

We shall abuse terminology slightly, and say C< L, 2y, ey 2,3 %, 2) or
CEIstg, %y s oo 3%, A) Is closed and unbounded if and only if C= A4¥ or C = A4,
respectively, for some closed and unbounded 4 £ P, (3). If D € L%y, 5y, ..., %,3 %, A)
or D& L%y, % v, #y3 %, A), We say that Dis stationary if and only if DAC £ & -
for every closed and unbounded CSI,(xg, %, ...,%,;%,4) or C=Ixg, %,
vy ¥,3 %, A), respectively. It is straigthforward to show that every stationary
subset D of I(xp, %15 wvs %3 %, A) O L3245, 15 vy 3,3 %, A) i3 unbounded in the

“sense that for any Xe P, (4), there exists ¥, e D such that ¥ 7.

Suppose that {(4,: @<2A) is a sequence of subsets of either I,(¢q, %y,

v B3 %, &) or L%y, 2y, ooy %5 %, ). The diagonal intersection A A,, of this
z<i
sequence, is defined as follows:

Xe A A4, if and only if X # & and, for every zs X, Xe 4,.

x<i

Standard techniques show that any ultrafilier witnessing

H(tg, 8y s vees 83 %, 4) O S(os #ys ees Ryl #, A)
is closed under diagonal intersections.

The collection of all closed and unbounded subsets Of (30, 2y y ony 53 %, A)
or I(xg, %y, ..., %,3 %, A) generates a x,-complete, normal filter. s,-coimpleteness
follows easily from the fact that the filter generated by the collection of closed and
unbounded subsets of P, (A1) is #p-complete. The proof that these filters are
normal is a direct generalization of the proof of Theorem Ic of [5].

Unfortunately, we do not know whether, in general, given a closed and unbouad-
ed A< P, (1), it is necessarily the case that Ar # 0 or 4 # 0. Hence, we do
not know whether the filters under discussion are necessarily nontrivial for n> 1.
However, the methods of Di Prisco and Marek [5] generalize to show that any
ultrafilter witnessing H (g, %1 eves %3 #5 &) OF S(g, %y 5 s #3 %, 4) extends the
corresponding filter. Hence, in these cases, these filters must be non-trivial.

3. Tlipping properties. If 7 is a cardinal, Iis a set, and 2 2 = P(I), we define ¢’
to be a flip of ¢, written ¢’ ~ ¢ if and only if for each o < 2, either ¢'(a) = t{e) or
t'(%) = INt(e). Tn this section we show how the techniques of Di Prisco and
Zwicker ([7]) can be generalized to establish connections between flipping properties
and the properties considered in sections 1 and 2.
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Let %, be a regular cardinal. We write Flipu(xo, %y, ...s 2,3 %, ) to indicate
that fot any 1: A = P(L0to, %y, .. %, %, A)) there exists '~ ¢ such that A #'(x)

a<i
is a stationary subset of L,(¢g, 1, .., 3¢5 2, A). Flipeo, %1, .5 #,; %, A) indicates
that for any f: A = P(I{¢0, #; , ..., 3,1 %, A)), there exists '~ ¢ such that for every

At NV {Xellxg, 5,y

a<i

y<i, H32, A)2 | X >0}

is a stationary subset of I (g, %q, ... %, ¥, 2).

J K%y %, A), then Flipy(seg o2y, .
s Hs %y AN

THEOREM 1. a. If H(x%y, %15 oo
b. If S(%, 31y ey #gs %5 A then Flip(eg, 214 o

s M3 %y A).

Proof. The proof is straightforward, and is similar to the technique of [7].
In each case, we simply flip according to the associated ultrafiiter, For part b, we
note that by the definition of S(xg, %y, ..., %, %, 4), for every
s # %5 ) [ X| > 9}

y<m, A_t’(oc)ﬂ{XeIs(xo,x,,...

is iu the ultrafilier, and hence is stationary. B

COROLLARY. a. If x is huge with target A, then, for every t: A — P(P- (7)),

there exists t'~t such that A t'(v) is stationary.
<A

b. (Di Prisco, Zwicker [7)). If x is A-supercompact, then, for every t: 1 — P(PY),
there exists t'~ t such that A t'(e)) 1.5‘ stationary.
a<i
Proof. This is precisely Theorem 1 with, for parta, n = 1, #, = 3, and %, = A
and, for part b, n =0 and %, = ». B

The converse to Theorem 1 is not true. To see this for part a, suppose, for
example, that »; is the least cardinal such that, for some », x,, ..., %,, %, and 4,
Flipy(sg, %y, ..., %,; %, ) holds. In addition suppose, by way of contradiction, that
H(sy, %¢5 ..oy %5 %, 4) and i ¥V — M witnesses this. By closure considerations, it
follows that A ¥ Flip,(g; %y, ..., %,; %, A). But this contradicts the fact that
i(xy) > %, and, by elementarity, M F i(x,) is the least cardinal such that for some
cardinals %, %5, .., %,, %, and 4, Flip(i(x), %, , .., #,3 %, 1)) holds.

Similarly, it can be shown that the converse to part b of Theorem 1 does not
hold.

We are able to obtain 2 type of converse to Theorem 1, by considering a stronger
flipping property. To do this, we must extend our notation. Assume 3, < %; < ... < %,.

First, suppose %, ; <® < %' <%, <A <A where #,_; = x if and only if %, = 2
and also where x = %’ if and only if 2 = . We define I,(3tq, %y, «.., %5 %, A; %5 A)
= {XeP_ (1) |Xn 1 = x and, for each r = 1,2, ...,n, | XA = %1 }.

icm

Flipping properties and huge cardinals 177

Next, suppose »,_; < <x'<x%, <A< where, if 2 =21 then » = x'. We
define L(%o, %15 s %5 %, A3 %', A) = {X e P (M) 1X¥nlj<x% and for each
T=1,2 ,n]anll"‘xr 1}

Again, in the definition of Ly, %y, ..., 2,5 %, A; %", A", we insist that n> 0.
In the definition of I(xo, %1, ..., %,; %, 4; %', A') we allow the possibility that z = 0,
In this case, we insist that % = x’ = ,, and we ignore both the “|Xrz,| = %,_,”
condition and the “»,_,” in the preceeding inequality.

Closed and unbounded subsets of these index sets, stationary subsets of these
index sets, Flip,(%o, %1 5 vy %,; %, A3 %', 2'), and Flip,(eq, %, ..., 2,5 %, 4; 2", A are

"defined in a manner entirely analogous to our previous definitions. In particular, for

Flip(#o, %15 oov» %5 %, A3 %', A7), we insist that for every y<x and 9’ <ux,

Av@n{Xe Iftg, g5 ooos Myy e, A, M) | XAl >y and [X]>9'} is a statio-
<l

nary subset of Z (3, %y, ..., %,; %, A; %', 2.

It is straightforward to show, using the technique of Theorem 1, that
Flip, (x5, %15 ooy %43 %, A3 2", ') follows from the existence of a normal, fine,
so-complete ultrafilter U on P-,.(4") which concentrates on  Z(xy, 2, ..., %y;
®, Ay %', A'), or, equivalently, an clementary embedding i: ¥V —+ M where M
is closed under A’-sequences, i(xy) = 3y, (%)) = %y, e, [(ty_ 1) = %,, i() = A,
and i(x) = A". Flip,(s, %1, ..., %, %, A; %', A') follows . from analogous pro-
perties (which will involve certain minimality assumptions on » and ).

Tmeom{ 2. a. If 22" and Flipy(icg, %1y +.e» #aj %, A3 ', A7) then

H(3g, 31y ooy Hys %, A)

b I A 2 2% and Flip(sg, %, s %3 %, A3 ', A7) then

S, Hy s eves K3 %, A)

Proof. We begin by noting that the assumptions of the theorem imply that for
any closed and unbounded 4 < P, (4), Ay % 0and 4; $ 0. This is so since if either
of these sets were empty, the empty set would be considered a closed and unbounded
subset of B(xq, gy s sy %, A %, A) OF Lo, %y, oy %3 %, A3 %', A7) TESPECtively.
Hence, there would exist no stationary subsets of these sets. But, by definition, the
assumed flipping properties imply the existence of stationary sets.

The proof is similar to the technique of [7]. For part a, we first note that
L3ty #y s oons 23 56, D] S| Pou()] = A% Let {4,: a <A’) be an enumeration of all
subsets of F(%g, %y, «-.» %, %, A), With repetitions, if necessary. .

Define  #: 2 = P(L,(0, %15 oo #n3 %, A3 %, A7) by, for each a<,
Ho) = {X & L(%0, %15 oy %as %, A3 %, A1) Xnled,}. Let t'~t be such }that

A t'(«) is a stationary subset of [y(xo, %15 s ¥yi %5 43 %5 &)-
<’
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Define U by, for each « < 1', 4, € U if and only if ¢'(e) = t(x). The proof that U
is a normal, fine, »,-complete ultrafilter on L,(3g, 3¢y, ..., %,3 %, ) is similar to that
in [7], and we omit it.

The definition of the ultrafilter for part b is similar to that for part a. In this
case, our 7’ is such that for every y<x and y' </,

Y,

A (DN {X eIty #tyys s 23 %5 A3, A2 [ X0 A >y and | X] >y}
a<it

is a stationary subset of L(xg, 5%y, ..., #,; %, A; %', A"). The proof that the ultrafilter
‘we obtain is normal, fine, and x,-complete is also similar to that in [7]. Finally,
suppose, by way of contradiction that for some y <, {Xe (%, %, ..., x,;

%, A): | X|<y}eU. This set is 4, for some f <. Since 4,e U, t'(f) = t{f).
The fact that

A FNIX e L5, %y s ves %y %, A3, M) | XA > 9}

<A
is stationary (we do not care about y’ here), implies that
PBY N {X € Lo, %1y s #y3%, A3 %', M) [ XA > 9}
is stationary. But this is a contradiction, since this set is clearly empty.

COROLLARY. a. Suppose, for some cardinal %', that for every t: 2** — P(I,(x,
Jiw' 27, there exists t'~t such that A t'(¢) is a stationary subset of
a<2t*
LG, 4y %', 25°). Then » is huge with target J.
b (Di Prisco and Zwicker [7]). Assume x is a limit cardinal, and suppose that for
® . %
every t: 2% — P(P(2*)), there exists t'~t such that A t'(x) is a stationary subset

of P(2*%). Then, « is A-supercompact.. weat®

Proof. For part a, we note that L, 4; %', 2*) = L(x, A; %, A; %', 2**), and
hence the r;sult follows from part a of the theorem with nn = 1, 3, = %, %, = A,
and 1' = 2%,

For part b, we note that since x is a limit cardinaf, it follows that for any
y <, {Xe P2 |Xni> ¥} is a closed and unbounded subset of P,(2*%). Hence,
our assumption implies Elip,(x; %, 4; %, 23‘:‘). The result then follows from part b of
the theorem with n = 0, %, =x=%,and &' = 2 m

) In part b, our assumption that x is a limit cardinal is actually not necessar&,
since it is implied by the given flipping property. We choose not to show this because
the given statement follows so easily from the theorem.

There are many possible “if and only if” statements that follow from Theorem 1
and 2. Here are two examples:
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CoroLLARY. a. (DiPrisco and Zwicker [7]): x is supercompact if and only if %
is a limit cardinal and for every Az, and every t: 4 — P(P(A), there exists 1'~ ¢
such that A t'(z) is stationary.

a<i

b. Fix inaccessible cardinals xo <%y <u, <... For each n<eo, x, is n-huge
with targets sy, %a, .., %, If and only if for each n<w and every #: x, —

P(1,(%05 %1 eevs #us Hpeys %)), there exists t'~t such that A t'(2) is a stationary
2 <3y

subset of T(%gs %y s s 3y ey s %)

Proof. Part a follows immediately from part b of each of the corollaries to
Theorems | and 2.

For the forward direction of part b, fix n < w. We must establish the given
flipping property for this ». This is immediate from Theorem 1 since, by assumption,
H(”Ui Hps oves Mys Hy—1s %n)'

For the reverse direction of part b, fix n<w. We must establish that x, is
n-huge with targets %, , %3, ..., %,. By assumption, Flip,(¢g, €1 » s Hus 13 Zus Zns 1 )-
Since Ly(sg, %ys eves Ry 15 Xus HAnr1) = D3g s %y ey Kyt Ry 15 23 %y %y ) WE have

thh(%ﬁﬁ Hpsony &y My ts Xy s %II+])'

. A1 .
Then, since by the inaccessibility of #,4,, 2" < ,4, ourconclusion follows
from Theorem 2. M :

We note that, by elementarity and closure considerations, the targets of n-huge
cardinals are inaccessible. Hence, for the forward direction of part ¢, our assumption
of inaccessibility is redundant. For the reverse direction, we assume inaccessibility
for simplicity. A weaker assumption would suffice.

4. Almost hugeness and almost supercompactness. Suppose M is an inner model,
and i ¥ — M is an elementary embedding such that x, is the first cardinal moved
by i, i(g) = 3, i(3,) = %,, ... In addition, suppose that 4>, is a limit cardinal -
such that for each y < A, M is closed under y-sequences. Then, for some 7 <w,
Ry <AL, 0.

Let s be the least cardinal such that i(x) > A. If M is closed under /-sequences,
then we have a situation exactly as in Section 1. where case 1 applies if i(x) = 2
and case 2 applies if i(x)> A N

Now, we do not assume that M is closed under /-sequences. For simplicity, we
restrict our attention to the case of 7 = 0 and % = 3. Also, instead of considering
the distinct cases of i(x) = 4 and i() > 4, we consider the general case of i(x)=A
and the special case of i(x) = 4. . )

We shall say that x is almost %-supercompact if and only if there exists an ele-
mentary embedding i: V' — M where M is an inner model closed under y-sequences
for each y < A, x is the first cardinal moved by i, and i(x) > Aoxis almosE huge with
térget A if and only if there exists i: V = M ‘as above, except that i() = 4. Tt should
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be noted that the assertion that x is almost A-supercompact is strictly strongsr than
the assertion that x is y-supercompact for each y with x <y <1 (see [2], p. 106).

In this section, we first show that almost supercompactness and almost hugeness
are both implied by a certain flipping property. Then, we consider possible converses.

TuEOREM 3. Let A> % be an inaccessible cardinal.

a. If, for every t: A — P(PR)), there exists t' ~ tsuch that /\ t'(oc): is a stationary
subset of P2), then x is almost A-supercompact. ooesd

b, If, for every t: A — P(P. (4)),.there exists t' ~ t such that /\ t'(c) is a statio-
nary subset of P (%), then x is almost huge with target A, *<%

Before beginning the proof of Theorem 3, we must consider ultrafilter charac-
terizations of almost supercompactness and almost hugeness, and to do this we must
first consider some additional notation and terminology.

Suppose ¥ < y; <y,< 24 and ‘Uv, ‘and U, are normal, fine, x-complete ultra-
filters on P,(y,) and P,(y,) respectively. We say that U,, is a restriction of U,,, and
write Uy, = Uy, | vy, 1f, for every A € P(y,), A€ U, if and only if {XeP,(y,);
Xny ed}leU,. For ialimit cardinal we say that (U,: x<y<A) is a coherent
sequence if, for each y with x <y < 1, U, is a normal, fine, x-complete ultrafilter on
P,(y) and, whenever x<y; <y, <4, U, = U, }y;. We will also use the fact that
in this situation, there is a canonical elementary embedding k,,,,: M, - M,,
where M,, and A, are the inner models corresponding to U,, and U,, respectively,
such that for each o < 94, &,,,(x) = 2. For details see [12].

LeMMA. Let % be an innaccessible cardinal.

a. If there exists a coherent sequence {U,: x <y <1, then x is almost A-super-
compact.

o b. Suppose there exists a coherent sequence {U,: # <y < ) satisfying the follow-
ing condition: :

I, for some 7 with %< ¥ < 2 1 PAy) — ORD is such that {(XePm):A(X)<x}
€ U,. then, for some n with y <9 <2, {XeP,(): f(Xry) < Xlte U,

Then, » is almost huge with target A

Proof. For part a, we are given the coherent sequence {U,: %<y < A). Then,
<M,,,k,1,2: %<7V <yp<i) is a directed system. Since A is regular, the direct
limit of this system is well-founded. Let M be its transitive collapse. Then, using the
regularity of 1 again, it follows that M is closed under y-sequences for each y <A
There is a canonical elementary embedding i: ¥ — M. 1t is clear that i(%) > 3,
and hence, this.embedding witnesses that is almost. A-supercompact. For details,
see [2] or. [12) : B Lo o .

For part b, we consider the directed system_of inner models and elementary
embeddings, and obtain i1 ¥ — M as above. We must show that i(x). ="4.
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For each y with x <y < A, let n,: IIVjU, -> M, be the collapsing isomorphism,
and let 7,2 V' — M, and h,: M, — M be the canonical elementary embeddings. We
note that for a<y, i,(0) = o

Suppose, by way of contradiction, that i(x) > A. Then, for some y with x <y < 4,
there exists ¢ < 7,() such that 4,(w) > A. Let /> P,(y) — ORD be such that z(f) = =.
Then, since o < i(x), {XePy): f{X)<u}eU,. By assumption, this implies that
for some n with y <y <4, {XeP,(n): f(Xnp<|X|eU,. '

Define g: P,(q) = ORD by g(X) =f(Xny). Then hrn(g)) = h{z(f)).
Also, the fact that {X e P,(n): f(Xny)<{X|} e U, tells us that n,(g) < #. Putting
this all together, we have 2 < h,(0) = hy(m,(f)) = h(m(g)) < Iln) = < A This is
a contradiction. &

Solovay, Reinhardt, and Kanamori [12] have a different technical condition
associated with almost hugeness. It is not hard to show that their condition is equi-
valent to ours. We presented our version because it will make the proof of Theorem 3
easier.

We note that the converses to parts a and b of the lemma are both true, but are
not needed here, and we omit the proofs.

Proof of Theorem 3. For part a, we first note that since Z is inaccessible, there
are A many total subsets of the P,(y) for x<y<Ai. Let {(4,.7,): x<Z) be an
enumeration of all pairs such that 4, = P,(y,) and x <y, < 1. Define 2: 1 — P(P 1))
by, for each o < 4, 1(®) = {X e P(A): Xny,e4,). Let #'~1 be such that A t'(«)

is a stationary subset of P,(A). Then, for each 7 with x<y< A, we define
U, = {A<P,(y): there exists ¢ <A such that (4,7) = (4, 7.) and (&) = 1(x)}.

It is straightforward to show that each such U, is a normal, fine, »-complete
ultrafilter on P,(y). By the lemma, it suffices to show that (U,: x<y<4) is a co-
herent sequence. '

Suppose % <7, <, <A We show that U, = U, } 1. Pick 4 c Pn,). Let
;< A be such that A,, = A and y,, = ;. Let o, <2 be such that 4,, = {Xe
P(n,): Xnn,ed,,} and y,, = 1, Then,

Heg) = {X € PN XNy, €dy,} = {XePM): Xnmed,)
= {XeP ) Xnn ed,} = {XeP,(): Yoy, €4, ) = tlz)

Next, we note that 4,, € U, }n, if and only if {XePfn): X N e A, tE U,gz
if and only if 4,, e U, if and only if #'(;) = 1(22). Also 4,, € U,, if and only if
o) = t(uy). ) ’

Thus, in order to show that 4 U,, } 7, if and only if 4 € Uy, we must show
that #'(x,) = #(x,) if and only if #'(;) = t(e,). But we have already shown that
t(o;) = #(ez,). Hence, we must show that t'(e;) = t'(ay)-

Since A\ #'(x) is stationary, it is unbounded. Pick
a<A . - . _
{ay, 0} € X, Tt follows that Xe (o) M #'(z). But- clearly, since () = t(22),

Xe A t'(o) such that

a<i
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we know that ¢'(x,) and #'(x,) are either disjcint or identical. We conclude that
(1) = 1), '

For part b, we begin as in part a by letting {(4,.),): z <4} be an enumeration
of all pairs such that 4, < P,(y,) and x <y, < i Define 1: 4 — P(P..(%)) by, for
each a <, 1) = {Xe P (A): Xy, ed,}. Let t'~¢ be such that A t'(z) is

. FA]
a stationary subset of P.,(A). For each y with x <y <4, U, is defined exactly as in
part a. Then, (U,: x<y<4i) is again a coherent sequence. We must show that
the additional condition of part b of the lemma is satisfied.

Suppose x<y<Z and f: P(y)—» ORD is such that B, = {XeP,():
f(X)<x}eU,. Assume by way of contradiction that, for each y with y < <7,
B, = {XePn): f(X)=|X|}eU,.

Define g: {#: y<n<7y} — 4 such that for each 5 with y<y< A, B, = Ay,
and 7, = 5. Let C= {X'e P(1): for each n e X\y, () € X}. It is straightforward
to show that C is closed and unbounded. Let C* be the closed and unbounded
subset of P-(4) gemerated by C. Then also, if Xe C* and ne XNy, g(ne X.

Let D= {XeP): ye X and |(XN\y)nCARD| = |X|}. It is straightforward
to verify that D is closed and unbounded and that if D* is the closed and unbounded
subset of P (1) generated by D, and Xe D¥, then y € X and |(X\y)n CARD| = x,

Fix Xe A t'@nC*nD* Since yeX and Xe C* g(»)e X and hence,

2<i

- since Xe Aﬂf(ac), Xet'(g(y). But Ay, = B,eU, and consequently #(g(y)
£ !

= t'(g(»). Tt follows that Xet(y(y). This implies that X Yo € 4gey = By
But y,¢y = 7. Hence XnyeB,, and thus f{Xny)<x.

For any n with y<y <2, 4y, = B,e U, and hence {g) = t(g ). If
neX, glneX and so Xet'(g(p). But then Xer(g(y)). This implies that
XOVyyn) € Agey = B, But y44y = 4. Hence, ¥rjye B,, and thus f(Xny)> [ Xyl

Since X'e D*, |[(X\y))nCARD| = x. Then, since F(Xny)<u, there exists
1 € XNy such that | Xy > /(X ny). This is a contradiction. Hence, ‘by the lemma,
we conclude that x is almost huge with target 1. B

We do not know whether the exact converses to Theorem 3 hold. We can
establish a converse to part a if we make a somewhat stronger assumption on A,

After establishing this result, we discuss the relationship of this result to the converse
of part b.

THEOREM 4. Let A be an ineffable cardinal. If x is almost A-supercompact,

then, for every t: & ~ P(PR)), there exists t'~ t such that A\ t'(®) is a stationary
subset of P,(J). , #<h

For the definition and standard facts on ineffable cardinals, see Baumgartner
[3). We shall use the flipping characterization of ineffability given in [1]:
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A is ineffuble if’ and only if given any s: 2 — P(7), there exists 5'~ 5 such that
A s'(0) is a stationary subset of 1.
a<h

Before proving Theorem 4, we establish a lemma, which may be of interest
in its own right.

LemMA. Suppose C < P,(R) is closed and unbounded, 1 is a regular cardinal,
and for every 8 < A, 8% < L. Then {§ < 2: CAP,(8) is a closed and unbounded sub-
set of PAS): is a closed and unbounded subset of 2.

Proof. Assume C= P (4) and 2 are as in the statement of the lemma. Let
D= {6<Ai CnP,) is a closed and unbounded subset of P,(5)}.
First we show that D is closed. Suppose (,:  <n) is an increasing sequence

of elements of D, where # <. Let § = supé,. We must show that CnP,(d) is
a<y

a closed and unbounded subset of P,(5).

It is straightforward to show that CnP,(J) is closed. To see that Cn P ()
is unbounded, pick XeP,8). If XeP, 4, for some o<y, then there exists
Y.e CnP,{5,) such that X < ¥,. But then Y, e CnP,(d). Suppose then that X
is unbounded below §. Let (B,: «<X) be a nondecreasing subsequence of
{8,: o <n) such that for each « <X, f, is greater than the ath element of X. Then,
since for each o <X, CnP(B,) is an unbounded subset of P,(8,), we can inductively
define an increasing sequence {¥,: <X » of elements of CnP,(d) such that for
eac 0 <X, Xn B, < Y, e CAPB,). If we let ¥, = U ¥, we have Y, e CnP.().

a<X
Hence, X = |J (X¥np) s ¥, and we have shown that CnP/(J) is unbounded.
a<X
This establishes that D is closed.

To show that D is unbounded, pick §, <1. We must find e D with 6 2 8.
For each X e P(4), let ¥, e C be such that X< Y. Using our assumptions on 4,
‘e may inductively define 8, ; < 1, for each i <, as follows: &;., is the least ordinal
such that for each X e P8, Y.€P,(8;1,). Let 6 = supd;. Then d, <8<, and

i<w
CnP,5) is a closed and unbounded subset of P,(5). The proof is similar to thgt
contained in the previous paragraph, and we omit it. This establishes that D is
unbounded. B

We wish to thank W. Zwicker for contributing to the proof of this lemma. In
addition, Zwicker pointed out that our assumptions on 2 can be weakened some- )
what. In our definition of the 8,5, the regularity of 2 is certainly necessary, but
something weaker than requiring that |§|% < 2 for each § < 4 will suffice to' complete
the argument. The point is that in defining each 8,41, we need not consider every
element of each P,(3;), but need only consider every element of some unbounded
subset of P,(5;), and such a subset can have strictly smaller cardinality than doris
P,(5)). Hence, we need only require that for each 8 <2, 4 is greater than the cardi-
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nality of some unbounded subset of P,(5). For more on the distinction between the
size of P(8) and the size of unbounded subsets of P,(5), see [13].

Proof of Theorem 4. We assume that x is almost A-supercompact and 1 is
ineffable. and we consider #: 1 - P(P,(4)). For each y with %<y <2, define
t,(e) = 1(@) " P,(y) for each & <y. Since x is almost 1-supercompact, » is y-super-
compact for each such y. Then, by Corollary b of Theorem 1, we may let ty~ t,
be such that /A #;(x} is a stationary subset of P,(y). Define s: 2 — P(%) by

a<y
s(@) = {y: x<y < and f,(e) = t(«)}. By the ineffability of A, suppose &'~ s is
such that A\ s'(x) is a stationary subset of A. Now, define 7'~ by, for each

<
<k t'(o) = t() if and only if s'(») = s(x). We must show that A\ #'(2) is
a<i
a stationary subset of P,(1).
Suppose by way of contradiction that C < P,(1) is closed and unbounded and
Cn A t(@)=@. Let D= {y: x<y<land CnP,y)is a closed and unbounded

2<2 .
subset of P,(y)}. Since 1 is ineffable, it is inaccessible, and thus it certainly satisfies
the assumptions of the lemma. Hence, D is a closed and unbounded subset of A.
Pick ye Dn A s'(&). Then, CnP,(y) is a closed and unbounded subset of P,(y).

a<i
Since A 1,{«) is a stationary subset of P,(y), we may pick Xe CnP () A 1,(0).
o<y %<y
We claim that Xe A #'(x). Pick § € X. We must show that X e 1'(5).
e<i

We note that since d € X, 6 <y and hence, since ye A s'(®), y € 5'(5). Also,
since e X and Xe A £;(0), Xet(5). a<d
a<y

Suppose first that s'(8) = s(5). It follows that ye s(§) and this implies that
() = 1,(6). Then, we have Xer(5). Hence Xet(5). But, since s'(5) = s(5),
we know that 1'(d) = #(8), and consequently, X e #'(5).

Suppose then that s'(3) # s(3). Then y ¢ 5(6), and hence #(8) 5 #,(5). This
implies that X ¢ 1,(6), which tells us that X ¢ 1(5). Then, since 5'(5) # s(3), we
have 1'(8) # 1(6), and we conclude that X e t'(9).

We have shown that Xe Cn A t'(a). This contradicts our assumption that
ChAt =90 8 o=

a<i

We note that an indirect proof of Theorem 4 does already exist in the litera-
tuzre. DiPrisco and Zwicker ([6]) showed that the assumptions of our Theorem 4
imply that a certain partition property holds for P,(1). Magidor ([11]) showed that
this partition property implies a certain ineffability property for P,(4), and DiPrisco
and Zwicker ([7]) showed that this ineffability property implies the flipping pro-
perty given in the conclusion of Theorem 4.

In trying to apply the methods of Theorem 4 to the almost huge case, we find
that a converse to part b of Theorem 3 is not-what we obtain. What we do obtain is:

TerOREM 5. Suppose A is an ineffuble cardingl, I is the ineffable ideal on 2,
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and {y: %<y <A andx is huge with target y} € I*. Then, for every t: } — P(P. (),

there exists t'~ 1t such that [\ t'(v) is a stationary subset of P.,(A).
%<k

For the definition and basic facts on the ineffable ideal, see [3]. The proof uses
‘he same method as the proof of Theorem 4, and we omit it.

5. On ideals and ineffability properties. In this section we consider natural
ideals associated with the flipping properties discussed in this paper, and show how
these ideals connect with certain ineffability properties. For simplicity, in this section,
we only study ideals associated with Flip,(xg, %, ..., %, %, 2).- The analogous
study for Flip,(¢g, %1» .ovs %3 %, A) would be similar, but slightly more involved
because of the slightly harder definition of this flipping property.

Suppose Flip,(sg, %1, ..es %#,; %, ). We wish to define an ideal Jy(xq, %4, ...,
3,5 %, A) on Jy(sg, %y, ..., 2,5 %, Ay . For simplicity, when the context is clear, we
write J in place of Jy(g, %5 .v» %3 %, 4). As usual, J* denotes the collection of
sets of positive measure, and J* denotes the collection of sets of measure one,
We note that we certainly have the option of considering such a J to be an
ideal on all of P-,(4) by declating that I, %y, ..., %,; %, A) €J*. Our per-
spective of viewing J as an ideal on I(xg, #;, .., 5t,; %, A) will make the proof
of Theorem 6 slightly easier.

We define J as follows: For A< Ly, %, , ..., 3y} %, A), we set AeJ7 if and
only if for every r: 1 — P(4), there exists ¢'~ f (where flips are taken with respect
to A) such that A #'(x) is a stationary subset of L(xg, %1, ...\ %p; %, A).

a<i

THEOREM 6. If Flipu (s, 315 -os %3 %, A), then Jy(%g, 31 5 vy 35 %, A) 15 @ 329~ cOM-
plete, normal ideal on L(xy, 31, .., %y %, A).

Proof. We assume Flip, (g, %1, -, %a; %, 4) and we show that J = J(xp,
Hiy oees Ky %, A) 18 @ xg-complete, normal ideal.

The verification that J is an ideal is straightforward.
To show that J is %,-complete, let us suppose that {4;: f<#) is a sequence

of disjoint elements of J, where 7 < %,. Let 4 = {J 4;,. We must show that deJ.
B<n
For each <1, let t;: 2 - P(d,) be such that for no tg~ ty (where flips are

taken with respect to 45) do we have that A ty(@) is stationary.
w<i

For each Xe 4, let B, <# be such that X e 4, . (Note that the choice of ﬁix
is unique.) Define ¢: 4 — P(A4) by, for each o <1 and X e 4, X e t(«) if and only‘ if
Xe it (). It suffices for us to show that for no t'~ t (where flips are taken with
Tespect to 4) do we have that A t'(x) Is stationary.

a<l . . .
Suppose, by way of contradiction, that ¢’ ~ ¢ and A}. t' () is stationary. Then,
€<

since { A t'@)ndy: f<n)is a partition of A #'(e)into less than %, many disjoint
< “<i

subsets, we know that fo: ‘some B, <7, AA t'(a)n Ay, is stationary.
a<
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Define 15,~ #;, by, for each o <2, f5,(x) = 1(e) if and only if #' (&) = 7(x).

By assumption, /\ #;,(2) is non-stationary. But this is a contradiction, since clearly
a<i a

A '@ Ay, = % Tho(2%).

a<i

To show that J is normal, we establish that J is closed under diagonal unions.
Let {4,: <L) be a sequence of elements of J. The diagonal union of this se-
quence, written / A4,, is defined as follows:

B<a
For XeP. (%), Xe V 4, if and only if for some fie X, Xe 4.
B
Let A= ¥ Ap. We must show 4eJ. By assumption, for each f < A, there
B<i

exists #;: A — P(d4p) such that for no r[,~ f; (where flips are taken with respect
to 4z) do we have that é 14(e) is stationary.

For each Xe 4, let f, € X be minimal such that X'e 4, . Define : 1 — P(4)
by, for each o<1 and Xe 4, Xet(x) if and only if Xe tp. (). Tt suffices for us
to show that for no t' ~ ¢ (where flips are taken with respect to 4) do we have that
A t'(e) is stationary.

a<i

Suppose, by way of contradiction, that t'~¢t and A #'(0)) is stationary. For
a<}

each f < A, define 73~ 1, by, for each a < 2 #4(x) = t,(x) if and only if #'(e) = #(00).
By assumption, for each f< 2, A #(«) is non-stationary. For each such B, let Cy
a<i

be a closed and unbounded subset of P..(2) such that A te)NCp = J. Let
a<i
C= A C;. Then Cis closed and unbounded. Also, if X & C, then, for each f ¢ X,
B<2

there exists « € X such that X ¢ (@),
Since A #'(2) is stationary, we may pick Xe A t'(¢)n C. Since Xe C and

x<i a<i
B X, it follows from the above that there exists o, € X such that X¢ t,,'x(ccx).
Since Xe A t'(») and o, e X, we have Xe t'(a,). By definition, X e ()

a<i
if and only if X e, (o). Also, by definition, fp o) = £, (o) if and only if #'(x,)
= t(z,). Hence, since X € #'(«,), we conclude that X e tz.(e,). This is a contradic-
tion. W

Next, we consider certain ineffability properties that are related to the flipping
properties we have studied. These properties generalize notions that have previously
been studied for P, (7).

We write Inefy(xg, %y, .., %,; , %) to denote the following property:

For every function fwith domain T, %3, .., %5 2, 7), satisfying that f(X)eXx
for each X e I(xg, %1, ..., %,; %, A), there exists T< 4 such that
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{Xe Ly, yy vy 0,3 2, 2): fX) = XnT}

is a stationary subset of f(xg, %,, ..., s %y A).

By direct generalizations of techniques of DiPrisco and Zwicker (7)), one
can show that Flip,(so, ;. ..., 3,; %, 4) if and only if Inefy(q, %4, ..y %3 22, 2).

There is a natural way to associate ideals with these ineffability properties.
These ideals turn out to be the same as those associated with out flipping properties.
In particular, if Inefy(xy, %y, ..., %,; %, A), we define an ideal J on Lxg, %y, ...,
®,; %, A) as follows: °

For A< L(xg, %y, ..., #,5 %, A), we set AeJ* if and only if, for every func-
tion f with domain A4, satisfying that f(X)< X for each Xe A, there exists T2
such that {Xe 4: f(X) = XNT} is a stationary subset of Lo, sty s vy 2,3 3%, 2).

By following through the proof that Flipy (%, %1 ..., 3,3 %, ) if and only if
Inefy(2g, %y, ooy 2,32, A), it is straightforward to verify that the J we have just
defined is the same as the ideal Jy(x, %/, ..., #,; %, A) associated with Flip,(x,
My s ees Hys 3, A).

As we mentioned at the beginning of this section, all of the definitions and
results of the section carry over to the Flip,(x, Hys s %3 %, A) case. In the special
case that n = 0 and % = 5, this ideal is the ineffable ideal on P,(4). This ideal has
been studied by Carr in [4].
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Abstract. We estimate the rapidity of the growth of recursive functions which are provably
total in a finite fragment of Z; parameter-free induction subject to the size of the fragment.

The aim of this paper is to bound the rapidity of the growth of recursive
(2, definable) functions which are provably total in 7~ ¥, (induction for parameter
free X, formulas). We show that if in the proof of the totality of a recursive func-
tion ffrom N to N Z, induction is applied # times then the function can be bounded
by the n+1’s function in the Wainer hierarchy (see [W]).

The result is proved by means of a proof-theoretic analysis of proofs of sentences
of the form (V#)s0(¢) in I™Z, (an analogous analysis for 3, formulas and ™3,
can be found in [A]). We consider here ¥; formulas ¢ without parameters.

Here PA™ denotes the theory of discretely ordered rings. If ¢ is a formula
then Ind¢ denotes the following sentence:

PA™ & [p(0) & (Y1)309 (1) = ¢(t+1)) = (V1)500()].
To simplify the notation we will assume that for every formula of the form ¢ (y, X)
the sentence ¢ (—1,0, ..., 0) is true. Formally, this can be assumed since we can

replace ¢ be the formula ¢* defined as (y >0& @(», x)) v y <0. Then ¢ is equi-
valent to ¢* for all non-negative y's we are interested in. Without causing confusion

we identify @ and ¢*. .

DrFINITION 1. Let the formulas ¢y, ..., @, be of the form

0,() = @DNeit,5) where ¢jedy, i=1,..,0.

We assume that the quantifiers in the formulas ¢; are bounded by the free variable
or by one of the variables of 3. Let M E PA~, vy, ..., v, € M. Assume that we have
a fixed enumeration of polynomials. Let KeN. A set H = M is called a K-closure
of {vy, ..., v} With respect to {¢py, ..., ¢,} if there exist sets Hy, ..., Hg such that

1. H= HyUH,u...UHg and {v;, ..., 0,} = Hy. - .

2. If x e Hj for a certain j < X then for every i€ {1 “ n} there is an ¥ € Hyyy
such that Mk q)i(x, 7). S o
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