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The Lipschitz condition for the conjugacies
of Feigenbaum-like mappings

by

Waldemar Paluba (Warszawa)

Abstract, For a map f in the stable manifold W*(g) of the Feigenbaum function ¢ the conju-
gacies i, h~1: hio fo il = g are Lipschitz continuous maps at points of the Cantor set attractors.
Moreover, i and A-* occur to be Lipschitz continuous on the whole interval [—1,1]if and only if
the products of derivatives of f as taken over periodic orbits are all equal.

§ 0. Introduction. In this paper, we study some properties of mappings topo-
logically conjugate to Feigenbaum’s fixed point, i.e. a concave analytic solution
g: [~1,1] - [-1, 1] of the functional equation Ty = g with Tf(x) defined as
in Section 1.

We are interested in even analytic functions f conjugate to g and such that for
inductively defined 7" = T(T""'f) we have T"f > g with exponential rate.

For f chosen like above a conjugacy /: geh = hof is uniquely given by the
kneading invariant. Furthermore, there exists an f-invariant Cantor set attractor,
such that lim,, ., dist( f"(x), J(f)) = 0 for every x which is not eventually periodic.

We show (§ 1) that / considered as a mapping with the domain restricted to J(£)
is a Lipschitz continuous function. Using this, we also prove (§ 2) that there exists
a constant " such that /1 fulfils the Lipschitz condition with this constant at arbi-
trarily chosen point x e J( ) with respect to any point y e [—1, 1}, when regarded A
as a function from [~1, 1] into itself, This leads us to deal with general question
when A: [—1,1] - [~1, 1] can be Lipschitz continuous on the whole interval.
The answer as mentioned in the abstract is given in § 3.

The results of this paper are an expanded version of §§ 1, 2 of my Masters Thesis
written in 1985 under the supervision of professor Michat Misiurewicz; I would like

to thank him for calling my interest to the problem and encouragement.

After this paper was written 1 have learnt that D. Sullivan obtained the result
covering the statement of Theorem 1. ’

Finally, in § 3 there is stated the question of analyticity of A, which seems to be
an interesting direction of further work, by similarity to the known results for expand-
ing mappings of the circle (cf. [7], [8]).
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§ 1. The conjugacy is a Lipschitz continucus mapping on the Cantor set attractor,
Let us consider an even function f of the interval [—1, 1] into itself such that:

1. f(0) =1,

2. 5’%\)) = f{Ix[**") where f, is an analytic mapping bounded in some open
domain, @10, 1], t =1 or t-sufficiently small and f|ong is a real function,

3. xf'(x) <0 for all x # 0, . .

4 0< D<= <fQ).

Doubling operator 7 is defined as follows:

1.
@) = —=fA(f(1)x)
CoTormt T
Far a survey of results see [1], [5], [6]. For the convenience of the reader we recall
some relevant facts about 7.
.For t chosen as above, there exists a function g, with negative Schwarzian deri-

vative such that Ty, = g,. Put g, for appropriate analytic function on some

@500, 1] so as to have Condition 2. fulfilled with f=g,, f, = g,. Given fixed ¢
and Q like above, consider the Banach space B formed by functions which are bound-
ed and analytic on Q, real on the set 2N R and vanishing at 0 to the second order.
B is equipped ‘with the natural topology of uniform convergenice on compact subsets
of Q. Then g, = g,—1 belongs to B and lies on some codimension 1 submanifold
(denoted by W*(g,)) of a special interest. This manifold consists of functions f = f—1
where f is such that:

defined,

" (if) each T"f is of the form T"f(x) = T'f(|x|'**), T%~1 belongs to B,

(iii) T?—l converges to g, with exponential rate in B,

It will cause no confusion if we say that fitself belongs to W*(g,) and continue
to write g for'g, everywhere in the sequel. -

"It is known (see [1], [2]) that for every f'in W¥(g) a unique homeomorphism’

A <171 - [—1, 1]
attractor -

J(f) = QlJn(.f),
() = -, (TF)

conjugates f to g. Furthérmore, there e?(ists the Cantor set

where J,(f) = [F(1), FAD]OLFX1), 1,

for X, defined as follows:

x
) ot for xe [f(), —f ()],
) = &
’ A,‘ ';, v ;E_) ’ N fo-r xe [C(f)’ 1]

where ¢(f) € [~£(1),/%(D)] and £(e(f) = 7 (1),

(@) for f(x)= F(x|'*") Conditions 1-4 are satisfied and T"f is inductively

icm®
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_Adopting the notation used in [3] we shall write [e(f) k= L(Y, [FAD), 1T
= K(/), IS, =/l = fF), [FW.LW) = FKF), L) =L))o
Uf(L(f)). It is worth mentioning that one can replace J,(f) by & (f) in theydeﬁ-
nition of J(f). Every point from J(g) is an image — under the conjugacy 4 — of
the corresponding point from J(f) with the same code (see the notation below).

alf) el

Fig. 2

Here we want to prove that A|y,: J(f) = J{g) satisfies the Lipschitz condition with
some finite constant . .

We start with some notation and a brief idea of the proof.

A sequence uniformly convergent on compact subsets of @ converges in the

. topology of C[~1,1], p= 0,1, 2, ..., when restrict functions to [—1, 1]. Since

T"f — g there exists ny e N and e< | such that for all n>n, T7f is close enough
to g to have v

(L.1)

x

1 o
inf @) @)z ->1,  ies
e&(Trf) ‘ ¢

anm

sup

[ ()] < ¢<1, on each branch,
xe[-1,1] .
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as it holds for g. Both Cantor sets J' (), J(g) are intersections of descending families
of intervals. J,(f) is a family consisting of 2" intervals naturally coded by n-el-
ement 0-1 sequences. For an interval ¥eJ,(f) we define

0, when Ve f(L(f),
(¥ = 1, when VeL(f),
7y = 0, when ZTi-‘fOZTs-zfoA..°ZI(V)CTSf(L(T“f))3
el¥) = 1, when ETi—1f°ZT¢-2j°-..°Zf(V)CL(Tlf): i=1,2,..,n-1

Therefore, we tan denote every element of J,(f) by J;"( f) with its own code as the
upper index, and this notation expands to infinite codes for points of J(f). For
every interval W from the family J,.,( ), there exists the unique interval ¥ from
J(f) such that W<V, so their codes agree on positions 0,1, .., #—1 and they
differ only in their lengths:

C(m = {CO(W)s ey cn—l(VV)- C“(W)} s

e(V) = {co(V)s s euey ()} and (V) =c(W) for 0<ign-1.

Thus for each .uch a couple of intervals WeJ,.((f), VeJ(f), WV, we con-
tinue to write ¥ = Ji™ instead of J°* when no confusion can arise (it means we
“forget” the last symbol of ¢(W) in the case). By the above if W< V we have

V=50 =
= L) =
Here and subsequently, for any ¢ € W(g), (£, 1)0 stands for the inverse of Z,, ()

and (Z,")! for the inverse of Z,|,. Likewise, J9(p) = ¢{L(p)) and Ji(p) = L(p).
We shall be investigating the ratio of lengths

720N
N

and the one for corresponding (havmg the same codes) intervals from J,,H(g),
79

(2; I)cu(ll’) ° (Z;})cj(w) o
(Z; I)CQ(W)

e (Z-;"l_lf)in~l(ﬁ,)(‘]§n< ’(W)(T"_If)) s
o o (g Yo T FeT) gy

|
J,.”‘W)(y)l

Our procedure will be to compare both the ratios. We claim that for sufficiently
large n they are “almost equal”. This “almost equality” can be expressed as the
upper estimation (depending only on n, not on the code) for the cross-ratio

L AT (g)l
w:“”cf)i 75 )] ‘
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by a factor of order

< 2[ ]) I+a” {r 1])

where ¢, a,  are some positive constants; a, 7> 1. In the end, we will find a lower
bound L of the ratio of measure of an arbitrarily chosen interval W = JEH
from the (m-+ 1)th family to the length of J;™(£). L occurs to be greater then 0 and
uniform both regarding the code and the number m. That is all we need to obtain
the desired conclusion, as the same is true for gaps.

Actually, if we take x, y e J( I X,75eJ(g), % = h(x), § = h(y) and codes for
x, y differ for the first time in the mth position, then both belong to the same interval
from J,(f) and to two different intervals from J,,,(f). But the length of any
interval from J,(f) differs from the length of corresponding interval from J,(g)
by a factor non-greater then

[ gy eI (-

n=1 n=1

T

, . , K
for some finite constant K. Accordingly, we have dist(%, §) < T dist(x, y) and con-

) (t+a [—‘nﬂ)s K

stants K, L do not-depend on codes. Analogously we can estimate dist(x, y)
< constant- dist(X, ¥). So we claim the following:

THEOREM 1. Let f be any function such that T"f .— g exponentially in the space
n-o

C'[—1, 11 and the absolute values of the second derivatives | 1, I(TF)"], (TXF)"], ..
are all bounded by the same finite constant A (for example, fe W*(g)).

If h is a homeomorphism such that g o h = hof then hlyy) is a Lipschitz con-
tinuous function; also h™*\;,, is Lipschitz continuous. )

Proof. Throughout the proof we shall deal with the case of f close to g; if it is
not the case, one can take f = 7"f with some large n,. The general case will be
consider at the end. Due to the definition of X for £ sufficiently close to g we have
inequalities (1.1), (1.1") satisfied for all non-negative integers », and there exist
0<pB<l1, 0<y<l, such that

5] 5"l
e E@] S Sley ad 1-f< W TG
Then for We JJ,(f) = - :
5™ ET @1 1+
O r(ff“”(g)l - 1—-/3'

Set 1+£o = 1}—":73 We are now led to assert the main lcmma
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Lemma 1.1. There exists a positive integer F such that for each k=1 the
inequality §
”,gg';)(T(k-l,r—Hv)I lJfS» 1)(9)]
IJ;(W')(T(k—l)r—k+1f)l IJ;(W)(Q)I
holds with any W from Ji, (T Ry,

The point of the lemma is that the estimate (1.2) does not depend on the code.

(1.2)

91

-Proof of the lemma. By the definition of g, the case of k = 1 is immediate,
so we take k= 2. T'f converges to g exponentially, so one can choose 0<d<1
and ‘a positive constant B so as to have

1.3 dist (7" £)(1), g' (V) < B-&", fori=0,1,2,3,n=0,1,2,..
and o
(1.4 [|Z7ayp =27 Ylowp < B+6"  on each branch.

Observe that having dist(x, )< A4 yields .-
(1.5 dist (Epip(x), Z, () < A+ B-8".
It is clear from (1.1°) and (1.4) because

dist(Zzap(x), I L(3) < dist(Zrar(), Zrr()) +dist(Zzp (1), 25 ()
and :

 dist(Zriy(x), Tpp(3) < dist(x, )
as (T3l <1 and also
dist(Zr0), 27 O < IZp = 2 e
For an arbxtranly chosen positive integer r and an interval W from Jj . (T®™ 7 7*1f)
we have
J:.(Ji) (T(k“ 1y—k+ 1f)

co(W) e (E;(L_l)rf)ck-1(W)(Jfk(W)(T(k—1)r+ 1]‘)) ,

= (Z;é;—nwk«» 1)
ch(W) (T(k" Dr—k+ lf)

= (Z7t-0rmr 1) 0 0 (Epdo 1 )OI PUTETISY)

Let us consider an endpoint of an interval from J,(T%~ 1! f) and the corresponding
endpoint of the interval from J,(g). By inequality (1.3) and k-times repeated applica-
tion of (1.5) we obtain ‘
diSt((Z;(}g —1yrek+1 f)co(W)
(Z;l)cg(W) .

o0 (Brdm i) (@G Dt L1y )
..o(z -1y gt (1)))

<B 5(‘k—-1)r+1 +B 5(’!'1)1-'(1:—1)

fori=0,1,2,3

icm
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[
e
[F8]

Thus, considering both endpoints, we have

T 0 R )] < (g) +2BEET D |y sty

Similarly, o
EHTET RS 2 T g) - 286000y gy
Set
: ( Iz
- = su il wr) 1) .
v n>(1JJ xe)(ﬁ'f) T f) D

Then Mf‘!i’(g)l 29" and 75" (g)| >

>29" as |[—1, 1]| =2 Therefore

[P py 1)) bR sy ke
|J¢(W)(T(k“ 1)r—(k—1)f~)[ JL'(W)(Q)I B I =
' . 1- 35(" R (R R
14 _kg_ TV S ‘ ©
+1 .
<———-—~C — - with C=B-Z§i
1— v_ Lo 1=kt 1 o

provided that the denominator on the rxght-hand sxde of the mequahty is posxtlve.
Particularly, we may choose r so as to have the following:

. g
-6y
(L6 PR Gl L.
1___0__5r-1 2
o2
and
1 1
1.7 Sagttl oo
1.7n S ) <2

After these preparations we proceed by induction.
For k == 2 we have insured the statement of our lemma on account of (1. 6).

Assuming (1.2) to hold for some k=2, we have for k+1

C C ) -
I+ m 5kr-—k 1+< 5(}( 1)r L+1) - .51' 1
c = C 1
1— . =k IO I (o 5l L N TR ik

1/ C
(k—1)r—k+1
1+4(v+—1 5 )

1/C
1—--(=. 5(k—1)r~k+1
’ 4(1"‘

<


Artur


234 W. Paluba

o . . 1+a
But it is easy to verify that for positive a, b a, b <1 the inequality —1—};; <l4e

1+4a =
implies —— <14 - and so we are done. &
P T30 2

Now we shall prove another lemma; it is an easy and very useful one.

Lemma 1.2, Suppose that I, J are intervals such that J < Tand ¢ I — R is a map-
ping of class C*, with ifs first. derivative separated from 0 |@'| =1 > 0, and second
derivative bounded by some finite constant |¢"'| <o <+ .

Then

. S oWl 1]

1g : < *
leF 1|

Proof of the lemma. For any x,ye we have

le”l o

lloglg'G)l~logl (NI < = [x—y], as (oglg’]) = 2
n o' 7

Thus
sup ¢'(2)] < € i+inf o'(2)]
zel zel

and obviously

I
inflo') < 2 < suploa) .
zel [Il zel
Also
J
inf lo'@l < 29 < suplora,
zel IJ’ zel
SO

2% i ¢
i o0l 01 _ s
le I}
which is the desired conclusion. B

Now consider a positive integer n of the form n = r-k. From the proof of
Lemma 1.1 it is clear that

ST 18 )

————

E@ 0 T 175 @)

— independently on code of an interval W from the family J, . (T %f) — since
rk—kp ¢ (k= 1)r-k+1 s
T™"f is closer to g than T f.

Our next purpose is to compare the cross-ratio

2O 1)
M T 1 g))

1+

&
2¥=1

®

icm®
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5]
[}
(4]

with the one
s . TP
WEST 01 1)

(%) - e .
WTE=k oy gy

S
Here Wis an interval from J,, (/) and ¢(W) in (++) is the code of W when restricted
to the last k+1 symbols, so as to have

, — i eafls - e SN
TR = EFH e e Eban o O T )
and

o - - Comim 1) O =k
Jrf(li )(f) - (-)-f 1) o.. 0 (ET"X""‘I.) n-g-1( )(ka )(1 kf)) i

) N [N
The meaning of J;™(...) where ¢(W) has n+ 1 symbols, and of JE%(...) where c(W)
has k+1 symbols was explained before.

Now our idea is to replace acting of 2~ in the terms above by the linearized
maps. Recall that intervals in question are not only short but their lengths grows
exponentially shorter — with coefficient at least as ¢ given in (1, 1") — at succeeding
steps; it makes the thing reasonable. Define

max(sup(_sup |(ER)'@)). sup [(Z)())
/5 - n xel[—1,11 ze[-1,11 .

v
It is tacitly understood that both branches of £~! are submitted in the definition;
v is as in the proof of Lemma 1.1,

The gth family of the form J,(...) consists of 27 intervals and by (1.1°) each one
has the length non greater then 2¢%

Thus (r—1)k-times repeated application of Lemma (1.2) enables us to write

SR _ VR )
n+1 W < k-1 . ezﬂc" ezﬁcr’"“

(19) € ——=
[J:(W)(f)] IJ’f(W)(Tn—kf)l
AN ) P
| 1)l spea VST N et
S o e = — — e
D@ Ol R (T )l
q
for R = If— .
Likewise
R {U?) m—Fk

(1.10) e @D = amee

TN g8 )

For g we have as well

e D) EROM VD@ s
) ) )

§ — Fundamenta Mathematicae 132.3

(1.11)
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Combining (1.9), (1.11) and (1.2), we obtain

AR, Y@L 1) FERGR D IJI<§W)(J)| e
IJ:””’f)l I ek gy )]

< (1+ Z,c—fi> L

This estimate does not depend on code of W. Because we replaced a finite number of
factors by the infinite product, we also have

RO 1R < (1 L5 )~e4fm="

WA (O 1R (9] 2t

for all positive integers / and for any W from (rk+th family.
Particularly, (1.12") is satisfied with /=1,2,...,r

For I = r+1 we drop the estimate (1.12") and rewrite (1.12) with n = r(k+1)
which gives the beiter estimation

L(%)x)ﬂ(f)l J(I\Zl])i)+1(g)[ (1 o) pABRE T
<({l+ = .

(1.12)

(1.129

1.12" +
{ ) ?5;";)1 (A | C((kv-p»)n(g)l

We are now in a position to consider the general case of an arbitrary positive integer
n=r-m+s 0<s<r—1. For any ¥ from (r+ Dth family, proceeding step by step
from (1.12) through (1.12") to (1.12"”"), we can obtain

NN _ R @) 1

@1 1EON) T 1E@N 15 @)
‘(l TEANI lJ,fi'?(g)l) (lJ{””(f)l |J;“')(g>|> EV
O 1@ PG 1591 15

o) )]

s-times

e e )

r-times

[(e4ﬂRc‘(I+80)) (4,5Rc (1+80))] %

2
* (K 17 (), K@), 16 (K@)

The Lipschitz condition

15
Tl
~3

2
= min(EO /(&G K@, 18 (K@)
% ”(1+ i,—i—1> PRy = <
m=1

Of course o depends on /.
Obviously, a lower estimate analogous to Lemma 1.1 allows us to prove in the
same way that
EANED)
1750 (g)l
Now we drop the assumption that fis close to g. Taking any f and », large enough
the proof goes with f = T™f. For any ¥eJ,,(f) and n>n, we have

> # >0,

Zgng=is 0 e 0 ZATEEULN) € Fmror TS
Zyo.o z_,,(J:S.’ X0)) € Jumpr1(9) -
no-times
Consequently, )
ZTT e Z TN .
! ffw W
Zyo o I (LN
and so
o sup |(Z,)(z Tee
D _ gy | AR
150 ’ min (inf l(zm @N]
. 0<i<np~1 ze#(T!
Analogously,
c [ inf [(Z) (@)
i']ug- (f)] jﬁ Pv_ zeZ(g) i
O] ’ max sup ](ZT'f) (2’)”
L O<Sismp—1 ze&(T

For n<n, we have an obvious estimate

Jr(") -
B < IJ-W((;:F—)# < P, with
KT T T

P =P ‘“ax(m“( K@l lo(K@) ))

A LG ((T’f))l)>
Fu= osgj?—l N IK(Q)| ' ]g(K(g))

because for any VelJ,(f)
{L13)  Zgaezpono Zj(-,.»f(m(f)) el (TY) and Fgo...o g(Jﬁ(V)(Q)) eJ1(@)-
O o vl

(n— 1) -times

5%
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Hence, setting 4, = max(# P, P), &y = min(# P, B,), we obtain

)
O<H < IJ‘U_)(()I

<Ay <+ow for each n.

Finally, we have to estimate the minimal value L of the ratio of length of an interval
“removed” at any consecutive step of forming the Cantor set, to the length of its
predecessor (i.e. the interval including the removed one). We want this ratio to be
separated from 0. But it is an easy consequence of inductive using of Lemma 1.2
(the bounded distortion in other words).

Put

i g (T, 1)1—IK(T"'f)i—IT"f(_K(T"f))I>_
"< 7, 1

iz0
By assumptions of Theorem 1 all Z;ilf i=0,1,2,..and Zg‘l fulfil the hypothesis
on ¢ from Lemma 1.2 with some common constants #, « {as usual we consider both
branches). Since the maxinial length of an interval from J,(f) or J (g) is not greater
than 2-¢%, thus due to (1.13) and Lemma 1.2 we at once obtain

o
—;}-Zcﬂ
e

s

Lzl
1

q

For any x, y e J( f) there exists » such that x, y belong to the same interval ¥ from
J(f) and to two dlﬁ'erent intervals from J,,,(f).
Thus

_%7
dist(x, ) < Tj ~dist(h(x), h(»)), and

dist(x, y) = A, “L-dist(h(x), h{»)),
which proves the theorem. B

Remark 1. A slight change in the proof allows us to show the theorem under
weaker hypothesis on smoothness. Nevertheless, it is not worth doing, as
Feigenbaum’s theory is developed just for maps of at least C2-class of smoothness.

§ 2. Complementary resulis, We have shown above that /] 1 is a Lipschitz
continuous mapping. Actually we can sharpen the statement of Theorem | as follows:

THEOREM 2. There exists a finite constant K such that for each xeJ(f),
ye[=1,1] the inequality

2.1 dist(2(x), h(») < K-dist (x, y)
holds. The same is satisfied for k™1, x e J(g).

Theorem 2 states that / regarded as a funetion defined on the whole interval
[—1,1] satisfies the Lipschitz condition at all points of the Cantor set attractor

s

©
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with common constant K. We cariy out the proof under hypothesis that x is an
endpoint of some interval from J,(f) (i.e. x = FYQ) for some /e N) and y lies inside
of one of the open intervals from the family forming [— 1, 11~J( f). Then the general
conclusion is a consequence of this case and of Theorem 1 it is enough to take the
point z frem J(f), ze [x, ] such that dist(z, 3) is minimal and then apply the
Lipschitz condition for couples (x, =) and (z, 3). Besides it is convenient to assume
that we start with f sufficiently close to g. Similarly to that, in the previous part it
does not cause any loss of gencrality and allows us to facilitate the formulation of
steps.

We denote a branch of the inverse of fby ™1+ when the preimage falls on the
right-hand side of 0, and by f~'' = otherwise.

For /3" we restrict the mapping to the “basis” interval [ f2"~(1), — YD,
i.e. the one on which /2" is linearly equivalent to 7™/,

From now on we mean f2"| sy _ jam_1qyy While writting 72"

We denote its inverse branches by (f~>™)7, (f~*")" according to the same rule
as for f for even m and vice-versa for m odd.

We shall define a class of families of intervals denoted z,(f?, x), or in other
way by a,(f¥), b(f*), ¢,( /).

At first we set:

ao(f) = zo( £, 7)) = (f2 (D). F2D) = 2o( £, 7)) = bo(f)
() = zo(fo/ (D) = [ 1,/ (D] -

a(f) = z(f./° W) = [F* M), =f (1],

bi(f) = z(£./2D) = (T4 a (),

ei(f) = 2 (£, (1)) = (F 70 7)(B( 1))

18]

The equality 7*f =

to /"
Set R,(f)(x) = f¥"~1(D)-x.
Consider a,(Tf), b,(Tf), ¢,(TJ). We have

SO =R(NHA),
£ = R(HTF ),
£ = RN
£ = R(AHUTFHW) -
Then we define (see Figure 3)
ao(f?) = zo(f2 1) = Ri(F)ao(Tf)) = Ra( /(o)) = 2o(f2,.1°(L)
= bo(/?),
co(f?) = zo( 2,12 ) = Ry(f)(eo(TF)) s

7 11(1) (¥ 1(1)-x) provides a linear equivalence of T7f
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a,(f3) = z(f%170) = RN a(TF)
B(fH = Z1(f2,f5(1)) = Rx(f)(bx(rf)) s
e(f?) = z(fAL) = R(N)es(TT)) -
As z,(f, (1)) was defined before we consecutively denote
a(f) = n(f.20) = a(f?),
by(f) = 2(f. () = (F D) @)
() = a(f7m) = (FTH0)

LA i
b sm e A cffl
S »_,_J e
,z-.(f,fm) a,[ﬂ) iz“ﬁf%ﬂ)_zn(fl f’ﬁ)—ca(fz) alf)  bilf)=z{f, A1)
ilf} i ,botfz) aolfr=zolf, U= zelf, 1) =bolf)
1 ’
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In this way we can inductively define

a(f?) = z(/%F7W0) = Ri(f)a(T1 ),
b(f*) = z(f%1°) = R(/)(bLTY)),
e/ = z(2 W) = R(F)elTF)),
ayir () = Zoea (£ 20) = 6,/
busr( S} = Zoea (£ S2)) = (F 72D a1 ()
Crr1(F) = 20 (A F Q) = (70 ) (Baan S

and furthermore

a(f*") = z{ /TN D) = R (a(T™)),
b = z,(f", F¥ ) = RS (BT,
e(f2) = z(F¥ 2 D) = R (™))

Of course, we always have

B(f*) = (/) al( S*7) .
(¥ = () B).
a2 (f"7) = 6 ().

Therefore we are able to introduce the following notation:
2(f7THY)  for a(f77),
Z(f¥HD)  for b(f77),
z{f (V) = z,(f,f1)).

Let now / be any positive integer, greater than 3. There exists m > 1 such that
1<l 2™ 21 50

M gIg3 "1 or 3221,

Put 7 for (3-2"—1) in the first case and [ = 2"¥2—1 in the other.

Then / = T—g,-2°—&,-2' — ... —g,_; * 2"~ ! where &, - 1&u—3 ... & is the binary
representation of the number [—/ (each term &, 0<<i<m—1, is either 0 or 1).
Therefore, to every [, 2*** g /< 2"+~ 1, there corresponds a unique binary number
of m figures &, ... &, 50 (F2" Yo .o (SN (1) equals to f27TI(D)
or to f*"**~*(1) respectively. Thus

@1 S = (F7 oo (f7T ().

We emphasize that we need to act by the “positive” branches of inverse maps.
Finally, we define

@2 2(f'M) = (7 oo (F73 ) (@(F1D)) -
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By the definition each family {z,(f MY, z:(f (D), z3( f (1)), ...} forms a descending
sequence of intervals tending to (D), and for each i1 we have
(W) (F@. W) i T=32"-1 or
() = (S 7)) i T=2m21

Obviously, (/'(1).£"**"(1)), or (f'(1).f'~*"(1)), respectively, is an element of the
family of open intervals forming [—1, INJ(f), as was mentioned before.
To be in unity with the previous notation, from now on we shall write

(') = z(f7W) = (S Q. SW)  for
milglgL32"-1, m=0,1,2,.
Our next goal is to estimate the cross-ratio
e (TN )] 1501 D)l
(W) g’ )l
depending neither on / nor on n.
We are going to start with T/ (1), (T"F)2(), (T () and g(1), g*(1), g*(D).
By definition,
@4 f(TYW)= @) (T oo ()
o ((TF) 37 (o @Y, (1Y)
G(T (L)) = ()7 o (TF) 1 oo (T 727)”
o (T)F 7Y (2 (TP (T W)

(2.3)

for k=1 and
(T ) = T (2(TF (1))

Zea 1 (T YD) = T (245 (1))
Z({(TFYW) = (T « (T (2{T"F (1)),
2 (TP W) = (TF) o (TF) (24 (TF (1))
We also have ) y

@9  HTrW)<I-1, 77N,
T (=T (1)) = = (T"FH ), (T,
(@) = (TF) (2T (1) = R(TF)[-1, T(T"f)(1)]  and generally
TV o (T oo o (TF) o (TF)(@{TF () < RAT'FY = 1, TATF) (D]
(TP e (T Y o (T o ee o (TF) < () (5T (1))

, } <= R(T'NH[-T' (T, (TT))*1)] -
It is known (see [4]) that the Fe‘igenbaum function g has the property
@6 o (g Dlmgen 1> €Y with some O0<é <1
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so for S sufficiently- close to g also have
(IT‘.f)ID'[—(T’[)(l),l]>6—1 . i=0,1,2,..
Now we need the following lemma:

LemMa 2.1. There exists a positive integer u such that the inequality (2.7)

2 (T @O Nz alg D) _ <1 °
(T TO) T =) 2

holds for all positive integers i and some constant ¢ >0, independently on n.

@7

Proof of the lemma. Thc basxc idea of the proof is just like that for
Lemma 1.1. Unfortunately, details are a bit more involved.
We use terms similar to (2.4). For i = 0,1, 2, ... and for any u>1 we' have

@8 (T VT)D) ' ,
= (T V@) o (T T e (@ V)Y
((T(" ) [zo((T‘"‘“'(T"f»" (T‘"'“‘(T"f))“‘ ‘)]
= (T(u—l)l Tnf)‘)‘l - 7 B

> (T(u-— l)i(Tn))— 1, + (RI(T(“_ 1):'(Tnf )) ((T(u— )i+ 1_(T'1f))— 1, -
o (T4 1 I(T"f)j_l’ +<R1(T(u— D) )(T“"' i+ 2(:"7))'-.1’ -

o (T 10+2(npy) =10+ (RII(T("- D2 (py)
(o R (e

o (T4 1):+g— YTrfy)” 1‘fR1(T(‘f" DEE=DreY) [zo(:l"uls(T'f)(l))])) ))))))

For z;, (T V{(T"f)) we have the same formula with z,(T"(Z"f)(1)) instead of z.
Denote the left endpoint of z;1 (1)) by Z( /(1))
2(T(TFID) = [Z(TTNH D), THTNHMD] = [-1, T T"f)(l)], gy
LTI W) = [E(THTHD), T )] :
= [(T@ )4 o (T ) (—(THTHY), THTH O],
Ry(T 1T G T (1)) = (T"“’(T"f)(l))'(— , -
Ry(TH T ELTTHD))
= (T TH ) )-(TT) ™7 o (PHTY ) (Tﬁ T“f)(l))))
TR EGW) =701, RN
CROEE) o) (e ﬂ’*(—g(l)))-
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We introduce a notation similaf to that from § 1. Choose now B and J so as to have
fulfilled (1.3) and (2.9)
@9 lg—T"f llsw < B8’

Put b; = [max(g*(1), (T2f)*(1)), max(g (1), rwj.
Then, by inequalities (2.6) and (2.9), similarly as in (1.4) we have

(T £y M5,— 8 s llsup < B-8’  on each branch.
Thus, below we use inequalities
T f) =g ™" | p < B-&'  and
T =g llup < B8

tacitly assuming that appropriate domains were slightly changed if necessary. Of
course,
Eo(TH(T) (D) ~Zo(g (V)] = 0,
[R(T =T Fol T D)) ~ Ru() (Zolg (1)) < B- 8717,
(T ) (D) —Z:(9 ()] < 3B-8**"
due to (2.6) and to the argument from the proof of inequality (1.5) applied to
(T%(Tf))" and g* instead of 2%, X' We also have

[R(T* 1) Z(T (TN W) - Ry @) (Z1lg (1))
[(g(l)-}-B 6ui 1+n) (21(9(1))+3.B 5u1+n) g(l) zl(g(l))l<785ui 1+n
The second step gives

R(T*= 2T (T X))~
(T~ (R(TH @) (E(THTH W) -
~Ri@)[g7" 097 (Ri@) (2ol W))))]
< g +B-8472) (g1~ 0 g7+ Ry(0) Zog (L)) +3B8" ) -
=g Mg e g™ H RO (Zola )| < TBE 2,

Ry(T*= 2T ) (T 1T ) "
o (T ) (R ) (BT W) -
~Ri) (974" 067 * (R ELg D))
< (g 0)+ B84 (g70 7 0 g7 (Rulo) (210 (1)) + 985" +7) -
—g - (g7" o g™ (Ru(@) (Bug ()| < 19852+,
After ‘i steps we finally obtain an - estimate )
BT () (1)) ~ (g (1) < BSW D paemDitn e——
. . $>3‘5+2 B(S(“ J)i+n< 9B Bi 5(11-—-1){

icm®
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where r, = 2(r;-+2)+1. r, = 1, and obviously

2, (T V(T (1)) -2 (g (D) < 27B-30- 54717,

Thus
(T T 2]2/(9 (1))~ 10B-37-8(u—1)i  and
2 (T D) < 20y 1(g (1) +28B-37- 8471
since _ )
T¢I ~g (D] < BTV
Because

sup (max(||Ry(T e, | T fle-mseny, nlle)) = 0 <+ 0
iz

, 1 . 1
so z{T'f (1) > g5+ 8 lzo(T7 F ()] > 5

Let o be a real number such that

Tf( 1
g PO L2
o lz(TFO) Izu(g(l))l
Then it is enough to take u so as to have
1428B8-3%.5%"12.20° o
= <l+= d 3P <
I—10B3s t2g T2

to obtain the statement of Lemma 2.1 by immediate induction, exactly in the same
way as it was done for Lemma 1.1. B )

|ze+ (T ()]
z(T"f )]

k
Now we shall estimate cLeti= [—:,, k= ui+r, 0 <r<u. Trans-
U :
forming (2.8) we get:

@10 z(TFM) = @) (T"f)”l’*(Rl(T"f) ((T(T"f))“’ -
o (T (R1<T)((T"f))(-~- (1T

(@) (R ()
R (T(r~1)+ l(T"f))_l’ +(R3(T('—1)H(T'f))( (Tzr-— 1)+ui—i(Tptf))—1',h -
o (T(r—l)-I-ui—i(Tmf')‘)'—l,+(R1(T(r-1>+ui—i(T,:'f)) %

< [T (M) -))) )))) .

and for z,.,,(T"f(1)) we have the same formula with z; replaced by z;.;.
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The number A = max {7 F(D)} is less than 1. By the above, at points of the form f7(1) estimate (2.5) gives -
Also the length of any mtcrval 2zo(T7f (1)) is less than 1. By (2.6), acting by appro- 1Zea 1 (AT . 1z4 (8T QD) N 0\ pfln
priate inverse mappings on intervals which occur in (2.10) makes them shorter with EXCO) IRTAC )l < ZE_:‘]“ €
coefficient at least as & at each step, so ‘
(T (T < Mg, Now we consider an arbitrarily chosen point of the orbit of 1, namely
2.11) ' i), 21 —1<1<2™+>— 1. By the definition of z,( /(1)) we have:

IRI(T(r— 1)+ ui— I(T'T))zi(T”' ui—i(T:y‘)(l))) l < 2,“’1 . 52;’ .
Set # = max||7’ flirssn, nlles- @13) ()= (RS (TN F) e
Jo. . -, . e <(R _(f)o (7-,,,—1f))>sm—1 (z(f'f(])')) .
Then by inductive application of Lemma 1.2°we get . m =10 1 )
124 z(T"f(l))l REMN 1('_r’”"‘i""(T"f)(1))| Here a function in 0-th power means the identity and in 1-st power means the same
T T O)] function itself.

PR . We also have:
xe(ﬂg)(,i-ng_ ENIL AT FLEES &2 P14 5042820424 +1.I‘§1L" 4+ 14 2kER) » . ' . '
lzi+1(T’+"'—'(T"f}(l))f . Biaitd whete B, = %‘@ 20 ZE({ (I)) =70 Pt
< mrErhHo) ¢ TS (@ /W) € RANI=-TNHM, 1] if & = 1.
Analogously B, '
LASCIO)/ I CLO) it (Ru—a(f) o (T21))m % 0 oo (Ry(FY o (T o 2 (2 F (D)
oM~ 1=ds (D) = (P oo () (3£ )
and from Lemma 2.1 we have e Ry (=™ Y1), 1] if gy =1 .
-(212) Ii:gf{&?’ + ]ZI’;:&%(;))[)' < (1 + %) 2B Thus, by (2.13), 1(2.6) and inductive using of Lemma 1.2 we obtain
For similar cross-ratios taken at points (77 )*(1) and g (1) or (T )3(1) and g*(1) .14 lzk“({ (1))I < izkﬂ(fl(l))l MO D i )
estimate (2.12) holds as well, since we apply the inverse mappmgs less times (one (D)) “k(f T o
time or two times less). ; ' Z (IO ot e
Since _ = m o ’
z(F1Q) = RN (@) if T=3-2"—1 and and ) , ’ ’
a(/1) = RN (@(TPQ)) it 1= 2721, 21O Zees(g ) | -0 2o
50 v EXCO)] > zi(gT(L)!
k (241 (FTQ)] N ENIH )] since, of course,
equals to (O Ialg ) (/TN < sup(max(a(T N xzk(mf)sa)) )) <atgkn,
|2 1 ((TF VW) | Lzer1(g* W) Consequently,
T Il )] . e (SO Iza(d' )]
? 215 1 RLie: g ,\( . 0'4) Baike
or to @19 2 aea) S \UTE)

‘Zk+1((7mf)3(1))l . IZk—x-x(gz(I))i :
. ‘ZL((Tmf)(l))l B . Izk(gs(l))} N with some pOSitiVE constant -BZ'
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The same method provides also the estimate

lzk+1(.f’(l))l - |k+1(gl(1))' (1_ :{k_> R
- old]

|Zk(_fl(1)) |zk(g (1))1
increasing ¢ and B, if necessary.
So' we obtained an upper estimate for the cross- -ratio (2.3) depending expo-
nentially on k.
- BM( >
o

Finally, let us observe that
12+ 1(/"’(1)) 12449 (U)l
e* 2Bk (1 _ 2L)
- ,Izk+1(gm+1)'m(1))i e g
- l_,k(g<a+ 1)/2"')—1(1))| 9t

FGORLO]
IZk+1(g(1))| 2Bk (]_ Z)e_dmukgz(k-x)+Ak¢zk—1)

@.16)

-‘k(gl (1))

> |Zk+1(g (D)I
Z g )] ?
by (2.11). But

12k+1(g(1))l IZi(g(l))I
llk(g (D)l ]Zo(g (D)l

= B3>0 independently on &, /.

— MO(A+ J2E2+ .+ ARE2(R- 1))

[ZA+1(f (€9)]

=AW

Now consider any point x = f(1) for some / and ye(f(l) ),
omtl g 1<3+-2m—1. There exists k& such that yez(x) and y ¢z (x). Then
h()ezh() and ()¢ 5 (). Thus dist(h(), () > |z 1(hCI)] and
dist(x, ) < lzi(x), so

lz®) |z ()

dist(x. 7) e I e R
dist(h(9, hOY) iGN [anaG) G o
Izk(h(x))l NECS)

1 o o\ - o\ -
< =P 1= 2V 1+ 2 il -
- By ¢ : + 29/ ... * 2° 1+. 2 t 24 ...

w-times u-times
¢ ¢
X<I+§>...(1+E)'2<B4<+OO. .
R ra— ‘
The estimation dist(#(x), h(y)) < Bs-dist(x, ) may be handled in the same Ways
and the proof of Theorem 2 is complete. ) -
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§ 3. The Lipschitz condition on the whole interval [~1, 1]. Now we intend to
examine when # and 4™! can simultaneously be Lipschitz continuous mappings on
the whole interval [—1, 1]. We start with the observation that typically it is not the
case. Below we give a necessary condition (C) for 4, 27! to be Lipschitz; (C) is
fulfilled only on a submanifold of infinite codimension.

Set a = g'(xg) > 1, g(x0) = X,.

f@a)=a, _ where f(a;) = ay,
© (TfY(a;) =a  where (Tf)(a;) = a;,

(T*fY(as) = a  where (T°f)(a3) = as,

For a given function f from W(g) denote a,(f) = (f" " )o..e (_f"’*)(f’(l))

n-times

n=0,1,2,..
{1: "Is&O(f)’ "'&O(f)s &l(f)9 —'&L(f)s E;“?.(f)! "&Z(f) }'

They form a partition of the interval [—1, 1}, symmetrical with respect to 0, con-
centratmg around the fixed point «; and around —o;. We shall call it 1(f)- partttwn.'
Clearly, @,(g) = h(%(f)-

Set f'(a;) = p>1 and assume that p # a, |u—«] = &, say p>o. In a small
neighborhoods of fixed points a;, x, functions f, g are “almost” linear. Thus, for
sufficiently small neighborhoods % 2 a,, ¥" 3 x, we have

dISt(al 3 lX,,.]. l(f)) 1 dlSt(x(H n+1(g)) 1

dist(ay , a,(f)) _—E 3 dist(xo, %,(g)) at £

Consider a family of points

w
Wil m

So when n—
dist(xo, % (9))
dist(ay, &(f)) )
hence the conjugacy canmot be Lipschitz continuous at the point a, when

fa) # g'(x).

Since

T @) = fF (f(D)-a) £ (F(fD) a)), and  [HfD)a)=f() as,
we can get in the same way another necessary condition for / to be Lipschitz con-
tinuous. Actually, considering f*", g2, we get that the product of derivatives being
taken over all points of a given periodic orbit for f must equal to the one taken over
the conjugate orbit for g. So we deliver infinitely many independent conditions;
their conjunction is what we called condition (C). Now we state the main result of
this part:

w, but h(as) = xo, h(5(f)) = @(g)

Turorem 3. Confugdcies h and h™' are simultaneously szschltz canttnuou;
mappings if and only if condition © is Sfulfilled.
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Proof. What is left is to prove sufficiency of the condition. Similarly to that
in §§ 1, 2 we can deal with the case of f close to ¢. Since / is an odd function, it is
.enough to examine it on the interval [0, 1]. Let us take two points x, y& [0, 1]
and %, 7, £= h(x), 7 = h(}). By Theorem 2 there isno loss of generality in assump-
tion that x, y ¢ J(f). We call the points x, ¥ 1(f)-separated if they belong to two
different intervals of 1(f)-partition; otherwise we say that x, y are not

1(f)-separated. o
For 1(T7f)-pattition we take its linear image on the interval

TR O/ I

and call it (p+ 1)(f)-partition. If x, y are not 1-separated then both belong to the
same.interval of 1(f)-partition; take its image under iterated acting of f (i;-times)
until the image falls into the interval [ f(1), —f(1)] for the first time. If the obtained
points (), f° "1(y) occur to belong to two different intervals of 2(f )-partition we
say that x, y are 2-separated. If not, consider the interval of 2(f)-partition including
[F(x), ()] and take its consecutive images under acting of f? (i,-times) until
it falls for the first time into the inferval [=7£3(1), f2(1)]. If points £ +2hy flitaiy)
belong to two different intervals of 3(f)-partition we say that x, y are 3-separated.
I not i.e. f11¥27(x), £ *27(y) belong to the same interval of 3(f)-partition, we
continue with the consecutive images of this interval under acting of f* until it falls
into [f7(1), —f"(1] for the first time, and so on. So, having defined what it means
that x, y are not n-séparated we can proceed as described above to say if they are
(n+1)-separated or not. Since f has no homtervals, every x # y have to occur
n-separated for some 13> 1. Let now &, M, 6 <1 be real numbers such that (1.3)
is fulfilled with B = & and also a stronger version of (2.9), namely (3.1):

GB.1) T —gllc, < 6" holds

and M = sup,,;o(sung(_1,1](I(T"]’)"(Z)I)) . .

For given n consider arbitrarily chesen n-separated x; y and their images f ), )
which belong to two different intervals of n(f)-partition, s = i, +2;+ 2
each terin of this sequence: is @ mon-negative integer.” R

Lemma 3.1,
1 e . o S 4 v al FSpN g8
- " dist(f (), £ (3)) < dist (9°%, ¢°9) < 4-dist( (), /*(¥) -
Here A is some constant which does not depeﬁd on x; y, n.

Proof of the Lemma. Due to Theorem 1

16”710, —g* ') _
770, =)

for some Lipschitz conétant X whic;]i may bé given not depending on n.
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The partitions n(f) and n(g) are linear images of 1(T""*f), 1(g), so by Theo-
rem 1 it is enough to show that % dist(x, y) < dist(x, y) < A-dist(x,y) for
x, y—1(T""f)-separated, with A not depending on x, y, n. Consider the intervals

D= [T ], D= [ag),7]
where y € [#(T""f), &(T"'f)], § conjugate to y by h,: goh, = h,s T""'f. By

b
Theorem 1 and Theorem 2, ll—lf: < » for some Lipschitz constant », depending neither
on » hor on .
Set now S(k) = sup,(dist(e(T" 1), a,)) and choose the least k; so as to have
Stko—1)-M<a. S ‘ i -

Dkn

k, does not depend on n, so <%, where

ko
Dy = (T'4f)7 1 oo (T ) (D),

J-times

By=g "t e ogm (D)

Lo

Jj-times

and

P (maxn<supsez‘rnfm. ul(T'if)’(Z)l)>"° '
inf, ep- g1y 129'G@ v
Now for any k let us take k preimages of D, B by (T"~1f)™"*, g™ ¥ respectively.
If k& > k, we replace acting of (k— ko) appropriate inverse functions by linearization
at points a,, X, respectively. After k, steps we have

sup (dist(z, @) < S(ko) sup (dist(z, x0)) < S(ko)

2 €Dy, 26Dy

so by (2.6) for k >k, we obtain

sup (dist(z, a,)) < S(k0 — 1) sup (d’ist(z, %0)) < Sk~ 1) &%,

=€ Dr zeDy
Thus
(k= ko)-times
— i e,
1B g7 e.og Tl (D)

Y — and by linearization
D]~ (T ) ¥ e @) (D) Y

(k~ko)-times

1 1
1By _ TR a5t -D 8
B, < T
] Dku]

2+ MS(eg—DER1 " ¥ MS(ep-DE

. a+MS(k0?_Q§j)__ 5
< Q'H&——MS(I«O—I)&" mE<ER.

6 — Fundamenta Mathematicae 182.3
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Likewise
| Byl
The same method provides an analogous estimate when choose intervals
(32(T""1f). v) and (%,(g), 7) for D and D respectively; details are left to the reader.
Finally, consider x, y. If they are 1(T""*f)-separated there exists m > 0 such
that &,(T""'f) lies inside the interval (¥, »). Assuming x <y let us denote

o*s,(T'r’“lf)‘V: m_in{&,-(T""f) >x}, a(T"Y) = nla_x{&,.(T"“f) <y}

increasing % if necessary.

and AR e T TR EREETE N
7(g) = min {iig) >}, a(g) = maiX{&i(g)<y} .
Then. by the above

T LT )= o (T" )
#(9)—%(9)
If xe[0, 2, (T" )] or ye [(T""*f)*(1), 1] then, by Theorem 2 it is clear that
1 < dist (¥, 7)

- € ——-77 £ %, s0 we may assume that r =3, s>2, and then
x - dist{x, »)

<%,

xRl

X € (@5 (T )5 2(T"7Yf)), for r odd e (&(T™ Y1), ag_»(T"~1f)), for s even
X € (GLT™ )y i o(T"7IF)), for reven  ye (&S(T"‘lf), &4 (T" 1)), for s odd.

We shall consider the case of s even and r odd; other cases are similar. In the case
we have

(. 8T ) = D,op  and.  (2(T"7Yf)) = ~D;_2,
D = (y, 2,(T"7f)), D' = (ax(T""Yf), ¥') for some y, y" € (% (T" ), &o(T*"Y)).
Thus - o
dist(x, ) = dist(x, 5(T"™ )+ dist (&,(T" ), &(T" 1)) +
4 dist (3T, ¥) < % D, ol + % dist(5,(g), (@) + F D,

= #-dist(X, 7).
Similarly we obtain

dist(%, y) < #-dist(x, »)
and the proof of Lemma 3.1 is complete, &

Now we shall prove another important lemma.

Lesva 3.2.-If Tf converges to g with exponential rate, then h,: g o h, = ho T"f
converges to identity in the || - ||, norm; also by ! converges exponentially to identity.
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Proof of the Lemma. By (1.3) and (2.9) due to the argument from the proof
of inequality (1.5) we get |&(g)—&(T"f)| <k-B-5". Hence, for any fixed positive
integer k(1) there holds lhyfyrmp—idl| < €+ k(n) BY, since  dy(T),
Gy 1 (T s Sy + 2(T7f ), . and %n(0)s iy 4 1(8)s Fagny 4 2(@). .. are in the “small”
neighborhoods (of radius EXY of the points a,,,, X, tespectively.

If now r is chosen such that 28" <(&--%(1—£&)) then

(3.2) &0 (k(m)+1) BT <L(E+k(@m)-BS)  with { = L+3(1-8 <1,

For i = 1,2,.. we also have
(3.3) Hh,,+ i[i(ruw“—-idus“p < Ek(")-l-k(n)-Bé“H )
i
Consider T"+1f; if f'is close enoughto g (e.g. ;’J"}()ﬁ does no: differ from 1 very

much), then for points from 2(I"f )-partition we also obtain

sup | Ry(T"F ) (@ T ) — Re(@) ((@))] < k(m)-BO™** + £ .
iz0

Thus, if ¢ is a preimage of any point forming 2(7"f )-partition by Ty~ we have
lg—h@| < (k) BO"* 1+ E) + ke () BE"+ E .

Iterating this procedure (r-1)-times we obtain, that for any point z of the form
2= (T) " oo (T 0 oo ((TF) ) oo (T )7 (D),
where % is one of the points forming (s+ 1)(7"f)-partition, s+ 1< r~1, the inequality

Nz=h(D)| < E 4 K (n) BS"+ ...+ K(n)- BT < p (€ +k(m)- BS") holds.
Due to (3.2) and (3.3) following steps give that for a point # from the family forming
GAHNTY) j=0,1,2,.., the inequality (3.4) is satisfied:

(3.4) [5—h(D)| < L(E™ -+ k(n)- BS") .

So, for v’ of the form

V= ()T 0o ()8 o ()T o ()Y@
we have o ‘ . ;
o' = h@)| < (1) L(E 4k () BE™ 1 (& + K (m) - BE")
and by obvious induction, when 7 is any point of m(I"f), m-arbitrarily chosen
positive integer, then for any y of the form
m- oy — 2 I\
x = (T'if)—l’ to .o (T:y*)—i,-k 0.0 ((Tyy‘)—z 1)+ 0. Ot(Tf) 2‘ )+(/ﬂ)

we have

lx=h(ol < r~(é"‘“)+k<n)'B5")(1+:+...+a[7 “>'<'1{7 (£ +k(n) - BY') .
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But points of this form are a dense set in [0, 1], so
r h{n i)
=il < 7= (8 + k() BS™.

But for /., we have

|~

s =idlhy < 7 (0 4 (KD +1) B") < g HE + kG B

—

—¢
Thus, putting £(0) = 1 we finally obtain
. P
”hi_ld”sup<(—B+l)' 'Zr
1-{

Similar considerations apply to A™! and the lemma follows. B

Now we are in a position to make final estimates. The arguments for them are
very similar to that from § 2, so some explanations are omitted. From now on v
denotes f°(x), w denotes f(y), & = h(v), W = h(w), where s = i, +2i, o2t
is as given on page (250), x, y are some n-separated points. We have kaown that

1 dist(@, »)
i — < 4.
A4 " dist(v, w)
By the definition of n-separated points we have
X= (U ((FHN) e o (TN,
y =TI (T oo (T
and the same for X, j with 5, ® and g instead of v, w, f respectively. Let us denote
gi(a: b) ::‘1 sust(a,bkl.(ggbr)‘r)l(z)l and fi(ﬂa b) = infzs(a.b)!(_(f_2‘)-(-)’(2)' Where ((1, b)
c[=g*""" 1), ¥ T 1(1)]. We shall also write
fj’ Zk(u) — ((f—lk)+)ik“j o ((f—z'“f 1)+)ik+1 0.0 (.(f—z"*‘)+)in(u)

and we introduce identical notation for w, 7, % in obvious way. )
Then

dist(%, 7) _ dist(@, )
dist(x,y) dist (v, w)
0osC7) 00olg 0, 62T g 670, 6T
Joms @ W) S (ST, ) AL T ) T )
N gn—z(y‘;’z:(ﬁ), y°’2:':1(W)} (R O T A ()
Fo-a(fPF70 72T W) fo (T, S T )
B O N i ) B s O s ) I
N O L)) M A A OW Ao
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i

y golg" "7 @), g 2 (w)) 9%(g">(®), g~ >"())
Fo( #1702 @), ST T AT @), 12 00)

- -

T 4le” " @. 67 )
L1 70770, 777 m)

9u-2(g""®, 4" "))
A1 ﬁ_z(fj'zn‘z(v)-;f]’P‘—Z(W))

< A4
-

”Q_o(gj’ @), ")
TS ), )

J=i1

Now consider any term of the form

Toie" ™~ ®, ' ®)
L L fs (7@, )

Let k = rm+p, ris as in the proof of Lemma 3.2, p = 0, 1, ..., r—1. First notice
that

1™ ), £ )
ll0, 72l . A
_ RGN @), ReesO) IO e
- 1o, 11i

(3.5)

4 was defined in § 2. Thus

L7 w), 2 W)

%k_1 < 2}bn—k, ik—j-
e 0, 77l :
Likewise i —_ .

(37) I[g'l‘ 2 (5)5 91'2 (W)]l < zln—k.ffn“f .

110, ¢**~*(D]|
By (3.6) we have
B8 fra(ST @, S ()
= [Sup{l(fzk—l)'}”(ﬂ"-2’"‘(u),ff‘l’”"(w))}]“l
(A (RN O) B3 O AR Sy I
Similarly

(3.9) gk—l(g/

L2kt

ORI ,
= [inf{](gzk—l)'il(gj—1,2""(E),gj—i,zu—lp‘v)}]_i
<G Y@ -2mm ST
Since g2, £ are linear images of g, T*"%f respectively, thus by (3.1) Lemma 3.2
we have: k=1
- _ . r e
@10 @Y E- (Y@ <SS MBH D 51
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Hence we can rewrite inequality (3.9) in the form:
gi-1(g" @), g7 (W)

-1 : k-1 - [-k-l -1
<[I(fz‘ (i (U))l*uﬂfcsk_l—M(B%-])'l':—C'C-w'“]

G.11)

-1
_ijln—k_é:in—ﬂ-l]
L
For |i,—j|> o= m we also have

and

A k-1 Fan k-1 ]’,
Feer A7), 2 w) = gy

1
a_MCik—i .

(3.12)
016" ®, 6" W) <
Now we estimate our product using (3.8), (3.1) for j<m and (3.12) for j> m. We

also assume that all denominators in the formula given below are positive (it-is
fulfilled whenever 1, <k < n—n, with some appropriate positive integer ng).

(3.13) g"—l(gjka—’(ﬁ).»gj’l""(w))
J=ix ﬁ‘_l(fj'lk_ l(D)afj’z"mi(W))
J=ik-m
< l(f2k—’)’(fj“1,2k'1(v))'+2Min—-k_éik_j+1
X

iy !(fzk")'(fj_i’zkd(v))!-—2M,3.”—k-ffk_j"'l—-.sa”tsk._l—M(B-}« 1)1,12 Cm—2

- ® ‘ m
5 a+M€“k“j< a+M1~f"'“ H 1+2Ml"—kfl
=g : .
Jmiveney GTMEEE Cam Mgt L B 1My 82 MA R

Here 9 = min(¢, 8), M. 1, M,-appropriate constants. Assuming now that the deno-
minators in the fractions in the product are greater than 1— 1(_)5g__2’ (which is fulfilled
when n, <k < n—ny; with some appropriate n, >n,) then, using e~ 2* < 1—x for
O<x<1— 10—2%«2, we have

Gl @), W) as M, e

(3~14) j,2k~1 j, 2k~ 1 o X
LA hd(F27° 0, 77 w) oyt

m+ 1

- 1-¢ -
XeZM}.n k({.—?r) ‘ezmM29~"""+4Ml"*k (4‘1 gm+ 1

mt 1
i-¢ )<a+M1§ .ej\,[a}_n-k‘emM4.svn—2
a=M gttt -
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Finally, if k<#n; or k>n—n; we have an obvious estimation

3.1 N O N D)
L L7 (757 @, 77 0)
Tk T ng 2 1
o (st ), [J e o,
inf(g'lg- 13,10 A A a- M

Hence, replacing the finite product of our terms by infinite multiplication we have

. o k -2
o1 BED o | [M o e
. . = ; )
dist(x, y) k=1 a—M, & l;
for some A.

The estimate
dist(x, .
(e, 9 <&

17/

dist(%,7)
for some # < + oo can be handled in the same way and Theorem 3 is proved.

QuEsTION. Assume condition (C). Does h have to be real analytic function
in that case?

Remark 2. When we consider a family of functions of class C® converging
to g then using small smooth perturbation we can easily construct a function f such
that fe C®, T'f—g, h: goh = hof is Lipschitz continuous and # is not of
class CL.
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