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that Indg, &...& Indg, + T. Since all the functions Fi(t) are provably total in
I7%,, T proves that F,., is total. By our theorem, F,., < F,, 1 almost everywhere,

contradiction.
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An isomorphism theorem of Hurewicz type in the
proper homotopy category
by
J.L. Extremiana, L. J. Hernandez, M. T. Rivas (Zagaroza)

Abstract. Numerous mathematicians have proved theorems of Hurewicz type in different
contexts shape theory, pro-categories, coherent categories. In this paper we obtain a Hurewicz

Theorem in the proper homotopy category. In particular, we prove:

THEOREM. Let (X, A) be a proper pair such that si(X), st(A4), To(X), 1(d) are trivial. Suppose
that for nz 2(X, A) is (x)n-connected and (t)(n—1)-connected. Then for each proper ray a in A,

0:: (X, A4, AN X, A, @) Jni1(X, A) is an isomorphism. Iri the case where (X, A) is (z)n-simple,
for example if m(A,a) = 0, then gt (X, 4,0) -+ Jn1(X, A) is an isomorphism.

1. Introduction. A natural relationship between singular homology groups and
Hurewicz homotopy groups is displayed by Hurewicz's Theorem. This theorem was
established in terms of simplicial homology and absolute homotopy groups by
Hurewicz [11] in 1935 for simply connected polyhedra. In 1944, Eilenberg proved
that the fundamental group modulo the commutator subgroup is the first singular
homology group. Blakers [2], the proposer of the concept of relative homology
groups, proved in 1948 the Hurewicz Theorem in the relative case given the kernel
of a homomorphism.

There are more Hurewicz type theorems in other homotopy theories. For

“example, in 1969 Artin and Mazur [1] proved a Hurewicz Theorem in the category

pro-%#,, where'%, is the pointed homotopy category of connected pointed CW-com-
plexes, and pro-#, is the category of inverse systems of objects of . Relative Hu-
rewicz type theorems for pro-si?g' and Sh? were proved by Mardesi¢ and Ungar [15]
and independently by Morita [16]. Raussen [17] proved a Hurewicz type theorem
in pro-Ho(Top,), where Ho(Top,) is the homotopy category of pointed topological
spaces. In 1972, Kuperberg [13] proved another Hurewicz type Theorem between
the homotopy groups defined by Borsuk and the Vietoris-Cech homology groups.
In 1979, Kodama and Koyama, [12] proved a Hurewicz type theorem between the
Quigley approaching groups and the Steenrod homology groups. In a recent paper,
Koyama proved a Hurewicz Theorem in the coherent homotopy category of inverse
systems of spaces CPHTop.
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The present paper is devoted to the study of Hurewicz theorems in the proper
homotopy category of pairs with base ray and proper maps. First we introduce
certain proper invariants: In 1980 Cerin [4] defined the groups m,(X, &) associated
with the space X and the proper ray «: [0, o) — X. In his definition Cerin was
considering proper homotopy classes of proper maps of the form /3 §"x [0, ) — X.
In 1984 the second author of this paper defined the proper groups 7,(X, o) taking
proper maps of type S"x [0, «0)/S"x0 — X, see [7]. Independently, these groups
have been considered by Brin and Thickstun [3]. An alternative definition was given
in [8] in terms of the model category defined by Edwards and Hasting in [5]. We
recall these notions with more details in Section 3. In the same preprint [7], Her-
nandez also defined the proper end homology E, and the singular proper homo-
logy J,.. We recall the definition of these proper homologies in Section 4.

In Section 3, first we show that the Hurewicz Theorem for the transformation.
0n: (X, A,2) = E,, (X, A) can be reduced to the “classical” Hurewicz Theorem.
This, however, is not the case with the transformation g,: (X, 4, ) — J,. (X, 4).
The main result of this paper is a Hurewicz isomorphism theorem for the relative
case and the natural transformation g, (see Theorem 5.14). Notice that in this theorem
to the usual conditions

(X, 4,0)=0
we must add other conditions on the Hurewicz groups:
(X, 2(0) =0, ign.

" 'We have also included in Section 6 an example illustrating how all these
proper invariants can be computed by applying exact sequences and the Hurewicz
Theorems for proper groups.

for i<n

2. Notatien and preliminaries. ‘We use the following notation. 7 denotes the closed
rl
interval [0 1] and I" = Ix .. xI. J denotes the semiopen interval [0, c0) and

m
Jt=J x ><.I R denotes the set of real numbers. R = Rx .. . X R, Z denotes
the set of integers. D" the n-disc, and S" the n-sphere.

- DeFmniTion 2.1 Let X, Y be topological spaces. A continuous map f: X » ¥
is.said to be proper if f~'(K) is compact whenever K is a closed compact subset
of Y.

Two given proper maps f, g: X — Y are said to be properly homotopic if there
is a homotopy from fto g, which is proper. A subspace 4 of X is said to be proper
if the inclusion map of 4 into X is proper. In this case, we say that (X, 4)is a proper
Dpair. In a natural way, one can define proper maps between proper pairs and proper
homotopies between proper maps of this type. Similarly, one can define proper
triplets. A ray in X is a proper map a: J — X. A proper map between two spaces
with base ray f: (X, o) — (Y, B) is a proper map f: X — Y satisfying foa = f.

Similarly, one can define proper maps between proper pairs with base ray and the
corresponding proper homotopies.
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A subspace of R" of the form K, x ... xK,, where either K; = I or K =7
for each i =1,...,n, will be called a proper n-cube. Lot 8(K, x ... xK,) denote
the subspace UKIX wo XIX L xK, where i=1,..,n and I1=0,1if K;=1

and [ = 0 if Ki J. We say that 8(K; x ... xK,) is the boundary of K; x ... xK,.
.One can define the absolute proper homotopy extension property (APHEP) in
the same way 4as this is done with usual homotopy. ’

We shall use the following:

PROPOSITION 2.2, The boundary of @ proper n-cube has the APHEP.,

Proof. If K x
retraction

$<Kn is compact, see [10.1. 9]. Otherwise, define a proper

rr K X ... xK, < - K% X ... xK,x00e(K;%x ... xK,)xF
by projecting from the point (1/2 L 1/2,2)e R

Now, suppose that f: K; x ... xK — Y is a proper map and H: 6(K; x
xK,)xI - Y is a partial proper homotopy of f. Consider the proper map G
defined by Glgix .. xgnxo =S, Glawyx...xxmyx1 = H. Then F= Gr is a proper

extension of G to K; x ... x K, x L

3. Proper homotopy groups. In this section we -recall the definition of proper
homotopy groups and some of their properties.

Let (X, A, ) a propér pair with base ray. In [4] Cerin defined =,(X, &) as the
set of proper homotopy classes of proper maps of type I (S"xJ, % xJ) >
- (X ,0), xe 8" f(x,1) = a(t), under the proper homotopy relation relative
to % xJ. One can also define =,(X, 4,«) by considering proper maps of type

F(D"xJ, 8" xJ, % xJ) = (X, 4, ). In the present paper we choose the ap-
proach applied in [18] for the description of these groups and their propcmes
stated there.

For each n2 0, 1,(X, o) denotes the set of classes of proper maps f (I"xJ
oI xJ, I"xO) - (X o, oc(O))

f(l) l) = 0{(1)

under the following relation: £, g are related if and only if there is a proper homotopy

for every. (x,t)ecl"xJ,

H: (I'"xIx I, 0" xIx I, " x0x I) = (X, %, a(0))

rélative to (9I"xJ, I"x 0) and such that

He 6,0 = fn ), @nelxt,

H(x, t,1) = g, 0, (x,)el"xJ.
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3

In the relative case, in order to define 7,(X. 4, o) we consider proper maps of
type
fr ("% T, i, T T, ' 0) > (X, 4, a, 2(0)),

flx, 0 =a(),

where "~ stands for "1 x 0, and T"~* denotes the union of the other (#—1)-faces
of I". The relations are given by proper homotopies

H: (I"xIx I, I" ' xIxI, T" I xIx I, I"x0xI) - (X, 4, o, a(0))

relative to (T~ ! xJ, "% 0). _
In the same way we define =,(X, &), = (X, 4, ) taking proper maps

Fo "), e %], 81" x0) - (X, ¢, 2(0)) ,
L=, i, T ), T % 0) - (X, 4, o, 0(0)) , respectively,

for every (x,f)e T" " 1xJ,

Notice that mo(X, ¢) is the set of proper homotopy classes from J to X. We say
that n,(X, @) is the set of proper ends of X.
Given two proper maps f, g: I"xJ — X, n>0, such that
f(la Xay ey Xy t) = g(03 Xy ey Xyy t)s
define f+g: I"xJ — X by

f(le' X34 eees Xy t) H
g(le—]a Koy ey Xy t)

if 0<x, <12,
if 12<x,<1.

.f+g(x15 xls ey Yy t) = {

This operation gives group structure to (X, a), m,(X, «) for n3> 1; the resulting
groups are abelian for »>2. In the relative case we get group structure on
t(X. A4, 2), n(X, A,0) for n>2, abelian for n>3.

Dernition 3.1. A space X is said to be (t)n-connected if vq(X ,o) = 0 for
every g < nn and for every ray « in X. A proper pair (X, A) is said to be (t)n-connected
if 7(X, 4, a) = 0 for every g < n and for every ray o in A (1o(X, 4, &) = 0 means
that 7o(4, o) = 1(X, u) is a surjection). In the same way define (z)n-connectedness
for spaces and proper pairs. ) ‘

Foreachn>1 (n>2), n,, t, are covariant functors from the category of spaces
(proper pairs) with base ray and proper maps to the category of groups and homo-
morphisms. These functors are invariants of the proper homotopy type; moreover,
there is an exact sequence associated with a based proper pair (X, 4, &) for each one
of these functors. There are similar exact sequences for based proper triplets.

Now we are going to inspect relationships between the proper homotopy
groups above and the Hurewicz homotopy groups. )

Given a space with base ray (X, «), there is a natural map (which is homo-
morphism for n> 1)

(1) ) (Pa: ﬂn-}- 1(X: O!(O)) i 1n(Xs C!)
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defined as follows: Let f: (I"**, aI"*') — (X, «(0)) be a representative map of an
element ¢ of m,. (X, «(0)). Define

G: I"xIx0uI"x0xJudI"xIxJ - X by
G(x,t,0) = f(x; ) if (x,)el"xI,
G(x,0,s) = o(s) if (x,8)el"xJ,
Gy, t,8) = als) if (p,1,8)edl"xIxJ.

By the APHEP, see Proposition 2.2, the proper map G extends to a proper
homotopy F: I"xIxJ — X. Now we define ¢,(£) as the element of 1,(X, «) repre-
sented by F,, where F,(x,s) = F(x, 1, s).

We also have another natural map,

) ¥t (X, 0) > n(X. 9,

which sends the element of 1,(X, ¢) represented by a proper map f to the element
of m,(X, o) represented by the same f.
Finally, there is a natural boundary map

€)) 8 (X, &) = m,(X, o(0))

defined as follows: if f represents an element # e #,(X, «), then 6(n) is the element
of m,(X, a(0)) represented by d; f, where o f(x) = f(x, 0) for each xeI".
.Using these transformations we can state:

PROPOSITION 3.2. For each nz 0, the following sequence is exact

oo Ty, 2(0) 5 (X, D) B 1 (X, 2) > (X, 2(0) - e

A detailed proof of this Proposition can be found in [18], and another one
(using pro-category methods) in [8}.

An analogous exact sequence is obtained in the relative case, and we have the
following commutative diagram:

o v s
s 7':»+1(Xs A,OC(O)) i’ ‘C,,(X,A,d) e TE,,(X,A,{X) - ”n(X: A,d(O)) >
o 0 P jo

¥ " ¥ v s M
oo oy (A 2 () 5 (A, 0) S (A, 0) > (A, 2(0) > .

where 8 is the boundary operator of the corresponding sequences associated wiﬁh
(X, 4,0). .

‘We shall also need a certain notion of proper simplicity. There are various types
of actions on the groups above, and we are going to have 2 closer look at some
of them.

DEFINITION 3.3. Let o, f be rays in X. A proper map u: [ xJ — X, such that
10, 1) = a(r), u(1, £) = B(2) for every ¢ e J, will be called a path from « to f. Let y
be. another ray in X, and ¢ a path from § to y. Define the composed path p < ¢ from o
to y by L o Lo :
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2
= P00

For each n >0, every path u from « to f induces the natural map p,: 7,(X, ) -
— 1,(X, o) defined as follows:

If /is a representative proper map of & e 1,(X, §), consider the partial proper
homotopy of f, @: 8(I"xJ)xI - X, defined by ¢(x, t,5) = u(l—s, #) for every
(x,t,5)e d(I"xJ)x I. By the APHEP, ¢ extends to a proper map @: I"xJx[ — X.
Then we define p,(¢) as the element of 7,(X, o) represented by &,, where &,(x, )
@(x, 1, 1) for each (x,1)el"xJ.

ProrositioN 3.4. The map , is an isomorphism (for nz 1 in the category of
groups), which depends only on the proper homotopy class of p relative to 0 xJU 1xJ.
Moreover, it has analogous properties to those of paths between base points; that is,
(o) = o 0, (0), = id, where 8, is constant path 6,(s, t) = a ().

ifo<s<l12,
if12<s<1.

Observe that if X has only one proper end, then all groups 7, with different
proper rays are isomorphic. .

As a consequence of the last proposition we obtain that 7,(X, ¢) acts on 1,(X, &)
as an operator group. Define the action by u * £ = p,(£) where £ e7,(X, o) and pis
a representative map of u. Notice also that if 7,(X, «(0)) = 0, then #,(X, «) acts
on (X, «) by “conjugation”. '

DerNITION 3.5, A space X is said to be (¢)n-simple if =, (X, o) acts trivially
on t,(X, o) for every ray o« in X.

For n>1, Q(X,«) will denote the subgroup of 7,(X,®) generated by the
elements of the form ¢—wux & where ¢ 1,(X, «) and u e =,(X, «). This subgroup
is normal. In particular, QX(X, o) contains the commutator subgroup of 7,(X, &).
Then the quotient group (X, «)/Qy(X, «) is abelian for n> 1.

‘We also have analogous results to Proposition 3.4 in the relative case considering
paths between rays in the subspace. For any based proper pair (X, 4, o), on the one
hand, we have actions of #,(X, «) on the groups #,{X, ), 7,(X, &), and on the other
we have actions of ,(4, o) on the groups m,(X, 4, o), 1,(X, 4, ). Furthermore,
there are compatible actions of m,(4, «) on all the objects of the exact sequences of
the functors =,, 7, associated with the based proper pair (X, 4, ). We shall denote
by (X, 4,9), X, ), Qu(X, 4,4) the normal subgroups determined by the
corresponding actions. Notice that in the relative case the quotient groups are abelian
for n>2.

Finally, let us remark that one can define an action of n, on =, through the

action of the subgroup &=, of #, on 7,. In this way, we have compatible actions
of m; on the sequence '

DTy ST, S R, W, .

4. .Prol?er homology groups, Now we are going to work out a proper homology
theory inspired by the singular homology theory H, developed by Massey in [14]
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with use of singular #-cubes (continuous maps from I" to X) instead of singular
n-simplexes. As in our case we have chosen to use proper singular »-cubes;
see [6], [18].

DerniTioN 4.1. A proper map T: K; X ... xK, » X will be called a proper
singular n-cube. If there is some i such that T'(x, , ..., X;, ..., X,) = T(x, ooy Xgp ory %)
for every x;, xie K; (K; = I), T is said to be degenerated,

Let C,(X) denote the free abelian group generated by all proper singular
n-cubes modulo degenerated n-cubes. Define the boundary operator by

0T = Y (= DY((@)*T— ()*T); here (a)* is the homomorphism induced by the
i=1
injection «f defined by

I
Oy g vy Xpm gy Xpgps v Xp) = (01, ey Xpmgu Ly Xps 1y eons Xp)

where [ = 0,1 if K; = I, if K, = J then [ = 0; in this case take (rx})* = 0.

The resulting glain complex is denoted by Cy(X). The nth homology group
of this complex H,(C(X)) will be denoted by J,(X) and will be called the n-th
proper singular homology group of X.

Let S, (X) denote the chain complex of singular cubes of X modulo degenerated
cubes. Consider the quotient complex Cy(X)/Sy(X). The nth homology group
H,(Cy(X)/Sx(X)) will be denoted by E,(X) and called the nth proper end homology
group of X.

In the usual way we define proper end and singular homology groups of a proper
pair (X, 4) and, for a given abelian group G, proper end and singular (co)homology
groups with coefficients in G.

Let us review some properties of these proper homology groups: J,, Ey are
covariant functors from the proper homotopy category of proper pairs and proper
maps to the category of abelian groups. There is an exact sequence

= H(X, A) > J (X, A) » E(X, 4) — H_(X, A - ...

which relates proper homology groups with singular homology groups. For each
proper theory J,, Ey there is an exact sequence associated with a proper pair. Similary
to the singular theory, there are coefficient theorems for Jy, Ey. The homology
theory J,, agrees with H, on compact spaces, and satisfies the following condition.:
Let F: Jx X — ¥ be a proper map; define f(x) = F(0, x) for every x& X; then
the induced homomorphism fi: J,(X) = J(¥) is zero for every integer g.
These proper theories satisfy weak excision and Mayer—Vietoris Theorems.
These theorems are weak because we require some additional conditions on the set
of Freudenthal ends & (X) of a space X. Let us recall the notion of a Freudenthal
end: Consider the set {K} of closed compact subsets of X directed by i_nclusion.
Define & (X) = limno(X—K). Let Ec X, and e = {Ux} e F(X) Wiite e<E
if there s a closed compact subset K such that UgcE. Der}o‘te:
E% = [ee #(X)| e< E}. With these notation we have the following weak excision

property:
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Let (X, 4) be a proper pair and U< 4 such that clU cintd, F(X) = A7 U
u(X— )" ; then J(X-U,4=U) = J (X, 4)isan isomorphism for every integer g.

Using the properties of these homologies, one can prove that J,(R") =0
ifg s nandJ,(R" = Z; J (R}, R*™Y) = Oif ¢ # n, and J(R}, R Y)Y~ Z, where R%,
is the upper-half euclidean n-space; Eq(!')’"1 xJ,S" 2 xJ) =0 if g # n, and
E(D"ixJ, 8" *x)=Z

A suitable category for studying these proper homologies is the category FPCC
of finite proper cubic complexes, which is described below.

DERNITION 4.2, Let 4" = K; x ... XK, be a proper n-cube. Any subspace
of the form t o g(a"), where 7 is a translation and g is a linear isomorphism of R%,
g > n, will also be called a proper n-cube in R In the natural way we define the faces
of a proper n-cube. A finite proper cubic complex consists of a subspace X = R™
together a finite family & = {o}] i = 1, ..., p} satisfying:

(i) o; is a proper n-cube for some n, 0<n<m,
P
@ X=Uo,
i=1
(iii) If o; is a face of 0;€ &, then 0,6 &,

(iv) If 0, 0;¢ &, then either 6,no; = & or ¢;na; is a common face or g,
and o;.

One defines in the natural way subcomplexes of X and the r-skeleton X", r>0.
We say that (X, 4) is a proper pair of finite proper cubic complexes if 4 is a sub-
complex of X.

In the category of proper pairs of finite proper cubic complexes we have pro-
posed a computing algorithm, see [6], [7], for the homologies Hy, Jy, Ey, similar
1o the “classical” algorithm for the singular homology in the category of simplicial
complexes: In the case of singular homology, consider compact proper oriented
cubes; for J,, consider all proper oriented cubes; and for E,, take only noncompact
proper oriented cubes. When you take the oriented boundary, in the end homology,
consider only noncompact faces.

Fortunately, in the category FPCC we have strong excision and Mayer—Vietoris
Theorems: Let X;, X, be subcomplexes of a finite proper cubic complex X such that
X = X,uX,. Then .

Jq(X1UXls XZ) ng(Xls Xln XZ)

for every g, and there is a connexion homomorphism 4, such that the sequence.
4 .

w2 J(X N X)) - T (X)) B T(X,) - J(X) > J,

is exact for each integer 7.

24X nX) > ...

Remark 4.3. The homologies defined in this section can also be redefined by

using only proper n-cubes of the form either I* or J* xJ, see [7]. In this case we use
the same symbols C, Cy/Sy.
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Finally, for any unexplained notions or facts concerning these homologles
refer to [18], [6].

5. Theorem of Hurewicz type on proper homeotopy. Given a based proper pair
(X, 4,0), we define g,: n,(X, 4,0) - E, (X, A) for n> 1 by (&) = fy(lidm D,
where fis a 1eplesentat1ve propermap of { and fy: E,, ((I"xJ, 8["xJ) = E,, (X, 4)
is the homomorphism induced by f. In the absolute case, we define g,: m,(X, 2) —>
— E, . (X) for n= 1, in a similar way.

We have the following relation between the groups just mentioned and the
homotopy and homology local Hu's groups: On the one hand, let us consider the
nth homotopy local Hu’s group 2,(X, 4, w; p) = n,(T(X), T(4), p,) (see [4], [9]),
where X (A) denotes the Alexandroff compactification of X (4) by the point oo,

T(X) = {o: (1,1) » (X, )] o7 *(c0) = 1},

“similarly 7°(4), and p, is defined by

p()y=0a(@/1-1) f0<r<] and p,(I) = 0.
Now one can define an isomorphism
¥, (X)), T(A), p,) » =X, 4, )

as follows: if g represents 5 € m,(T(X), T(A), p,), then ¥,(y) is the element of
(X, A, ¢ represented by the proper map § defined by F(x, 1) = g(x)(#i+1)
for every (x,t)el"xJ.
On the other hand, there is an isomorphism ¥, from the nth homology local
Huws group L,(X, 4, o) = H(T(X), T(4) to the proper end homology group
E,, (X, A) defined as follows: For a singular n-cube of T(X), v: I" —» T(X), we put
W,(0) = 5, where ¥(x,?) = v(x)(#/1+f). Notice that if wveSy(T(4), then
5 € (Cy/S5)(4). To check that ¥, is an isomorphism, it suffices to take into account
Remark 4.3, which is a consequence of the fact that an (z+1)-proper cube can be
subdivided into a new proper simplicial complex in which all simplexes are homeo-
morphic to I"** or to I"xJ.
Let g, denote the natural Hurewicz homomorphism from n, (X, A)yto H(X, 4):
see [21]. It is easy to verify that o, ¢ ¥; = ¥, » g,. Consequently, we obtain the

_following :

TreOREM 5.1, If X, A have one proper end, and (X, 4) is (n) (n— ¥)- connected
(n=2), then for each ray o in A the map ¢, m(X, 4, %) — s 1 (X, A) is an epimor-
phism whose kernel is the subgroup (X, A, o) determined by the action of m (A, %)
n ﬂn(X, A, 0!).

Similarly, in the absolute case we have:

THEOREM 5.2. Suppose that X is (m)(n—1)-connected (n > 1). Then for each
ray o in X the map gn: m(X, o) — E,41(X) is an isomorphism for n>2, and an epimor-
phism for n = 1 with kernel QL(X,d).

3 — Fundamenta Mathematicae 132.3
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The homemorphisms o, commute (up to sign when dimension changes) with
the exact sequence associated with a based proper pair, and are functorial with
respect to proper maps between spaces (proper pairs) with base ray.

‘Now we are going to study the relation between , and Jy.
. For n>1 we define g,: 7,(X, 4, ) > J,4(X, 4) by

08) = fi (lidpm o s])
where f is a representative proper map of £ and
fat ua(I" %, 0(1"><J))—> wri(X, 4)

is the homomorphism induced by f.
Similarly g, is defined in the absolute case and n>1.
it is easy to verify that g, is a homomorphism for n>2 (n> 1) in the relative
(absolute) case using the Mayer—Vietoris exact sequence associated with the.finite
proper cubic complex
K= 8((I"x)_yua(I"xJ)4)

and the subcomplexes 8(I"xJ)_, 8(I"xJ),, where
(I"xJ)_ = [0, 12]xI""'xJ, (I"xJ), = [1/2, 1]xI""1xJ ;

see the end of Section 4. ;

The homomorphisms ¢, “commute” (up to sign) with the (r) exact sequence
associated with a proper pair with base ray. The following diagram is also “commuta-
tive” (there is a similar diagram for the absolute case):

— 7]1,,4. (X, 4, 2(0)) — 'c,,(X A,0) = n,l(X A, a) - n,,(X A, cx(O)) -,
e e (e ox
he (X, A > Jy(X, A) = B (X, 4) - H(X, 4) -
Then, applying the Hurewicz Theorems for g, and g, and the fourth Lemma, we
obtain:

ProPoSITION 5.3. If X is (m)n-connected and (t)(n— 1)-connected, then for each
ray a in X the map o,: ©,(X, a) — J, ((X) is an isomorphism if nz 2 and an epimor-
phism if n= 1.

PROPOSITION 5.4, Suppose that (X, 4) is (r)n-connected and (z) (n—1)-connected
(n=22). Assume also that no(X), no(4), 7o(X), to(4) are trivial, Then, for each ray o
in 4, 0.2 (X, 4,0) > J,. (X, 4) is an epimorphism.

Notice that Q}(X, 4, o) = Kergl(the same holds for n = 1 in the absolute
case). Later we shall prove hat Kerg? is equal to QUX, A, a).
Let 7,(X, 4) denote the set of classes of proper maps of type

(I"xJ, 8(I"x 1)) > (X, 4)
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under the relation of proper homotopy of proper maps. When A has only one proper
end, for each ray o in 4 there is a natural bijection

(X, A, DOUX, 4, 9) ~ }(X, 4),

which gives an abelian group structure to 1:,,(X 4). Provided that (X, 4) is
(r)n-simple a geometric interpretation, which is independent of the chosen base
ray, is obtained for the group 7,(X, 4, «).

Similarly, let 7, (X, 4) denote the set of classes -of maps of type
(1n+1’61n+1) __) (X, A)

under the relation of “free” homotopy. Recall (see [20.1, 2.2)) that if 4 is path-
connected, then for each point x, e 4 there is a natural bijection

7I11+1(Xs As xo)/QzH(Xs Aa xo) g 7'5:‘4-1(1\,5 A) s

which gives an abelian group structure to 7y, (X, 4). Recall that Q**X(X, 4, x;)
denotes the subgroup determined by the action of ,(4, x,) on 7,41 (X, 4, Xp).
Provided that 4 is path-connected and has one proper end, the homomorphism

[ nn-ﬁ-l(X&A’ 1(0)) g tn(X) A: d) 3

where « is a base ray in 4, induces a homomorphism ¢*: :z:H(X L A) = (X, ),
which does not depend on the base ray.

In order to prove a Hurewicz Theorem in the relative case we need an addition
theorem, which we now formulate. The main difference between this theorem and the
classical one is that here we are summing elements represented by singular non-
compact cubes together with elements represented by singular compact cubes. This
is done with the aid of the homomorplnsm @*. We follow the procedure applied by
Whitehead in [20].

THEOREM 5.5 (proper homotopy addition theorem). Let (X, A) be a proper
pair with no(4) = 1,(A) = 0. Suppose that for eachn = 2 the proper map f- I"* ' x J+ X
carries every n-face of I"** x J into the subspace A. For each i satisfying 1 <i<n+1
and 1€ {0, 1}, let y\ be the element of ©,(X, A) represented by the proper map

foal: (I"xJ, d(I"xJ)) =

Let y = 0*() e i (X, A), where ¥ is the element of 7y (X, A) represented by
foole,: (I""Y, 8I"*Yy — (X, ). Then the following relation holds in the abelian
group 'r,,(X A): -

(X, 4).

n+1
(Z Z ( 1)x+1 1) ( 1)u+1
(A similar theorem is true for the absolute case for n=1).

To prove this theorem we need some auxiliary results.
8+
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Lemma S5.6. Let f,g: (I"xJ,@(I"xJ)) — (X, A) be proper maps such that
f(lstZs'"*t:z; t)= g(O9 rz’“"tns t) fOi' every (12,...,f,,,t)EI"_1>(J_ Let
he (I"xJ, K™ = (X, A) be the proper map defined by

jf(Ztly Tys ey Tus ’)
lg(Zf—ls t23 ey t", t)

Let a, b, ¢ be the elements of (X, A) represented by f, g, h, respectively. Then
c=a+b.

ifo<, <12,

sk b)) = if 1/2<t, <1

R(tys tas e

The proof of this Lemma is analogous to that of the similar “classical” Lemma;
see [201. i

Levma 5.7. Let f: ("2, 0I"% 1) = (X, A4),
g: (I"xJ, 0(I"xJ)) = (X, 4)

be proper maps such that f(t;, ta, sty ) =g, 12, s 8, 0) for every
(t1, by, o, £2) € I". Let a, b be the elements of iy 1(X, A), v,(X, A) represented by f, g,
respectively. Then the element ¢ of ©,(X, A) represented by the proper map

. B (I"xJ, 8(I"xJ)) = (X, 4)

defined by

f(tlﬁ tz, ey tns 2t)
g(tI! Tosvons bys 2t—1)

fogt<l12,

h(ty, tys s 1y 1) ={ if 12<t

satisfies the equality ¢ = b— @*(a).

Proof. Let P* be the union of all n-faces of "1 different from I" ' x0x 1,
and let ¢ = (0,0, ...,0, 1)e """, Since, the triplet (P", I"x 1, {t}) has the same
homotopy type as ({v}, {u}, {1}), there is a deformation 4: P"x7 — P" such that

A(x,0)=x if xeP",
Ax,1)=v if xeP"
A4y, 1,8 = (1-s)(y, D+s(0,1) where y,0e "
Define ] ) ‘
) Flpnxy: (P"XI, 0(I" ' x0x I)x 1) = (X, 4)
oy

Fx,s) = f(4(x,5)) .

Now, applying twice the homotopy extension property we can extend Flpnxr to
a hqmotopy N
F: ("< IxI,a{I"x )xI) —~ (X, 4)
such. that
Fx, 0) = f(x)

F(x,1) =1

if xeI"xI,

if xe P,
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Notice that Fy(x) = F(x, 1), xe I"*!, represents in n%, (X, 4) the same element
that f does.

On the other hand, we also have a proper deformation

4" (I"X()\.)T"_1 XJ))(]__) (I"XOUT".'IXJ)
such that

4'(x,0) =x if xeI"xQUT* 1xJ,
40, t,1) =(0,..,0,)el"x] if (r, )el"x0uT " 1xJ,
4y, 0,8 = (1~5)(»,0+5(0,0) if y,0el"

Define Glmxour-1xnx1 by G(x,s) = g(4'(x, 5)) for every
x,)el"x0uT "t xJyxI.

Now, using consecutively the proper homotopy extension we obtain a proper .
homotopy G: (I"xJxI, 8(I"xJ)xI) = (X, 4) such that G(x,0) = g(x) if
xel'xJ, and G(x,0,s) = F(x,1,s) for each (x,s)el"x] Note that G,(x)
= G(x, 1), for xel"xJ, represents in 7,(X, A) the same element that g does.

Define H: I"xJxI— X by

F(ty, tay s t,, 2, 5) ifog<r<g1)2,
t,t,...,f,,, = .
H( Tt 5) {G(tl, fa s 1y 2=1,5) I 12< 1

His a proper homotopy and H(x, 0) = k(x) for x & I"xJ. Since H(B(I"xJ)x I} < 4,
we see that H, represents the same element as 4 in 7;(X, 4).

Consider the proper map R: /"xJxI - X given by

R, tay s by t,8) =
' FQ2=911, ta, s 15, 20)
Fi(1, ty, s ty, 26
G0, 1,, ..., 1, 2t—1)
Gy((1/2-8) 2t =5), a5 s
We have R, = H; and R(6(I"xJ)xI)<= A. Hence, R, represents the element
ceTi(X, 4). Define K, K': I"xJ - X by

Kty tyy ey by £) = Ry(t4f2, 83, s 1s ),

Kt ty s tyy 1) = Ry((t1+ 12, s s 1 1)
for each (1, t5, ..., t,, £) € I"xJ. It is easy to verify that K represents in (X, A

the image by ¢* of the opposite element of nf.} (X, 4) represented by F;, and K’
represents the same element as G;. In view of the equality

(K2t 1y, ot D) o<y <2,
b 1) = VK@t =1, g, s s ) i 12€8 <1,

we conclude from Lemma 5.6 that R, represents b—o*(a). )
We shall also need the following result; a detailed proof can be found in [18].

if 0t <1-5/2,
i 1-g2<s <1,
if 0<t, <52,
if 2<,<1

0<i<1)2 {

12<t . { t,, 2t—1)

Bty tys o
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TemMa 5.8. Lét o be apermutation of {1, 2, ..., n} andlet &: (I"x 7T, 8(I" x J)) -
= (I"xJ, 8(I"xJ)) be given by &(1, 3, -v» by 1) = (fseiys Loqays s tagny, 1)- Then,
the induced map ’ - )

Gyt Ty (I =T, 8" %)) = ("% T, 8" % T))

satisfies G4([idpmxs]) = signo-[idmx,].

Consider the proper maps o} I"xJ - I'""'xJ defined as follows. For

l<ign+l, I =0,

I(t t t t) - (211'—15 tl; (LT} ti—z: 0, t,-, ey trn t) If 0< ti—l < 1/2’

PR T2 b D=0yt 2= 1 e, £, 1) 1200 < 1L
For 1<ign+1, 1=1,

Uty o tmny 2y fy i B 1) IE 01 < 1)2,

l‘ B o . V__
- q)f(tls tly At f", t) = {(2___21‘{_1 , 11, .

For i=n+2, I=0,

’ ti—zy 1: tlr "y tm t) if 1/2S tl—l Sl “

Qt, ty, ey tyy,y £, 0)
(1,1, ...

» rKn—l ’ tnr Zt_l)
With these nptations we have:

if 0<r<1/2,

[ = .
(pn-{-l(ll) tl):"'{ t“, t) { if ]/2< 1.

" LmMa 5.9. For each i satisfying 1 <i<n+1 and for 1€ {0, 1}, fo 0} represents
the element yi+(—1*".. The proper map fcqy,, represents the element
1 n+2,
yi—(=1)""%y.

Proof. For i satisfying 1 <i<n+1 consider the permutation (1, 2, ..., {~1)
of {1, ..., n}, for i = n+2 consider the permutation (1, 2, ..., n+1) of {1, ..., n+1}.
Now, the desired result follows from Lemmas 5.6, 5.7, 5.8, and the fact that 7 (X, 4)
is ‘abelian for n>2. oo

Let us denote by (I"** xJ), , the (n+1)-face of I"*!xJ which is equal to
Imc?; see the beginning of Section 4. Using formulas analogous to those of [20]
and the proper homotopy extension property, it is easy to obtain:

Levma 5.10. For each (i, 1), where 1 <i<n+1,1€{0,1}, ori = n+2, 1= 0,
there is a proper homotopy ®: I"*'xJxI — X such that

@) @, 0) = f(u) for every ueI"**xJ,

2 P, s)ed if G, e d(@™ =) ) xT and (1, 1) # (, 1) # (i, D,
@) ¢, e d if ue(xJ),,

@) P, s)ed if (w,s)e " xT); %I and F((I"** xTY;; ) < 4,

(5) P03, 1) = fo pl(x) if xeI"xJ. - o

Now we: are;in position to give: ' *

) <P1:9of of the proper homotopy addition. theorem. We proceed by
indbction on the number 7 of pairs @, T) with i>0 such that f((I"*!xJ); )£ 4.
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For m = 0, the result is obvious. Assume that the resuit holds for m >0, Let Sfbe
a proper map such that for (m+1) pairs (7, /) with i > 1, F((I"** xJ); )¢ 4. Choose
one such pair (i,/). Consider the proper homotopy & of Lemma 5.10. Define
f'@) = ®(u, 1). Then f" satisfies Theorem 5.5 and there are m pairs. (j, %) with
j>1 such that f/((I"*'xJ);,)#4. Now, by the induction hypothesis and
Lemma 5.9, the theorem holds for m+1. This completes the proof.

Now suppose that 75(X) = 7,(X) = 0. We are going to introduce new chain
complexes, whose homology groups will be intermediate between <, and J,,.,. These
groups will play in the proof of our Hurewicz type Theorem a similar role to that
played by the Eilenberg-Blakers homology groups in the case of singular homology:
see [20].

For a ray « in 4, define C{”(X, 4) as the subcomplex of Cy(X) generated by
all proper singular cubes T: ¢ — X (where ¢ = I*" ! xJ or 5 = I, see Remark 4.3)
satisfying: (i) T sends all vertices of ¢ to «(0), (ii) 7 sends the n-skeleton of ¢-into A,
(iii) If ¢ is not compact, T'maps the non-compact 1-faces of ¢ in the same way as o.
In case of confusion we shall denote C{(X, 4) by CI(X, 4, %).

THEOREM 5.11. If (X, A) is (n)n-connected and (1)(:2—1)-.c0rmecred, then the
inclusion map
it (CP(X, 4), CLO(4, &) - (Co(X), C(4)

is a homotopy equivalence between pairs of chain complexes.

Proof. We are going to construct a sequence of homomérphisms Fp: C(X) >
- C,41(X) with the properties:

(1) If T'is a compact (non-compact) proper singular g-cube, then F,T'is a com~
pact (non-compact) proper singular (g+1)-cube,

Q) (FT) ooy =T, ,

@) (F,T) a1 e CO(X, 4),

(@) F(Tool) = (F,T)o (Ixa) for every iz 1,

(5) F,T is “stationary” if Te C{"(X, 4),

(6) If Te Cyd), F,Te Cyyi(4).

To define F, we use the fact that X, 4 are path-connected. Suppose we have
already constructed Fy, ..., F, satisfying (1)~(6). To :define Fy,,, we distingnish
three cases: for g = 0, we use the fact that 7o(X, &) = 74(4, o) = (X, 4, 2(0)) = 0;
for 0 g<n—1 we use the fact that Tge1(X, 4, a(0)), (X, 4, 0) are trivial;
finally, for g > n we apply the proper homotopy extension property. Now we define
r: Cu(X) - C{"™(X, A) by rT = FT|; , for each singular proper n-cube T: ¢ —+ X.
It follows that 7o i = idcongx, 4, ¥ revide,y,. The theorem is thus proved.

DEFINITION 5.12. The nth proper homology group of Eilenberg—Blakers type
of a based proper pair- (X, 4,0) is defined as the relative -homology group
H(CH(X, 4), C(4, o)) and it is denoted by J@(X, ) (or by J(X, 4, %) to avoid
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confusion). In the absolute case this notion is defined for (X,a) by \Lf“’(x)

= H(CO(X, 0), C@)-

J® are covariant functors, which are invariants of the proper homotopy type.

We also have the following natural transformations:
0= JOX, A) » JENX, A) > o > TO(X, A) > T(X, A).

Since the map L' J¥,(4) - J,.,(4), induced by the inclusion, is an isomorphism,

2@ is a natural transformation. Moreover, the diagram

i

RN, A) —— s (X, 4)

x/

JpalA)

is commutative,

THEOREM 5.13. Let (X, A) be a proper pair such that mo(X), no(4), 15(X),
() are irivial. Then for each n>1 and each ray o in 4, ©,(X, A, )/A(X, 4, )
is isomorphic 1o JP (X, A). Similarly in the absolute case for n= 1.

n

Proof. Consider the homomorphism
o (X, A, 0)/QUX, 4, 0) = JZ1(X, 4)
defined as follows: Let . -
Fr@"sT, 7, T )T, ') 0) = (X, 4, o, 2 (0))

be a proper representative map of &. Then fis a proper singular (#+ 1)-cube, which
belongs to C(X, 4, ¢). Furthermore, [is arelative (n+1)-cycle (modulo C(4, «)).
Define g.(£) as the class of fin J&?, (X, 4). On the other hand, if we consider the
Hurewicz homomorphism

[ fn(X’ A: O:)/Q:(X: A: M) .t Jn+1(X: A)
and the homomorphism
et T 1(X, 4) > T, 1 (X, 4)

induced by the inclusion, we se¢ that g, = iy © 0y

In order to prove that g, is an isomorphism, consider the homomorphism #
defined as follows: Let T be a non-compact singular proper (n+1)-cube of X which
sends the 7-faces into 4, the “vertices” into a(0), and the non-compact 1 -faces into «.
Via the isomorphism t3(X, 4) - 1,(¥, 4, )/QX, 4, o), T represents an element g7’
of the latter group. Now, let T be a compact singular proper (n--1)-cube of X;
then, similarly, T represenis an element T, of =,, (X, 4, @) (X, 4, a(0)).
Define 17" = —¢¥(T,). If Te C{?1(4, o), then nT = 0. From the “classical” homo-

icm®
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topy addition theorem and from Theorem 5.5 (on the addition of ‘proper homo-
topies) it follows that if T"is an (n+1)-boundary of C¥(X, 4, %) modulo CO4, ),
then #T = 0. Therefore 5 factorizes into a new homomorphism n: J& (X, 4) -
= 1,(X, 4, 0)/U(X, A, «), which is the desired inverse homomorphism of p,.

Finally, as a consequence of Theorems 5.11, 5.13 we obtain the following theo-
rems of Hurewicz type for t:

THEOREM 5.14 Let (X, 4) be a proper pair such that (X)), mo(4). 4(X),
to(4) are trivial. Suppose that for n>2 (X, A) is (z)n-connected and @ (#=1)-con-
nected. Then for each ray « in A

0t (X, A, )/ AUX, 4, %) = T, (X, 4)

is an isomorphism. In the case where (X, A) is (t)n-simple, Sor example if n, (4, %) = 0,
the map g.: ©,(X, 4, 0) = J,,1(X, A) is an isomorphism.

THEOREM 5.15 For n = 1, suppose that X is (m)n-connected and (t)(n—1)-con-
nected. Then for each ray a in X, g,: t,(X, @) - J,4(X) is an isomorphism if n> 1,
and if n = 1, .2 7,(X, &)/QL(X, &) — Jo(X) is an isomorphism. In the case where X
is (v)1-simple, for example, if m\(X,a) =0, the map g.: 1,(X, %) = J(X) is an
isomorphism.

Remark 5.16. It is not difficult to verify that if X is (n)(n—J)-connected,
w1 is an epimorphism. Similarly, if X is (n)n-connected and (t)(n— 1)-con-

then g,
nected then g"*! is also an epimorphism (13 2).

6. Example, Let M be a separable compact Hausdorff differentiable #-mani-
fold. Suppose also that M has no boundary, is orientable and m-connected for
m>1. Notice that # must be larger than m. Comnsider the tangent bundle of
M: R" - TM — M. Since M admits a Riemannian metric, see [19; p. 58], one can
consider the tangent sphere bundle: $""* — S" 'M — M. Since M is compact,
s0 is the tangent sphere bundle $"~!M, It is not difficult to verify that 7M has one
Freudenthal end and there is a “neighbourhood” of this end homeomorphic to
S"~1 M xJ. To prove this it is enough to consider the map 8: S"'M x[1, 00) - TM
given by 0(x, 1) = Ax. .

In this section we try to reduce the calculation of some proper homotopy and
homology groups of the tangent bundle TM to the calculation of homotopy and
homology groups of M.

Consider the fibration R" — TM — M. Since R" is contractible, we can con-
sider the homotopy exact sequence, and Serre’s homology sequence (see [21]) to
obtain

0 1 (TM) = n,(M),

H(TM) = H(M),

Now' consider the tangent sphere bundle §"~ ! — §"~*M — M. Since $*7*
is (n—2)-connected, applying the homotopy exact sequence and the Serre’s homology

g=0,

g=0.
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sequence we set
n(S"TIM) = n (M), 0<g<n—-2,
Ty (S™™Y) = @y ((S"7 M) - 7, (M) ~ 0 is exact,
@ H(S"'M) = H(M), 0<g<n—-2or n+t1<g<m+n~—1
H,_(S" M) —» H,_,(M) is an epimorphism,
H(S" M) - H(M) is a monomorphism.
As we saw in Section 5, we have the commutative diagram
o> g (TM) = o (TM) - ng’(TM) - n?(TM) - ..
@ I Le i@n ;‘e,.
A Y
v Hyoi(TM) = J o y(TM) = Ep (TM) — H(TM) — ...
M being mi-connected, we obtain from diagram (3), in view of (1),
1(TM) = = (TM), g<m,
t,(TM) - =, (TM) is an epimorphism,
T TM) = E(TM), 2<q<m,
@ Juei(TM) — E, . (TM) is an epimorphism,
Jos(TM) — E, . ((TM) is a monomorphism,
J(TM) = E(TM), n+1<g,
J(TM) =0, E\(TM) = 2,
Jo(TM) = Eo(TM) = 0.
From the properties of the functor =,, E, (see Sections 3, 4) we set
 m(TM) = m(S"TIM ) 2 (S"TIM),
E(TM) = E(S"'MxJ) & H,_,(S" ' M),
Now, from (4), (5), (2) we deduce that
T(TM) = (TM) =0, g<m,
J{TM) = E(TM) = 0,

0<g,
©) <9
0<gq.

®

2€g<mor n+2<g<min—1.
‘We are now going to consider two cases:

(A) Assume m > [/2]. In this case, using Poincaré duality and the () Hurewicz
theorem, we may suppose that m = n—1. Taking the diagram (3) for ¢ = n—1,
and using (4), we obtain

t(TM) - ?M(TM) > (TM) - 1,_ (TM) ~ m,_(TM) = 0

¥ { \ , J
0 T (TM) > E,1 (TM) ~ H(TM) ~ J(TM) > E(TM) -0
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From (5) and (2) we deduce that E(TM) = m,_($"'M) is a cyclic group.
Suppose that E(TM) = Z/p, 0<p <oo. Since H(TM)= Z, we obtain the
exact sequence

0] Z—J(TM)>Z[p->0.

From the exactness of sequences in the above diagram we also see that

R

® By (TM) {OZ T (TH) = {g

Finally, by Theorems 5.2, 5.15 we have
- (TM) = J(TM) ,

® ,
. w,_(TM) = E(TM) = Zjp.

(B) Suppose that m < [n/2] and n> 6. We have the following commutative
diagram:
v R (TM) = 1 ((TM) = 1, (TM) > m(TM) -0
| i ¢ :
| | !

+
| i @ %91 ,Qn

’ ‘l’ ¥ Y
s m+2(TM)"" m+1(TM)_" m+1(TM)—* m-t-I(TM)—’O

Applying the Hurewicz Theorem and Theorems 5.2, 5.15, we infer that g,, ¢,, 0n
are isomorphisms.
Consider the following commutative diagrams:

n(TM)———>n(TM) E o (TM)—— H(TM)
R 3 |
n—1 . ! H Sn—lM H
mo(S"M) L 50 M
W ; ALY
v id v \ i v
M) ——> (M) H(M)- > H(M)
From (2) we deduce that:
T,(TM) =0, gsn-2,
n(TM) = n (M), g<n—=2,

Ty (TM) = m,.,(M) is an epimorphism,

(10) J(TM) = 0, g<n—1,
E(TM) = Hp_y(M),  1<g<n-1,
E,(TM) — H,_,(M) is an epimorphism,

En+ 1 (TM) d Hn(_M)_ - .Ai,s, a monomorphism
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Jumps of entropy in one dimension
by

Michal Misiurewicz (Warszawa)

Abstract, For continuocus piecewise monotone maps of an interval we estimate possible
jumps (discontinuities) of topological entropy under perturbatipns which preserve the number
of picces of monotonicity. We prove that for unimodal maps the topological entropy as
a function of a map is continuons at all maps for which it is positive.

0. Introduction. This paper deals with the continuity properties of the topological
entropy as a function of a map. For the discussion of this problem in the case of
continuous maps of arbitrary compact spaces, we send the reader to the book [4],
and in the case of smooth maps to the paper [11]. Here we shall concentrate on the
case of continuous maps of the interval (it does not make any difference if we replace
the interval by the circle, so these results apply also to the case of the maps of the
circle).

It was proved in [10] and [8] that in this case the topological entropy is lower
semi-continuous. Hence, what remains to investigate, is the problem how far it is
from the upper semi-continuity. Clearly, one can modify any map by creating an
invariant subinterval with arbitrarily large entropy, and this modification can be
made small in the C°-topology. However, the natural demand that we do not
enlarge the number of turning points, excludes most of these examples.

In such a way we are left with the following problem: how high can the entropy
jump up if we start with the plecewise monotone map and make arbitrarily small C°
perturbations which do not enlarge the number of turning points? The answer
(Theorem 1) is the following:

We look at all periodic orbits. On-each of them we count the number of turning
points and divide by the period. Then we take the maximum of these numbers over all
periodic orbits and multiply by log2. This is the maximal level to-which the entropy
can jump. If it is already above this level, then it is continuous at this map.
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