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The space (w*)""! is not always a continuous
image of (w*)"

by

Winfried Just (Warszawa)

Abstract. It is shown that the following statement is relatively consistent with ZFC: “For all
n € w, the space (w*)™* is not a continuous image of the space (w*)™”.

§ 1. Introduction. By w* we denote the remainder of the Cech-Stone compacti-
fication of w, the countable discrete space, and by (w*)" the product of n copies of w*.
It was shown in [vD] that the spaces (w*)" and (w*)™ are not homeomorphic whenever
n % m. Clearly, if n<m, then (0*)" is a continuous image of (w*)". Moreover, if
the Continwum Hypothesis holds, then (w*)" is a continucus image of w* for every n
(see [P]), and hence it is relatively consistent with ZFC that (w*)" is a continuous
image of (0*y" for arbitrary m,n>1.

Naturally, the question arises whether one can prove in ZFC alone that (w*)***
is a continuous image of (w*)" for some n> 1.

In order to answer the above question we first translate it into the language of
Boolean algebras.

Let n, ke w. By I, we denote the subset of " defined as

L = {{x0s s Xt Ai<n (x; <k)}
and let -

J,={Xe2?"): dJkeo X<, )} = U 2P, .

Then J, is a proper non-principal ideal in the Boolean algebra #(0") of all subsets
of the set " '

By %, we denote the subalgebra of 2(w") generated by the family
{Xox Xy x..xX,_q: Vi<n (X;s0)}.

Obviously, the set J, defined as J; = J,n4%, is an ideal in 4, and it is not hard to
see that the Stone space of the Boolean algebra 4,/J, is homeomorphic to (w*)".

Therefore the question stated above dualizes as follows: “Is it provable in ZFC
that for some n>1 the Boolean algebra 4, ,//,+; is isomorphic to a subalgebra
of # 41, v
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Identifying subsets of o with their characteristic functions, we consider ()
as a topological space, the topology being induced by the product topology in 2.
In a similar way, 2 (") is identified with 2°", and Z(X) with 2% for X< w. Con-
sequently, we shall speak of meager subsets of 2 (w), analytic ideals in 2 (w), con-
tinuous functions from £(X) into #(w), etc.

Let F, F*: #(4) — #(w) be functions, where A4 is an infinite subset of o,
and let J< 2 (w) be an ideal. We say that F preserves intersections mod J if

F(X)nF(Y) AF(Xn Y)eJ foral X,Yc4.

The functions F and F* are said to be equal mod J if F*(X) AF(X)eJ for every
X< A

Now, let J = 2 (o) be an ideal, K = £ (o) a subfamily. Let CSP(/J, K) abbreviate
the following sentence: “For every function F: #(w) — #(w) preserving inter-
sections mod J there exist an 4 € K and a continuous function F¥*: 2#(4) — #(w)
such that F* is equal mod J to F} #(A)”. Here CSP stands for “continuous selection
property”.

It was shown in [J] that the sentence: “For every analytic ideal J and every
comeager subset K c Z(w) the statement CSP(J, K) holds” is relatively consistent
with ZFC (see also [J1]).

Notice that if n>1 and o: w — ©" is a bijection, then the function
G,: P(w) ~ P(w") defined as G,(X) = {o(j): je X} is simultaneously an isomor-
phism of Boolean algebras and a homeomorphism of topological spaces. So we may
identify 2(0") with #(w) and write e.g. CSP(J,, K), where J, is the ideal in Z(w)"
defined above. Notice that J, is an F,-subset of £ ("), hence an analytic one.

By Fin we denote the ideal of finite subsets of w and by Fin* = 2 (w)\Fin
the family of infinite subsets of w. Notice that Fin* is a comeager subfamily of 2 (w).

By these remarks and by the consistency result mentioned above the negative
answer to our initial question follows from.

Treorey 1. Suppose that @ >n2 1 and that CSP(J,, FinY) holds. Then the
Boolean algebra B,/J, does not contain a subalgebra isomorphic to BTy, and
hence the topological space (w*)**' is not a continuous image of the space (w*)".

Theorem 1 will be proved in § 2 of this paper.

We conclude this introductory section with the following open question: Is it
relatively consistent with ZFC that there are w>n>m> 1 such that (w*)"*? is
a continuous image of (w*)", but (w*)"** is not a continuous image of (w*)"?

Obviously, if (@*)"*! is a continuous image of (0*)" and n< m, then (w*)™**
is a continuous image of (w*)™.

§ 2. Proof of Theorem 1. Throughout this section we fix 7 € @\{0} and assume

the}t CSP(J,, Fin*) holds. Moreover, contradicting Theorem 1, we assume that there
exists a function H: B,.,/Ji., = B,/J7 which is an isomorphic embedding of
Boolean algebras, and fix such a function H throughout the proof.
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Let H be any lifting of H, i.e. a function H: 4,,, — 4%, such that the following
diagram commutes:

H: By — &,
I e

¥
H: B, ooy —— BN,

wheré 7;- and 7~ denote the canonical projections.

We define a function F: 2(w) » #(w") by the formula F(X) = H(x™Y
for every X c w. Clearly, the function F preserves intersection modJ,, hence by
CSP(J,, Fin*) there exist an infinite subset 4 =w and a continuous function
F*: #(4) - P(w") such that F* and F} #(4) are equal modJ,.

We fix such a set 4 and such a function F* for the remainder of this proof. In
order to derive the desired contradiction we show that the function F* has too nice
properties. ‘

PrOPOSITION 2. There exist an increasing sequence of non-negative integers
(k: kew) and a sequence of functions {Gy: k € ) such that Gy: P (lyn A— PK")
and F¥(X)nk” = G(I,n X) for all ke w and X < A.

Proof. Observe that 2 (w) and 2 (") are compact metrizable spaces: it will be
convenient for our purposes to consider 2 (") equipped with the metric g, defined
by the formula

o (Yl Yz) — - min{max(ys,....7n}: {¥1,.000 yn) €Y1 AY2}
n s -

It is easily seen that Proposition 2 just asserts that F* is a uniformly continuous
function from (2(4), ¢,) into (#(w"),0,). M

For the remainder of this section we fixed sequences {I,: k € w) and (G: ke )
satisfying the statement of Proposition 2. Moreover, we assume without loss of
generality that /, = 0. We recall that I, was defined as .

L,= {{x0s s Xy_1p: di<n (x;<k)}.

Since n is fixed, we shall write I, instead of fkm in the sequel.
Now we define a concept which will be useful in several places of the proof.

DerNiTION * 3. Let k* >k We let [k, k") = k"™\k = {jew: k<j<k').
A-subset cc Anl\/, is called a [k, k¥)-stabilizer if
Fraucud) AF*bucud)el,. for all dcANL+ and a, b=l nA.

ProrosiTioN 4. For every ke o there exist k™ >k and a [k, k*)-stabilizer
cc AnlN.
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Proof. Assume the contrary and let k be such that for every j> k there is no
[k, j)-stabilizer. Then we may construct inductively:

— an increasing sequence {k(p): pe ») of natural numbers,
— a sequence of pairs <(ap, by:pe a)>,
— a sequence of finite sets {c,: pe @)
such that for all pew the following conditions hold:
(D) k) =k,
@) ap,b,clnAd,
(3) = Anil, lk(p+1)))

@ cpe1nlypery = s
(5) Gyp+1)apyu ) AGk(p+1)(bpucp) ¢ i -

Since 2(l,n A) is finite, there exist a, b< [, A4 such that {a,b) = {a,, b,)
for infinitely many p. Let C = U {¢,: pe w}. It follows from (4) that
C=U{c, pew&{a,b)=_a,by}.
From (5) and the choice of the functions G,"we infer that
FauC) AF*(buC)¢J,.
On the other hand, we have )
F¥@uC) AH((@auC)y*)ed, and F*(uC) AH((BuCYy)el,
by the definition of F*, hence
H((@au Yty AH((bUCY 1) ¢J,.
But H was chosen to be a lifting of H, so we must have
) ' H((@uCy*Y) AH(GBUCY* ) el,

since obviously
(auCPtr AQUCY Y el et STy -

This contradictioh concludes the proof of Proposition 4. B

DerNiTION 5. Let k = (k(p): pe») be an increasing sequence of natural
numbers, and let b = (b,: pew) and & = {¢,: p e ) be sequences of finite sub-
sets of @. We say that the triple (K, b, &) is n-productive if the following condi:
tions hold:

B b,cc,c Al hprny) for p>0 and byscoSANLyy.
(2) Assume X, X, are such that for arbitrary pew and je {1, 2} either
X0 hos o)) = By 08 X;00 [y b 1)) = €, Where
oy = {lk(p) else ,
Pl ifp=0,
and let go, ..., g,—; € @.
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In this situation, if

X AX N s hgey) » =9 for all i<n,
then

F*(X) AFH(X,) 0(9 kgD, k(@i + D)) = 3.

The following lemma will be crucial in the proof.

Lemma 6. There exist sequences k&, b and € such that the triple {k,b, ) is
n-productive, and moreover

(3) ¢,\b, # D for every pew.

In order to make it more digestible, the remainder of this paper is organized as
follows: First we prove Lemma 6 for the special case » = 1, which is considerably

easier than the general one, next we.show how Theorem 1 follows from Lemma 6,
and finally we prove the lemma for all ».

Dermrion 7. Let (k,b, &) be a triple of sequences as in Definition 5 such
that (1) is satisfied. A subset X = 4 will be called (X, b, Cy-amenable (or amenable,
if it is clear from the context which sequences we have in mind) if for arbitrary p e @
either X [y, by 1)) = by oF X [lipys L)) = €pu”

Proof of the lemma for n = 1. Since 4 is infinite, it follows from Prop-
osition 4 that there is an increasing sequence (m(p): pew) and a sequence
{a,: pew) such that m(0) = O and for every pew the set a, is contained in

Untpys Inip+1)) 0 A4, Where a,, is nonempty and Gyp+y I8 an [m(2p+1), m(2p+2))-
-stabilizer,

Now we define for p e w:

k(p) = m(2p),

bp = a2p+1 H cp = a2pU02p+1 .

The triple of sequences thus defined obviously satisfies (1) and (3). In order to see
that it satisfies (2), let X;, X, =4 be amenable set, and fix ¢ = g, € .
If =0 and X; AX,n [l Iy) = G, then

Giy(X1n k) = Gy X2y,

since by our assumption l = I, = 0.
If ¢>0, then

X0 lzg-13s boizg)) = X200 Unzg-133 bn(z)) = 82g-1 -
Since a,,_; is an [m(2g—1), m(2q))-stabilizer, it follows that whenever

X100 [lgys higrn) = X200 ey hgge1)) s
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* then
Gregr (X1 Nl N K@, E(g+ 1) = Gyg+ (X2 N lig+ k@), k(g+1),

which implies (2) by the choice of the functions Gk(qfn.
This concludes the proof of Lemma 6 for the special case n = 1. ®

Derivation of Theorem 1 from Lemma 6. Suppose the triple of sequences
(E, b, &) is n-productive and satisfies (3). We define X,, Xy, ..., X, © A by putting
for i<n and pew
b, if p = i(modn+1),
X0 Uy s hp ) = {CZ else.

We denote ‘U X, by X.

i<n
Cram 8. X**INU XM ¢4
i<n

Proof of the claim. For every pe @ we choose z, € ¢,\b, and let
Z = {{Zur1)p> Znt Dp+1s s Znkpan) * PE w}.

Obviously, Z< X"*'\ U X7'*!, and Z¢J,,,. H
i<n
Since H is an isomorphic embedding of 8, 1/Ja+, into #,/J; and H is a lifting
of H, it follows from claim 8 that H(X"*'WH(U X/ T ¢J,.

isn
On the other hand, H preserves finite sums modJ,, hence
HX"ONU HET) ¢,
i<

isn
and consequently ‘
FOONU F(X) ¢J,.

i<n
But this contradicts the following:
Cram 9. F¥(O\ | F*(X}) e,

Proof of the claim. Let £ = {2, ..., Z,—; € ©" and suppose Z ¢ L0y. Then
there exist gq, ..., g,—1 € @ such that

7€ [k(go), k(go+ 1) x [k(g1), k(gs + D)% ... X [k (gy-1), K(Gy-1+1)) .
Moreover, there exists an s <n such that g(i) = s (modn+1) for all i <n. We fix
such an s and notice that

X0 s hiar 1)) = €0 = X0 Uhays hgr 1))

for all i <n. Notice that both X and X, are (k, b, £)-amenable. Hence it follows
from (2) that
FX) AFX)n( U k@), k(g + D)) = @,

and therefore z &€ F*(X) if and only if Z € F*(X,).
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What we have shown is that for every z e F*(X)\Iyo, there exists an s < # such
that Z e F*(X,); hence

FHXN U FHX) < Ly -

This concludes the proof of the claim by the definition of J,.
So our task reduces to the
Proof of Lemma 6. For any k, re w we define

Fh, ) ={Xcd:3{Y,;coi<n&j<t}(F*XNL= U [] Y}
Jj<t i<n

Since F* is equal to H modJ, and the range of H is contained in 4, it follows
that |y U Xk, 1) = 2(A4).

keow teo

For given k,tew and & = {Y, ;s i<n&j<1t} the set
{Xca: FraNE = U ] 73}

Jj<t i<n
is a closed subset of #(4), hence % (k, t) is an analytic subset of 2 (4), and therefore
Z (k, t) has the Baire property. Obvicusly, the sets & (k, r) increase with increasing
parameters k and 7. Hence by Baire’s theorem, Z (k, ¢) is of second Baire category
for k, ¢ sufficiently large.

For ihe remainder of this proof we fix numbers &’ and ¢ and a set uc . N4
such that if we put [u] = {X¥ < 4: Xnl, = u}, then [u\Z (', £) is of first Baire
category. We let L = [ulnZ (&', 1).

If we could define a continuous function

E: L - (#(@)" such that :
EX)={h{X): i<n&j<ty and

FHINL = U [ 7,(X)

j<t i<n

for every XelL,

when we could prove the lemma by a straightforward generalization of the proof
for the case n = 1. The problem is that the sets ¥; (X) may not be uniquely deter-
mined by F*(X)\J,,. Consider the following trivial example for n = ¢ = 2:

The idea of what follows is, roughly speaking, that we shall find sequences k, b
and ¢ such that, for X (k,b, ¢)-amenable, although we may not be able to re-
construct the sets Y, ; witnessing that F*(X)\J, is an element of #,, we do however

§ — Fundamenta Mathematicae 132,1
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possess enough information to reconstruct some finite parts of F*(X) from certain
information about X as required in (2).

DermaTioN 10, Let We " and i<n. We define a relation =y cwX®

as follows: z =p; 2’ iff
V{Zgy oves Zim1s Zid1s oovs Tam1) € ot
((Zo» wres Zim1s Zs Biw1s oo Fym1) € W
(Zos s Tty 2y Zin s v Tn1) € W)

We write z = pz’ iff z = ;2 for all i<n.

Crand 11. (8) The relations = y,, and = y are equivalence relations for arbitrary
Weo® and i<n, ‘

(o) If WeB,, then the relation = w splits w into finitely many equivalence
classes.

Proof of the claim. Part (a) is obvious. .
For the proof of (b) notice that if W e %,, then there exist se @ and a family
{¥,,: i<n,j<s}suchthat W= U T1 7, ;- It suffices to show that for every i <n the

J<si<n
relation = y; splits w into finitely many equivalence classes. So we fix i <n and set
P(2) = {j<s: ze Y, ;} for z€ . Observe that (Zg, ..., Zi—15 25 Fr415 e Z, 1yeW

i (Zgs ees Zimts Zings s Zamgp € U 11 Yy, Tt follows that z =y 2
jePi(z) ren\{i} . . . .
whenever P(z) = P{z"), hence the relation =  ; splits o into at most 2° equivalence

classes. &

DEFINITION 12, (a) Let re . A subset Wc " is called r-semisimple if the
relation = 5 partitions o into exactly r nonempty equivalence classes. It is called
r-simple if it is r-semisimple and every equivalence class of the relation = p i8
infinite.

(b) Let W be r-semisimple and let E < . We say that E is a witness for W if
the relation = y,p splits E into r nonempty equivalence classes.

Cram 13. Let re o and suppose W <" is r-semisimple,

(&) If Ecw is a witness for W and z,z' € E, then z = p2' iff z = popn 2.

(b) If Ec D < w and E is a witness for W, then D is also a witness for W, and
moreover E is a witness for Wn D"

(¢) Suppose W< " is r-simple and k € . Then there exists a k¥ > k such that
the interval Tk, k™) is a witness for W.

Proof of the claim. Parts (a) and (b) follow immediately from Definition 12.
We prove (c).

Let k, r, W be as in the hypothesis. Since all equivalence classes of the rel-
ation = y are infinite, we find numbers x,, ..., X%,—, > k which are representatives
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of all the equivalence classes of the relation =w. Now let k* = sup{x;: j<r}+1.
In order to show that k¥ is as required, it suffices to show that for ;H i<n and
v,y elk, k™) the relation y =y,:¥" holds iff the relation 3 = atk,k+yn,i Y holds.
The “only if” direction follows immediately from Definition 10.
Now suppose that for some i<#n and v,y elk:k*) we have y #, .y,
i.e. there exist numbers yq, ..., ¥;_;, ¥;sq. wes Ya—1 such that w.Lo.g. -
(Fos s Pim OV Yivts v Yami) EW
and

CVos vws Prm 0 Vs Vit ts s ot & W

By our choice of k" there exist numbers

.1?0) L] yi~11yi+1 ey pn—-l E[k, k+)

such that 9; = y 3, for je n\{i}. By induction over J one shows that
Pos s Vieys 14 Vists s Yaei ) EW

i {0y s 935 ¥jits vves ¥s v sPu-yd € W and analogously if we replace y by ',
It follows that

<.90!"'75.?1'—193)3.‘?1‘-%15"'-.j?n'-l)EpV and
<y0: rees j’i—uy” ﬁHi! seey ﬁn—l) ¢ W!
witnessing that y Fwak,k+,1)’, which concludes the proof of Claim 13. M

The following claim says that witnesses allow us to reconstruct W from the
relation =. '

Cram 14. Suppose W, W' < " are both r-semisimple, the set E < o is a witness
Jor Wand WnE® = W'n E". Assume Jurthermore that for all z, 2’ € © the relation
z = w2’ holds iff the relation z = y.z' holds. Then W = W',

Proof of the claim. Suppose W, W' and E satisfy the hypothesis of the claim

and let Z = {z5,..,z,,)ea". We put j(Z) = [{i<n: z;¢ E}|. By induction
over j we show that

(%) EelW iff zew’.

For j(Z) = O this is obvious. Suppose (*) holds for all 2* € ©" such that j(z*%) <,
and assume that j(Z) = j+ 1. Fix an i <n such that z; ¢ E. By our assumption there
exists a £, € E such that 2, =z, = 4.8, Let 7* = {20y s Zimss 1y Ziags ooy Zym i D0
Then j(z*) = j, and by our induction hypothesis z* & W iff 7% & W". But the relation
2; = y,,2; implies that Ze W iff 7* e W, and since 2, =y, ;z; we have Ze W' iff
z* e W'. Hence () holds, concluding the proof of Claim 14. H®

By ||z]ly we shall denote the equivalence class of the relation =y containing z.
5‘
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For a given W e, some of the equivalence classes of the relation = y may
be finite. Therefore we sct for W' k(W) = sup{z: ||zllw € Fin}. By Claim 11 (b),
if We,, then k(W) <+o0. We write W~ = WN\Jyy for We2,. One easily
verifies that |jz]ly\Nk(W) < ||2]ly- for all W e, and 2> k(W), hence every equi-
valence class of the relation = - is infinite.

Now, let us recall that the definitions of u, &', t, Z(K', t) are given at the be-
ginning of the proof of Lemma 6.

Since the relation “W is r-semisimple & k(W) <m” defines a Borel subset
of #(w"), it follows that there exist numbers & >k’ and r such that the set

{(XeWln &K, 1) FAX)N. is r-semisimple & E(FH(XNI) < K}

is of second Baire category in Z(4). .
Until the end of this paper we fix k* 2 &', a set v e [u]n () and a number r
such that the set

S={XelnZE,0: KFNL)zk' or FHX)N\Is is not r-semisimple}

is of first Baire category in 2(4). Here [v] denotes the set (X< 4: Xl = v}’
In the sequel we write

M = [p]n Z (k*, t)\S, and =% instead of =pxy p. for Xe M.

Moreover, a subset Ec o will be called a =-witness for X € M if it is a witness
for the set F*(X)\J. c o
Now we are ready to formulate the crucial statement.

SUBLEMMA 15. There exist a set Ecw and sequences

k= <{k(p): pea), b=(b,pew)y, t={c,pew)
satisfying for all pew and (k,b, C)y-amenable seis X, and X;:

©) k@)= k*,

D) byec,sAn Loy lpr1y) Sor p>0 and byScoS Ay,
@) b, # &,

4 X, X, e M,

5 If Xo A X, Ay hipeny) = D, then

F*(Xo) AFH(X) n [k(p), k(p+ 1)) = &,
(6) Enlk(p), k(p+1)) is a =-witness for X, and X,
(N E"nFXX,) = E"n F*(X)),
(8) For all w, w' e E the relation w =%, w' holds iff the relation w =¥, w' holds.

Before proving the sublemma we show how to deduce Lemma 6 from it.

- We fix a triple ¢k, B, ) of sequences satisfying the statement of the sublemma
and show that it also satisfies (2) of Definition 5.
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Suppose X;, X, are amenable and g, .., ¢,_, & @ are such that

Yo AX, nig)n Uicgns Bt o=,
Let
Zy = FYXo)\hyy and Z; = F¥X )Ny, -
Furthermore, we set

U= L<) k@), k(g:i+1) and ¥V, =ZynU*, V,=2Z,nU"
<n

We show that ¥, = ¥, which obviously implies (2).

It follows from (6) and Claim 13(b) that En[k(g)), k(g;+ 1)) is a witness for
both ¥, and V;..Consequently, if we show that for arbitrary z, z’ € U we have
7z =y,z il z=yp,2, then the equality ¥, = ¥, becomes an easy consequence
of (7) and Claim 14.

Hence let z,z'e U and let i,i'<n be such that ze [k(g), k(g,+1)) and
7' efk(gr). k(g»+1). By (6) there are numbers we[k(g), k(g;+1))nE and
w' e [k(g:), k{gy+1D)NE such that z =, w and z’ =, w'. We fix such w and w'".
Obviously, z =y, 2/ iff w =y, W'

On the other hand, by (5) we have

® Vonlk{g), k(g:+ 1)) = Vi [k(g), kig;+ D) = W.

Since En[k(qy), k(g;+1)) is a witness for both ¥, and ¥, it follows from (§) and
from Claim 13 that z =y, wiff z = pwiff z = ,, w. By an analogous reasoning one
can show that z’ =  w'. Therefore, z’' = , z iff w' = , w, which is by (8) equi-
valent to w' = y,w. Hence the relation z’ = , z holds iff the relation z' = y,z.
holds.

We have thus shown that the triple of sequences (k, b, &) satisfying (0), (1)
and (3)-(8) satisfies (2) of Definition § as well, and hence the proof of Lemma 6
reduces to the

Proof of Sublemma 15. Recall that the definitions of M and S were given
before the statement of the sublemma. Let § = {J S,, where S, is a nowhere dense
subset of #(4) and S,=S,,, for all pew. ?°°

We construct inductively and increasing sequence of natural numbers
7l = {m(p): pew) and a sequence & = {e,: pewu{—1}) of finite subsets of 4
such that:

@ e—s =10, Lo,
(i) m{0) = k*,
(i) e_y e [v],
and for all pew we have:
(IV) e < [lm(p)3 lm(p+ l)}'
) If we.let D, = Grpr0ue,—;Ve)n[m(p), m(p+ 1)), then the rela-
tion =y, splits [m(4p), m(dp+1)) into exactly r nonempty equivalence classes,
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(‘”) If Xedand X¥n [lm(4p+1)9 Im(4p+2)) = e4p+1) then X¢ Sp'
i) lespsal =11 )
(viii) esp4+3 is an [m(dp+3), m(dp+4))-stabilizer.

First we should convince ourselves that sequences satisfying (i)—(viii) exist.
1t is obvious that constructing m(p) and e, inductively we can always take care of
(i)-(iv) and (vii). Proposition 4 tells us that we can deal with (viii) as well. In order
to see how to take care of (vi); notice that S, is nowhere dense in the topology of 2(4)
and that there are only finitely many candidates for XN/, 4,41y, 50 We can deal
with all of them successively extending initial fragments of e, .

It remains-to show that at stage 4p of the construction we can make sure that (v)
holds. In order to see this, notice that given any p, by the definition of M and the Baire
category theorem there exists X € M such that Xn Lnapy = VU ey, . Since Xe M,
the set F¥(X)\I» = Y is r-simple, and hence by Claim 13(c) there exists an
m(4p+1) > m(4p) such that [m(4p), m(dp+1)) is a witness for ¥. By the choice
of the functions Gy, we have Dy, = Yn[m(4p), m(4p+1))" whenever X nm(dp+1)
= VUe,_Uey,.

For the remainder of this proof we fix sequences 7 and 2 satisfying (i)-(viii).

Suppose that we are given two sequences b’ = (b}: pe o) and & = {c}: pe )
such that b,Gc,Sey,4, for all p. We define:

by =e_queUe Ubgues, -
Co = e_jUegue UcpUes,

U
by = e ueq UbyUe L, and

!
Cp = C4pUlupriUCUEC s for p>0.

Moreovet, we put k(p) = m(4p) for every pew.

Sequences k, b and ¢ which are defined by the above method from some se-
quences b’ and ¢ will be called feasible. Moreover, a subset X = 4 will be called
feasible if it is (k, b, €)-amenable for some feasible sequences K, b, &.

Let k, b, € be feasible. Conditions (1) and (3) of the sublemma are satisfied by
the choice of &, and ¢;. Moreover, (4) follows from (iif), (vi), the definition of M and
the choice of §,. (0) is a consequence of the definition of E.

- In order to see that (5) holds as well, suppose X, and X, are feasible and let PE®
be such that

Ko Uhigs hipr13) = X0 ey, bpany) = @,
If p=0, then *

FHX) N0+ 1" = Gyprife—1Ua,) = FH(X,)nE(p+1)" .

If p>0, then Xo0 [Lyap-1y, bntag)) = Xy O\ [lneap—13)s bLuam) = e4,~4. But according
to (viif), the set ey, , was chosen to be an [m(4p—1), m(4p))-stabilizer, so

_ ; F*(Xo) AF*(XI)nk(p+1)"CIm(4P) = Ik(p)
by the definition of a stabilizer; hence (5) holds.
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Now let E = {J [m(4p), m(4p+1)). We show that E satisfies (6).
reo
Indeed, arguing as in the proof of (5), we notice that
F¥(Xo)n[m(dp), m(dp+ 1)) = Dy,
for arbitrary p € w, and now (6) is an immediate consequence of (4), the choice of M,
and Claim 13(b).

It remains to show that we can find sequences b’ and & such that (7) and (8) are
satisfied for b, ¢ and E defined as above.

We fix x4(0), ..., x4(r— 1) € [m(0), m (1)) which are assumed to be representatives
of all equivalence classes of the relation = Do+ Notice that the xy(j)'s may be chosen
independently of the choice of 5" and #. Given a feasible X we define a function
Jxi E = r as follows: fy(w) = j iff w =% x,()). . .

We show that there are feasible sequences K, b, ¢ such that Jfxo = [y, for all
<k, b, €)-amenable sets X, and X;. It is not hard to see that for such sequences (8)
will be satisfied. A

For p>0 we choose x,(0), ..., x,(r—1) € [m(4p), m{dp + 1)) to be representa-
tives of all equivalence classes of the relation = p,+ FOr every feasible X we define
functions f, x: r — r as follows: )

Lx(D) =7 i x() =% %,4.().
Notice that for we [m(4p), m(4p+1)) and arbitrary feasible X we have: Srw) =+
iff xp(f;:—hx °fp—2.x o ..o fo,x(7) =§ wiff X(fp-1,% o fom2,x° o °fo,x(j)) =p, W

It follows that for feasible X,, X, the functions Jxo and fy, are equal iff £, », = f, 5,
for all pe w.

Cram 16. Let pew and X,, X, be such that

XO AXl ] [Ik(p)> lk(p+1)) =0.
Then f, 5, = Joxe

Proof of the claim. Repeating the argument used for demonstrating (5)
shows that there is a set ¥ such that

FHXo)n[m(4p), m(@p+3)) = FX(X1)n[m(dp), m(p+35)y' = V

whenever X;, X; are as in the hypothesis of the claim. On the other hand, by (6)
and Claim 13(b) we know that ¥ is a -witness for both X, and X;. It follows that
we have w = y, W' iff w= y,w' if w =y w’ for w, w' e [m(dp), m(dp+5)). To con-
clude the proof of the claim it suffices to observe that the function Jop.x is completely
determined by the relation = y restricted to [m(4p), m(dp+5)). =B

Claim 16 tells us that for feasible X the function Jr.x depends only on
Xney,.,. In other words, given a subset d,ce,,,, there is a unique bijection
Soldpl: r—r such that f, y = f,[d,] whenever X is feasible and X'~ Ciprz = 4y
But there are only r! bijections from r to 7, and hence by (vii) we can find
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B, & ¢, S e4,4, such that £,[b}] = f,[c;]. This shows that there are feas%ble sequences
BF ¢ sﬁch ’chgt Fxo = fx, for all (k,b,c)-amenable sets X,, X, which concludes
the proof of (8). : . .
(7) is an easy consequence of (8) and Claim 14, because En[m(0), m(1)) is
a #-witness and F*(X)nm(1) = F¥(X;)nm(1)" for all amenable X, and X.
This concludes the proof of Sublemma 15, Lemma 6 and Theorem 1. B & B
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Sur le nombre de céotés d’une sous-variété
by

Robert Cauty (Paris)

Abstract. Let 4 be a connected, locally connected and Iocally closed subset of a metric spaceX
which is locally two-sided in X in the sense that every point x of A has arbitrary small connected
neighbourhoods I such that N4 has exactly two components whose closure contains x. We use
elementary methods from sheaf theory to study when A is globally two-sided in X (i.e., 4 has a con-
nected neighbourhood ¥ such that ¥\ 4 is not connected). We give some applications to concrete
examples.

1. Introduction et notations. Soient X une variété de dimension n+1, et A une
variété connexe de dimension 7 (pas nécessairement fermée) contenue dans X, On
dit que 4 a deux c6tés dans X si elle a un voisinage ouvert connexe W dans X tel
que WN\A ait exactement deux composantes; sinon, on dit que 4 n’a qu'un c6té
dans X. Le problgme de reconnattre quand A a deux cotés se pose naturellement,
et divers résultats partiels sont connus, I'un des plus généraux étant celui de Rus-
hing [7] selon lequel une n-variété simplement connexe localement plate dans X
a deux cdtés (et 2 méme un double collier dans X). Rushing remarque aussi que les
techniques de la topologie algébrique ne semblent pas suffire & montrer quune
n-variété orientable non fermée dans $**! a deux c6tés. Nous montrerons dans cet
article que I'utilisation des premiers éléments de la théorie des faisceaux permet de
caractériser les sous-variétés ayant deux cotés (voir le corollaire 2.2). L’avantage de
notre approche abstraite est qu’elle s’applique  des espaces beaucoup plus généraux
que les variétés; il suffit que 4 soit un sous-espace localement fermé et localement
connexe d'un espace métrique X “séparant localement X en deux morceaux”. A titre
d’exemple d’applications de ce raisonnement général, nous prouverons les résultast
suivants:

(1) Soit 4 un sous-ensemble connexe et localement connexe d’un espace mé-
trique X qui a en tout point un double collier local dans X (voir section 2 pour
la définition). Alors

(@) Si 4 n’admet pas de revétement non trivial & deux feuillets, 4 a un double
collier dans X. )
(b) Pour toute distance admissible d sur X, 4 a un double collier dans X si, et
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