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Trivial bundles and near-homeomorphisms
by
A. Ch. Chigogidze (Moscow)

Abstract. Topological characterizations of trivial bundles with fibres N* and R* are given.
These characterizations together with earlier results of E. V. Shchepin and the author are used in
the investigation of strong near-homeomorphism of the four standard spaces D%, N¥, I* and R".

Introduction. The major problems in zero-dimensional and infinite-dimensional
topology concerning topological characterizations of infinite powers of:

(a) the two-point discrete space D;

(b) the countable infinite discrete space N;

(c) the closed unit interval I;

(d) the real line R,

have been solved. The corresponding characterizations for countable powers were
obtained respectively by L. E.J. Brouwer [2], P. S. Alexandrov and P. S. Ury-
sohn [1], H. Torusczyk [13] and [14]. For uncountable powers these results were
obtained respectively by E. V. Shchepin [16], A. Ch. Chigogidze [4],
E. V. Shchepin [17] and A. Ch. Chigogidze [4].

Let us now consider the parametrical versions of the characterizations mentioned
above. For the readers convenience and for the sake of a unified presentation, from
a general viewpoint, some of these results are given formulations differring from the
original ones. Further comments will be given below.

TuroreM 1D. Let t> . If f: X — Y is a 0-soft map between zero-dimensional
AE(0)-compacta and if w(X) =t then the following conditions are equivalent:

1. f is a trivial bundle with fibre D".

2. For every zero-dimensional compactum Z of weight <t and every map
g: Z — X the set of embeddings Z - X is dense in the space CYZ, X).

TaroreM IN. Let t>w. If f: X — Y is a 0-soft map between strongly zero-
dimensional AE(0)-spaces and if w(X) = © then the following conditions are equi-
valent: -

1. f is a trivial bundle with fibre N".

2. For every strongly zero-dimensional space Z of R-weight <t and every map
g: Z — X the set of C-embeddings Z — X is dense in the space iz, X).
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TueoreM 1L Let 12 w. If f X = Y is a soft map between ANR-compacta
and if w(X) = 1 then the following conditions are equivalent:

1. f is a trivial bundle with fibre I'.
2. For every compactum Z of weight <t and every map g: Z — X the set of
embeddings Z — X is dense in the space CYZ, X).

TaroreM 1R. Let 1z . Iff: X — Y is a soft map between ANR -spaces and
if w(X) = 1 then the following conditions are equivalent:

1. f is a trivial bundle with fibre R'.
2. For every space Z of R-weight <t and every map g: Z — X the set of
C-embeddings Z - X is dense in the space CYZ, X).

© Theorems 1D, IN, 1I and 1R for v = w were proved respectively by S. Sj-
rota [12], A. Ch. Chigogidze [4], H. Torufczyk and J. E. West ([15] and unpubhshed
results). The author wishes to thank E.V. Shchepin for information concerning
Theorem 1R for 7 = . Theorems 1D and 1I for .t > were proved respectively
by E. V. Shchepin [17] and A. Ch. Chigogidze [S]. Theorems 1N and IR for >0
are proved in the present paper. Note that taking for ¥ a one-point space we obtain
the above mentioned characterizations of D', N°, I" and R'.

We start with some definitions. Further notlons are introduced later in the text,
as they are needed.

We consider only Tichonov spaces and continuous maps. Homeomorphisms
always are onto. cov(X) denotes the family of all countable functionally open
covers of aspace X. Iftisan 'infinite cardinal and Z, X are given spaces, then C(Z, X)
denotes the set of all maps Z — X with the topology defined as follows. Given
he C{Z, X), the family

{B(, {%,: teT}): |T| <7 and %, €cov(X)}
is a base of open neighbourhoods of h, where
B, {%,: te T}) ={re C,(Z X): k' is 9 ,-close to A for each teT}.

Maps in B(h, {#,> teT}) are said to be {%;: te T}-close to h. For maps
fi X—» Y and g: Z— X we denote by C¥(Z, X) the subspace of C(Z, X) con-
sisting of all maps h: Z — X with fh = fg. It is easy to see that if X has a countable
base then the space C,(Z, X) coincides with the space C(Z, X) endowed with the
limitations topology [14].

Let us now recall some definitions from the general theory of AE (n)-spaces
and n-soft maps [4], [6]. As usual, C(X) denotes the set of all continuous real-
valued functions- on a space X and- C(f): C(Y) — C(X) denotes the operator
induced by a map f: X —» Y. If Z, = Z, then C(Z)/Z, is the set of all elements of
C(Z,) extendible to the whole of Z. Clearly, if Z, = Z, then-the equality C(Z,)
='C(Z)}Zy characterizes the C-embedded subspaces, It is well-known that closed
subspaces of normal spaces. are-C-embedded and that compacta are C-embedded
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in arbitrary ambient (Tichonov) spaces. A C-embedding is an embedding with
C-embedded range. It follows from the general definition (Definition 1.1 and Prop-
osition 1.7 from [4]) that each AE(n)-space is realcompact. Consequently, without
loss of generality we may restrict ourselves to give the corresponding definition
only in the class of realcompact spaces. By dimension we mean the dimension dim
which is defined by means of finite functionally open covers.

DEeFINITION 1. A realcompact space X is called an absolute extensor in dimen-
sional n (n = 0,1, ..., o) if, for any real—compact space Z of dimension dimZ < »
and any closed subspace Z, of Z, each map f: Z, - X such that (C(f)(C(X))

< C(Z2)/Z, can be extended to' the whole of Z. The spaces in AE(c0) are called
absolute extensors (AE)

DEerNITION 2. A T! zchonov space X is defined to be an absolute (nelghbourhood)
retract if for any C-embedding of X in an arbitrary Tichonov space. Y there exist

a retraction of Y (respectively, of some functionally open neighbourhood of X
in Y) onto X. -

It is easy to conclude that the class AE coincides with the class AR. Under
this definition, retracts of all possible powers of the real line (respectively, of fqnotion-
ally open subspaces of powers of the real line) turn out to be precisely absolute
(neighbourhood) retracts.

- Drerinimion 3. A surjection f: X — Y between AE(0)-spaces is said to be
0-soft if, for any strongly zero-dimensional realcompact space Z, any closed sub-
space Z, of Z and any two maps g: Z, — X and h: Z — Y such that C(g)(C(X))

€ C(Z)Z, and fg = h/Z,, there exists a map k: Z — X such that ﬂc h and
klZ, = g.

DEFINITION 4. A surjection f: X — Y between ANR -spaces is said to be soft
if, for any realcompact space Z, any closed subspace Z, of Z, and any two maps
g: Zy— X and h: Z —» ¥ such that C(g)(C(X)) = C(Z)/Z0 and fg = h/Zo, there
exists a map k: Z — X such that fk = & and k/Z, = i

These definitions show that, in the class of compacta, the notions of AE(0)
and ANR-spaces, as well as 0-soft and soft maps, agree with the commonly used
definitions -of these concepts [16], [18]. Consequently, every compact metric space
is an AE(0)-space. Moreover, the class of AE(0)-spaces with a countable base
coincides with the class of Polish spaces [4]. Similarly, the class of A(N)R-spaces
w1th a countable base coincides with the class of Polish A(N)R -spaces. -0-soft
maps between Polish spaces are precisely open surjections [4] and soft maps between
metric ANR-compacta are precisely Hurewicz’s fibrations with AR-fibers. Let
also recall us that any Tychonoff space can be C-embedded in R® for a suitable
cardinal 7. The smallest infinite cardinal with this property is called the R-weight
of a space X (notation: R-w(X)). The R-weight is countable precisely for Polish
spaces. The Weight coincides with the R-weight for non-discrete compacta, as well
1*
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as for non-discrete AE(0)-spaces [4]. A map f: X — Y is_called a map with Polish
kernel if there exists a Polish space P such that X is C-embedded in the product
Y x P and f coincides with the restriction of the projection ¥Yx P — Y onto X. Any
undefined notions concerning inverse spectra are used in the sense of [4] and [18].

1. Topological characterizations of trivial bundles with fibres N* and R'.
In this section we prove Theorems 1IN and 1R for 7> w.

Proof of Theorem IR, 7> . (1) = (2). In this case X ~ ¥Yx R* audfls the
projection of ¥'x R* onto Y. Let 4 be any set of cardinality 7. Consider a space Z
of R-weight <t and a map g: Z — YxR* Let {%,: te T} ccov(¥x R*) where
o<|T|<7. For each teT there exist ¥, ecov(¥) and #,ecov(R*) with
Vo x W <%U,. Since |T| <7, there exist a subset B of 4 of cardinality |T'| and
W' e cov(R®) such that %, = ng (W) for each t e T, where nz: R* — R® denotes
the natural projection. Since |4— B| = t, there exists a C-embedding #': Z —» R*™B,
Tt easy to see that a map h = fgdngqgdh’': Z — ¥Y'x R4 (where g: YxR* — R*
denotes the natural projection) is a C-embedding, {#,: te T}-close to g, and
satisfies the desired equality fh = f3.

The proof of the implication (2) = (1) involves the main idea of the author [5]
and is based on the following proposition (Lemma 7.11 from [4]).

LemMa 1. Let S = {X,, pp**, w} be an inverse sequence consisting of ANR-
spaces and soft adjacent projections having Polish kernels. Assume that, for any ne o,
the space X,., contains a C-embedded copy of the product X,xR® such that
Pat(X, x R®) = my,, where my: X,xR® — X, is the natural projection. Then
the limit projection py: limS — X, is a trivial bundle with fibre R®.

Let us now consider a soft map f: X —» Y between ANR-spaces with w(X)
= 7> @. By Theorem 3.2 from [4] (see also [6]) there exist well-ordered continuous
spectra Sy = {X,, p&, <}, Sy = {¥,, ¢%, 7} and a morphism {f,: X, - ¥,} between
them such that the following conditions are satisfied:

@ X =1mSy, ¥ =1limSy and f = limf,.

(i) X; and Y, are Polish ANR-spaces and f, is a soft map between them.

(i) For any a e, X, and ¥, are ANR-spaces and £, is a soft map between
them.

(iv) All adjacent projections in the spectra Sy and Sy are soft and have Polish
kernels.

(") All adjacent square diagrams (formed by adjacent projection of spectra
and the corresponding adjacent elements of the morphism) are soft (see [4], [6])
and, moreover, their characteristic maps (see [4], [8), [18]) have Polish kernels.

:We introduce the following notation:

(2) Z5** denotes the fibered product of spaces X, and Y,,, with respect to

maps [, and ;"5 @t 't Z3! o X, and Y21 Z2* S Y, are the corresponding
canonical pro;ectmns ®XET.
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(b) hl+1
XET. .

(c) Z, denotes the fibered product of spaces X, and Y with respect to maps £,
and g.; ¢,: Z, ~ X, and y,: Z, —+ Y are the corresponding canonical projections.

@ h: X—2Z, denotes the diagonal product of p, and f, a e.

@ Zy =Y 12y =Vo: Zy > Z_,.

() 171 Zy4y = Z, denotes the diagonal product of maps pi*lg,,, and’
‘I(l:+19 aET.

(8) ret Z, ~ Z;*' denotes the diagonal product of maps ¢, and ¢,;,V.,
xeT. -

X.+1 = Z7"! denotes the diagonal product of maps pf*? and f,, ,,

Itis easy to see that the limit space of the well-ordered continuous inverse spectrum

= {Z,, t;*1} is homeomorphic to X and the limit projection #: im S — ¥ coincides

Wlth the given map f. It should be observed that, for each o> 0, the square diagram

consisting of space Z, 11, Z,, Z;* %, X, and maps #3*, r,, K" and ¢,.., is a pull-
back square, and hence, by (v), 727! is a soft map and has a Polish kernel.

(+) We now show that for each « e ¢ there exist an index f(o) such that the
projection #£®: Zg,) —+ Z, has a Polish kernel and Zj,, contains a C-embedded
copy of the product Z,x R in such a manuer that #£(Z,x R?) = nz, where
nz,: Z,Xx R® - Z, is the natural projection. To prove this fact it suffices to show
that X contain a C-embedded copy of Z,x R” in such a manner that

BJ(Zx R®) = mg, .
It follows from our construction that 4, is a soft map. Hence, there is a map
it Z,x R® — X such that k, i = 7z,. Now, fix a subcollection {#;: te T'}Scov(X,)
with [T = w(X,) <7 satisfying the following condition: for any space Z, any two
{%,: teT}-close maps Z — X, coincide. Put %, = p; *(%.), teT. Then by (2)
there exists a C-embedding g: Z,xR” —» X, {%,: teT}-close to i, such that
fg =fi. By (@), h,g = (p,4f)i = h,i = nz_. This completes the proof of (#),

Now, by () and Lemma 1, we may assume without loss of generality that all
adjacent projections of the spectrum S are trivial bundles with fibre R”. By assump-
tion, w(X) = t and, by (i), w(X;) = w. Consequently, by (iv), the length of the
spectrum S is equal to 7. These facts show that fis a trivial bundle with fibre R”.
This completes the proof of the theorem.

The proof of Theorem 1IN, > o, is omitted, since it is completely analogous
to the proof of Theorem 1R, 7> w. It should be only remarked that in this case we
must use (instead of Lemma 1) the following proposition (Lemma 7.8 from [4]):

LemMA 2. Let S = {X,, pp**, o} be an inverse sequence consisting of strongly
zero-dimensional AE(0)-spaces and 0-soft adjacent projections having Polish kernels.
Assume that, for any n € , the space X,,,, contains a C-embedded copy the product
X, x N® such that py**/(X,x N®) = ny,, where ny,: X,xN® - X, is the natural
projection. Then the limit projection p,: imS — X, is a bundle with fibre N®.

The following corollaries are immediate consequence of Theorems 1N and I1R.
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CoroLLARY IN. Let t2> o and f: X — Y be a 0-soft map between strongly
zero-dimensional AE(0)-spaces, w(X)< 1, and let my: Xx N°— X be the natural
projection. Then the composition frx is a trivial bundle with fibre N

COROLLARY IR. Let 1= w and f: X — Y be a soft map betwéeﬁANR-spaces,
wX)<t, and let mx: XxR > X be the natural projection. Then the composition
fﬂ.’x is a trivial bundle with fibre R.

The corresponding propositions for D and I are also known (see [17] and [5]).

COROLLARY 1D. Let t>w and f: X - Y be a 0-soft map;between zero-
dimensional AE(0)-compacta, w(X)<1, and let ny: Xx D — X be the natural
projection; Then the composition fnx is a trivial bundle with fibre D".

CoroOLLARY 11 Let 1> and f: X — Y be a soft map between ANR -compacta,
w(X) <1, and let my: X I" — X be the natural projection. Then the composition fry
is a trivial bundle with fibre I".

Now we formulate a final group of propositions, which will be used_ in the next
section.

COROLLARY 2R. Let 1> and let 2 X — Y be a soft map of an R*-manifold X
onto a space Y with w(Y)<1. Then f.is a trivial bundle with fibre .

(An R*-manifold is a Tychonov space which admits a countable functionally
open cover whose each element is homeomorphic to R'[4]; any R'-manifold is
realcompact; this follows e.g. from. [9]).

Proof. By Theorem 2 from [4], X~ X'x R® where X' is an R”-manifold.
Let A be a set of cardinality . Then there exist a subset B< A with |B| = max
{0, w(Y)}and 2 map f': X' x R® — ¥ such that f= (idy. x m5)"f", where 7 RASRE
denotes the natural projection. It is easy to see that f” is a soft map and conscquently,
by Corollary 1R, f is a trivial bundle with fibre R".

" Similarly we have

CoROLLARY 2N. Let 1> o and let St N{-» Y be a 0-soft map onto a strongly
zero-dimentional space Y with w(Y) <1, Then f is a trivial bundle with fibre N'.

~ CoroLLARY 2D (see [17]). Let > and let f: D' - Y be a 0-soft map with
}W(Y)<1.'. Then f is a trivial bundle with fibre D"

. CoroLLARY 2I (see [17]). Let © > w and let f: X — Y be a soft map of a compact
[f-manlj’old X onto a space Y with w(Y)<t. Then f is a trivial bundle with fibre I".

§ 2. Near-homeomorphisms. In this section Corollaries 2D, 2N, 2I and 2R are
used to characterize maps of D%, N7, I" and R® into itself which are 7-approximable
by homeomorphisms. A map f:. X — Y is said to be a r-near-homeomorphism if,
given {%;: reT}ccov(Y), |T|<rt, there is a homeomorphism- h: X > ¥
{#,: t € T}-close tof. The set of all t-near-homeomorphisms X — ¥ will be denoted
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by NH,(X, Y). Clearly, if Y is a Polish space then NH,(X, ¥) consists of near-
homeomorphisms in the usual sense.

DeFiNITION 5. Let 12'@w. A map f: X — Y between realcompact spaces is
said to be t-approximatively n-soft (n = 0, 1, ..., ) if, given a realcompact space'Z"
with dimZ < n, its closed subspace Z;, subcollection {%,: te T} < cov(¥) with
|T| <1, and two maps g: Z, — X and h: Z » ¥ such that C(g)(C(X)) = C(Z)/Z,
and fg = h|Z,, there exists a map k: Z — X extending g so that fk is {%,: te T}-
close to A. The - apprommatwely c0-soft maps will be called z-approximatively soft
maps.

Evidently every n- soft map is 7-approximatively n- soft for each 7 > w.

LeMMa 3. A map f: X — Y between Polish spaces is w-approximatively n-soft-
iff, given a Polish space Z with dimZ < n, its closed subspace Z,, open cover
% ecov(Y) and two maps g: Zy — X and h: Z - Y such that fy = h|Z,, there
exists a map k: Z — X extending g so that fk is % -close to h.

- Proof. It is easy to see that for w-approximatively #-soft maps between Polish
spaces the condition of the lemma is satisfied. Let us prove the converse. Let Z be
a realcompact space of dimension dimZ<n, 'Z, be a closed subspace of Z,
{#, teT}ccov(Y), |T|<w, and g: Z, » X and h: Z - ¥ be maps such that
C(g)(C(X)) € C(Z)/Z, and fg = hjZ,. Represent Z as a limit space of some factoriz-
ing sigma-spectrum Sz = {Z,, pf, A} “consisting of Polish spaces of dimension
dimZ,<n (see [7], Theorem 1). Consider also the spectrum

= {CIZ.(Pa(Zo)) 7, A}

associated with the closed subspace Z, of Z. By the spectral theorem of
E. V. Shchepin [18], there exist an index ¢, € 4 and a map h,: Z,, - ¥ such
that 4 = h, p,, . Let us also note that the spectrum Sz, is not factonzmg, in general.
But the condition C(g)(C(X)) < C(Z)/Z, is sufficient for the existence of an index
ayed and a map g,,: clz, (P(Z0)) = X such that g = g,,p,,/Z;. Without loss
of generality we may assume that o) = «, = o, h, =h, and g,, = g,. Since
J94dPZo) = hfp(Zo) and pZ,) is dense in clz(p.(Zo)), we conclude that
J4. = hJclz(p.(Zy)). By assumption, there exists a map k,: Z, - X extending g, so
that fk, is %-close to h,, where % refines each %,, t € T. Clearly, the map k = k,p;
has the desired properties. This completes the proof.

It should be noted that if X and Y are compact spaces then a map f: X - Y
is-t-approximatively n-soft iff the condition from Definition 5 holds only for compact
spaces Z. Clearly, in this case the inclusion C(g)(C(X)) < C(Z)/Z, is automatically
satisfied. Moreover, if X and Y are metrizable compacta, then, as in Lemma 3,
amap f: X — Yis o-approximatively n-soft iff the condition from that deﬁmtmn
holds, only for metrizable compacta.

... Now we formulate the main results of this section.
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TrporeM 2D. Let 1> and fe C(D", DV). Then fe NH(D',D") iff f is
a t-approximatively 0-soft map

Terorem 2N. Let 1> and fe C{N’, N°). Then fe NH(N',N") iff f is
a t-approximatively 0-soft map.

TueoreM 2L Let t> o and fe C{(M, M’y where M and M' are compact
I-manifolds. Then fe NH.(M, M") iff f is a ©-approximatively soft map.

TaeoreM. 2R. Let t>w and fe C(M, M") where M and M’ are R'-manifolds.
Then fe NH(M, M") iff f is a ©-approximatively soft map.

Remark. The validity of Theorem 2D for © = w easily follows from the follow-
ing obvious fact: f: D® — D? is a near-homeomorphism iff fis a surjection. Similarly,
the validity of Theorem 2N for ¢ = o follows from the following fact: f: N* — N®
is a near-homeomorphism iff £(N®) is dense in N. Let us also recall that a map
between compact I°-manifolds, as well as between R®-manifolds, is a near-
homeomorphism iff it is a fine homotopy equivalence (see [3], [10], [L1]). Clearly,
o-approximatively soft maps in both cases are fine homotopy equivalences [11].
On the other hand, it is an easy exercise to show that every near-homeomorphism
between Polish ANR’s is o-approximatively soft. These remarks yield the validity
of Theorem 2I and 2R for 7 = .

The proofs of the above theorems in the case of 7> w are completely similar.
So we give, for illustration, only the proof of Theorem 2R.

Proof of Theorem 2R, 7> . Suppose that f: M - M’ is a 7-approxima-
tively soft map between R'-manifolds and let {#%,: e T} be any subcollection of
cov(M") with @ <|T] = A<t. Let us represent M and M’ as the limit spaces of
factorizing A-spectra (see [18]) Sy = {M,, ph, 4} and Sy, = {M, q%, A} consisting
of R*manifolds and soft limit projections (the possibility of such representation
follows from [4], Theorem 2). Without loss of generality we may suppose that
a map f is the limit map of some morphism

{j:x: Mz g M;:A}: SM e SM’ .

Since Sy is a factorizing A-spectrum, there exist an index a e A and covers

9%; ecov(M;) such that %, = q;'(%?) for each teT. Fix a subcollection.

{71 teT} of cov(M,) such that, for any space Z, any two {¥#7%: t € T}-close maps
of Z into M, coincide (recall that w(M,) = A). Put ¥, = q; *(*3), teT.

We show that the map f,: M, — M, is soft. Consider a realcompact space Z,
its closed subspace Z, and two maps g,: Z, - M, and h,: Z — M. such that
C@NCM)) = C(Z)/Zy and f.g, = h,/Z,. Since the limit projection p, of the
spectrum Sy, is a soft map, and hence a retraction, there exists a map i: M, - M
such that p,i=1id,,. Let g =1ig,. It is easy to see that q,fy = h/Z, and
C(f9)(C(M")) = C(Z)/Z,. Consequently, by the softness of the limit projection g,
of the spectrum S, there exists a map h: Z - M’ such that fy = 4/Z, and
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and ¢,k = h,. Evidently C(g){(C(M)) = C(Z)/Z,. By assumption, f is a t-approxi-
matively soft map. Hence, there exists a map k: Z — M extending g so fk is
{¥",: te T}-close to h. Put k, = p,k. It is an immediate consequence of our con-
struction that g, = k,/Z, and f,k, = h,. Thus f, is a soft map.

Thus the composition f,p,: M — M, and the limit projection g,: M’ — M.
of the spectrum Sy are soft maps. Let us now recall that w(M) < w(M"). Hence,
by Corollary 2R, the maps f,p, and g, are trivial bundles with fibre R". Since the
space M, is a common base of both bundles, we conclude that there exists a homeo-
morphism s: M — M’ such that g,5 = fp,. Clearly, sis {%,: te T}-close to fand
consequently f is a t-near-homeomorphism.

Conversely, suppose that f: M — M’ is a t-near-homeomorphism between
R*-manifolds and that 7> w. Let Z be a realcompact space, Z, be its closed sub-
space, {#,: teT}=cov(M'), o<|T| = A<t,and letg: Z, » M and h: Z - M’
be maps such that C(g)(C(M)) = C(Z)/Z, and fg = hZ,. Represent M" as the limit
space of some factorizing A-spectrum S = {M,, g%, A} with soft limit projections.
Then, as above, there exist an index a e 4 and covers #; ecov(M,) such that
Y, = q WU for each teT. Since w(M.) =24, we can fix a subcollection
{¥:: te T} = cov(M,) such that, for any space Z, any two {¥7: t€ T}-close maps
of Z into M, coincide. Put¥”, = g 1(¥3), t € T. By assumption, there exists a homeo-
morphism s: M — M’ which is {¥",: te T}-close to f. Then we have g,f = ¢,
and consequently the map g, f, equal to the composition of soft maps g, and s, is
also a soft map. Hence, there exists a map k: Z — M such that k/Z, = g and
q.fk = g,h. By the last equality, the composition fk is {#,: teT}-close to A.
Hence f is a t-approximatively soft map. This completes the proof.

COROLLARY 3D. Let © = w. Then the projection 7;: D*x D"— D* is a t-near-
homeomorphism.

COROLLARY 3N. Let 1> @. Then the projection f,: N°x N*— N* is a t-near-
homeomorphism.

CoroLLARY 3]. Let © > w and X be a compact I'-manifold. Then the projection
ny: XxI°— X is a t-near-homeomorphism.

COROLLARY 3R. Let 2w and X be an R'-manifold. Then the projection
niy: Xx R*— X is a t-near-homeomorphisnr.

References

[1] P.S. Alexandrov and P.S. Urysohn, Uber nulldimensionale Mengen, Math. Ann. 98
(1928), 89-106.

21 L.E.J. Brouwer, On the structure of perfect sets of points, Proc. Akad. Amsterdam 12 (1910),
785-794.

[3] T.A. Chapman, Lecture on Hilbert cube manifolds, C.B.M.S. Regional Conference Series
in Math. No 28, Amer. Math. Soc. (1976).


Artur


98

41

51

{61
[7]
{81

]
{10}

{111
[12]
[13]

[14]
[15]

{16

[171
[18]

A.Ch. Chigogidze

A.Ch. Chigogidze, Noncompact absolute extensors-in dimension n, n-soft maps and their
applications (in Russian), Izvestia AN SSSR, ser. matem. 50 (1986), 156-180.

— Trivial bundles with fiber Tychonov cube (in Russian), Matem. Zametki 39 (1986), 747-756.
— Uncountable poweérs of the line, the natural series and n-soft maps (in Russian), Doki.

AN SSSR 278 (1984), 50-53.

— Characterization of dimension dim of R-compacta and universal spaces of given weight and
given dimension (in Russian), Uspekhi Mat. Nauk 40: 5 (1985), 265-266.

— Zero-di) ional open mappings which increase dimension, Comm. Math. Univ. Carolinae
24 (1983), 573-581. '

— On the dimension of increments of Tychonov spaces, Fund. Math. 111 (1981), 25-36.

S. Ferry, The homeomorphism group of a compact Hilbert cube manifold is an ANR, Ann.
of Math. 106 (1977), 101-115.

W. E. Haver, Mappings between ANR’s that are fine homotopy. equivalences, Pacific J. Math.
58 (1975), 457-461.

S. Sirota, On spectral representation of spaces of closed subsets of bicompacta (in Rusman),
Dokl. AN SSSR. 181 (1968), 1069-1072.

H. Toruﬁczyk On CE-images of the Hilbert cube and characterizing of Q- mamfolds, Fund.

Math. 106 (1980), 31-40.

— Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262.

H. Toruticzyk and J. E. West, Fibrations and Bundles with Hilbert Cube Manifold szer:,
preprint, 1980.

E. V. Shchepin, Topology of limit spaces of uncountable inverse spectrum (in Russian), Uspekhi
Mat. Nauk 31: 5 (1976), 191-226.

— On Tychonoff mamfolds (in Russian), Dokl AN SSSR 246 (1979), 551-554.

~— Functors and le powers of comp (in Russian), Uspekhi Mat. Nauk 36: 3 (1981),
3-62,

DEPARTMENT OF MECHANICS AND MATHEMATICS
MOSCOW STATE UNIVERSITY :
119899 Moscow

USSR

Received 26 November 1986;
in revised form 21 September 1987

icm

The second Peano derivative as a composite derivative
by
Richard J. O’Malley (Milwaukee, Wis.)

Abstract. Differentiable functions f: R — R which simultaneously have a second derivative
m the Peano sense, f;, and a second derivative in the composite sense, (f')z, are investigated. It
is shown that {x: (f")e(x) # fi(x)} is a scattered set, i.e. a countable set not dense in any perfect
set. As a corollary it follows that f; is the derivative of f’ in the composite sense.

1. One of the long outstanding problems concerning Peano derivatives is the
lack of a precise description of in what sense an (z+1)th Peano derivative can be
considered as a derivative of the associated (n)th Peano derivative. In this paper we
provide an answer to that problem in the case when » = 1 and the derivative is taken
in the composite sense. To make the presentation as readily intelligible as possible
requires a little background information.

There is a wealth of information about certain aspects of the class of Peano
derivatives. The interested reader should see for example the excellent survey [2]. It
is also safe to say that all known properties of these functions are also properties
of approximate derivatives, see [4], [7]. However, for approximately differentiable
functions f: R — R and its approximate derivative, g, the following property is
known to hold, [6],:

For any fixed perfect set P, there is an open interval, (a, b) having nonempty

intersection with P, such that for any x in (a, b)nP,
limi f(x+h) f(x) - 90,
h—->0
x+heP

It is naturally reasonable to hope an analogous situation holds for the class of
Peano derivatives. In [6], the above enclosed relationship for a pair of functions f
and g was formalized by saying f was compositely differentiable to g and that g was
a composite derivative of f.

Using that terminology, we can rephrase the previously mentioned problem as:
Does the nth Peano derivative compositely differentiate to.the (r+ 1)th Peano
derivative ? )

Historically, Denjoy has provided partial answers to that problem, [1]. He
established that if besides the (n+ 1)th P-derivative, the (n+ 2)th Peano is also assumed
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