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Non-trivial homeomorphisms of AN\IV without
the continuum hypothesis

by

Saharon Shelah (Jerusalem) and J. Steprans (Toronto)

Abstract. The problem of constructing non-trivial homeomorphisms of SN\ N without assuming
the continuum hypothesis is examined.

In [3] Shelah showed that it is consistent that all automorphisms of & (w)/Finite,
or, equivalently, all autohomeomorphisms of SN\JV, are trivial in the sense that they
are induced by almost-permutations of the integers (an almost-permutation of w
is an injective function from @ to w whose domain and range are both cofinite).
In [2] W. Rudin showed that the continuum hypothesis implies thet there is a non-
trivial autohomeomorphism by showing that there are in fact 22 such homeomor-
phisms. It is the purpose of this paper to examine the question of how to construct
non-trivial autohomeomorphisms in the absence of the continuum hypothesis. The
reader should be warned that S N\JV and 2 (w)/Finite will be used almost interchange-
ably. As well, subsets of the integers will routinely be confused with clopen sets
in SNN\MV. '

At this point the reader may be wondering why the argument assuming 2*° = &,
does not generalize to M4, and make the rest of this paper pointless. The reason,
of course, is that an induction of length greater than @, may run into a Hausdorff
gap and stop. In fact it will be shown in [4] that PFA irhplies that all autohomeomor-
phisms of SN\N are trivial and so this is consistent with M.A,, . This raises the follow-
ing unanswered question:

QuesTION. Is it consistent with MA4,, that there is a non-trivial autohomeo-
morphism of SN\N?

The first result towards obtaining non-trivial autohomeomorphisms of SN\N
without the continuum hypothesis is due to Frolik [1]. He showed that the set of
fixed points of any 1-1 continuous function from an extremally disconnected space
to itself form a clopen set. To see how this can be used to construct non-trivial auto-
homeomorphisms of BN\ consider the following lemma.

LemMma 1. Suppose that f is an ideal on o generated by an =*-ascending
sequence {A,: «ex}. Suppose further that f, is an almost-permutation of A, for
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each o € % and that if a e B then f, ©*f;. Then these functions {for wex} induce an
isomorphism, ®, of the subalgebra of P (w)/Finite generated by F defined by

_ S X if there is some o such that X<=* 4, ,
o(X) = NS (@\X) if there is some a such that O\NX<S*4, .

Proof. Easy.

Now suppose that {4,: € ®,} is a neighbourhood base of clopen sets for
a p-point, &#, in BN\N. It is easy to construct permutations f, of w\A, such that
if xef then f, <*f; and such that homeomorphism of the clopen set AN\A,.,
induced by f,,, is not the identity. By Lemma 1 these permutations induce an
autohomeomorphism @ of SN\N (since the subalgebra generated by & is all of
@ (w)/Finite). Note that & is an isolated fixed point of @. If @ was trivial then either
it or its inverse would extend to a continuous 1-1 function from SN to S(IN\a)
where g is finite. But then & would still be an isolated fixed point contradicting the
fact that, since SN is extremally disconnected, the set of fixed points must be clopen.
Consequently, in any model where there is a p-point of character %, (and there are
many such models where 2% >1,) there is a non-trivial autohomeomorphism
of AN\N. A similar proof due to Baumgartner appears in [S]. Recently van Douwen
(unpublished) has shown that a point of character & is sufficient to imply the exist-
ence of a non-trivial autohomeomorphism of SN\N.

This raises the question of whether itis necessary to have points of small character
in order to have non-trivial autohomeomorphisms. It will be shown that in the model
obtained by adding s, Cohen reals to a model of the continuum hypothesis there is
a non-trivial autohomeomorphism whereas it is known that in this model every
point in AN\N has character ,. The result for p-points of character %, will also be
extended. It will be shown that if X is a closed p-set of character ; in SN\N then
the quotient space obtained by shrinking X to a point has a non-trivial autohomeo-
morphism. This is equivalent to saying that if £ is a p-ideal of character &, then
there is an automorphism of the Boolean algebra generated by # which is not in-
duced by any function from o to w. Moreover, it will be shown that this automor-
phism is absolutely non-trivial in the sense that even in any ,-preserving extension
of the set-theoretic universe it is not induced by a function from  to . The auto-
morphisms constructed by using the method of Baumgartner and Frolik need not
have this property.

The significance of this absolute non-triviality becomes apparent upon consid-
ering the method used in [3] to construct a model where all automorphisms of
& (w)/Finite are trivial. The construction consists of trapping non-trivial automor-
phisms and adding subsets of e to which it is impossible to extend the automorphism.
One might wonder whether it is possible to obtain such a model by adding generic
permutations which turn a non-trivial automorphism into a trivial one. The absolute
non-triviality of the automorphisms to be constructed shows that this is not possible.
The final point worth noting in this regard is the connection with uniformization
properties. In [3] page 58 it is shown that MA,, implies that if {4,: a € w,} is a certain
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type of almost disjoint family and f,: 4, — © are functions then there is F: o - @
such that for all « € @, F} 4, =*f,. One might reasonably conjecture that a similar
uniformization property is true for towers {4,: « € ®;} and functions f,: 4, = ®
so long as o € § implies f, =*f;. Again the example to be constructed shows that
this is not possible.

TaeoreM 1. If 8, Cohen reals are added to a model where 2*° = w, then there
is a non-trivial automorphism of P (w)/Finite in the resulting model.

Proof. Let C, represent the partial order for adding w, 7 Cohen reals. If G'is C,,,
generic over a model of the continuum hypothesis then let ¥, = V[Gn C,]. Tt will
be shown by induction on y € w, that there is an automorphism of (2 (w)/Finite) N
NV, ,, which will be referred to as F,. Moreover, the automorphism F, will be
constructed so that if dey then F;<F,. The desired automorphism will be
U{F,; e ®,}. The fact that is non-trivial will follow from the fact that each
automorphism F, will be constructed so that there is no permutation of @ in ¥y .44
which induces F,.

To see how to construct the automorphisms notice that since ¥; is a model
of the continuum hypothesis it is easy to construct Fy inductively to satisfy the induc-
tion hypothesis. Now suppose that F, has been constructed on (P (w)/Finite) NV, 1 1.
To construct F,, on (#(w)/Finite)n V, ., , proceed by induction on (& (w)/Finite) 0
AV, \Vyy1. Let {m:: Ec o} enumerate all almost-permutations of o and
{X;: ¢ €} enumerate 2 (w)/Finite in V,.,. Suppose that B is a countable subal-
gebra of 2@ (w)/Finite and that the automorphism F,,; has been defined on the
algebra generated by ((?(w)/Finite)n Vys 3) UB (call this algebra B’). Let

X, € (P (w)/Finite)\B' and let X be an equivalence class representative of X;. Define

F(X)={beB'; Xc*b}, F(X)={beB; X2*b}.
Tt will first be shown that # (X) and #(X) are countably generated and then this
fact will be used to extend the automorphism.

Since B is countable, it suffices to show that {beB NV, ;; X <*b} and
{be B'nV,, ; X2*b} are countably generated. Let C be a countable completely
embedded subalgebra of C,,; such that X has a C name. For each ge C let
X(g) = {new; q forces “ne N”}. It will be shown that {X(g); ge C} generate
{beB'nV,.;; X=*b} (a similar proof will work for {beB'n¥,.y; Xo%b}).
Now suppose that p € C, ., is a condition forcing that X = by k for some integer £.
Then let p* be the projection of p on C. To see that b = X(p*) Uk suppose that
me b\k. If m¢ X(p*) then there is some g2 p* such that g forces “m ¢ X”. More-
over, it may be assumed that g € C since C is completely embedded in C,,,. Hence
gup is a condition which forces contradictory statements.

Now to extend F,, it suffices to define F,, (X;) = Y where Yis an equiv-
alence class representative of Y, and the following conditions are satisfied:

1. Y, ¢B and Y # n(X);
2. F, ., (B)2*Y;2* F,,,(c) for every be #(X) and ce F(X);

4 — Fundamenta Mathematicae 132.2
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3. if neither b nor w\b is in F(X)u £ (X) then Ynb and b\Y are both in-
finite. -

(Tt is left to the reader to verify that extending F,,, to the algebra generated by
"B'U{Y;} in the natural way is an isomorphism onto the glgebra generated by
(Frr 1 BYU{Ye} _

. So'it suffices to see why ¥ can be found. Since V, 4, is obtained from Vet
by adding w, Cohen reals and B is countable it is possible to find a Cohen generic
real of B'. Notice that the partial order for splitting the gap formed by (F,./{# (X)

“and F,,{#(X) is a countable partial order since the gap is countably generated.
Hence the Cohen real can be thought of as filling this gap. It is easy to check that
such a Cohen real satisfies properties (1), (2) and (3). So if the induction is carried
out and F,, and F,}; are dealt with alternately so-as to make the limit function
surjective then F,.; will have been defined as wanted.

The only thing left to consider is the limit stages. Limits of cofinality w, take
care of themselves. The limits of cofinality e are handeled almost thé same as the
successor case; the only difference is that if y has cofinality w. then F, has been
defined on

(P (w)/Finiteyn (U {V3; 6 e y}) .

Instead of defining F,,; on ¥,\U {V;; 6 ey} we define it on Ve NU {Vs; S ey}
"so that there will be enough Cohen reals to make the argument work.

THEOREM 2. If F is the dual of a p-filter of character Ny then there is an auto-
.morphism of the Boolean algebra generated by . which is not induced by any function
Srom @ to w. Moreover, this is upward absolute with respect to models preserving w,.
(The automorphism itself does extend canonically to the Boolean.algebm generated
by £ in any extensions of the universe.) o '

Proof. Let {4,; ye w,} be <*-ascending. It may be assumed that 4, = 4,
for each y. Furthermore, if y = A+k where 4 is a limit then it may be assumed that
%€ 4,. Hence if v is a limit then 4, = | {4oiys n e o} for some increasing sequence &
approaching v. Transfinite induction on w, will be used to define bijections
fat 4, — 4, such that the following conditions are satisfied :

4. fof. =id;
5.0f ae f then f, <*f;
6. if Py(f, g) represents the statement

“Yme a\X) (if medom(f )ndom(g) then f(m) = g(m))”

then {fea; P(f;, f)} is finite for each n.

Condition (6) is reminiscént of Hausdorff’s construction of an (v, &}) gap. Finally,
if fis a function and Xe [w]*° then let ST X represent the restriction of f to
dom(fN\X. Lemma 1 and condition (5) assure that the functions {f,: ae w,}
will generate an auntomorphism @ of the Boolean algebra generated by ~#.

.
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Note that (6) implies that there is no g: @ — @ such that g 2%f; for all .8
because otherwise there is some k such that

{Bew;; g2/ Tk}

is Iincountable. Let y belong to {few,; g=f; 1k} with infinitely many prede-
cessors in this set. Now if
ac{fey; g2f3tk}

then (f, TA)u(f,Tk)=g and hence it follows that P(f,,f,) holds contradict-
ing (6). It follows that & is non-trivial. ;
It will now be shown how to carry out the induction. Suppose that {f,; o€y}

have been constructed. If y = f+1 then let :

m if med,N\4g,
i) ‘{ fom) it med,.

Notice that since 4, , 2 4, it follows that f, 2 f; and hence (5) holds. To see that ()
holds note that for each ke w - -

{ueB; PSS} s{neB; Pl f))
because f, 2f;. . - ‘
If y is a limit then let {o(n); 7€ w} be an increasing sequence cofinal in y su_ch
that U {4,:); ne w}2 4,. Define by induction on o finite sets K; < w and finite
functions A; from A4,; N K; to 4, such that: .

7. K; is closed under f,);

8. icK;;

9. if F; = {#u(foiy TK); j<i} then F; is injective

10. domain(F,) = range(F)= U {4, n 4,5 i<i};

11. hyo by = id;

12. if feoli+1)\o() and both Pe(fy, F) and Pr,,,(fp,fousny) hold then
((Kis 1 \ED) O Az 1y N Ag)\range (F) # 0; :

13. if e a(i+N\o (i), Px,.,(f5,fou+1y) holds and j belongs to

((Kis 1NK) N Agiis 1y 0 dg)\range (Fy)

then h;.,(j) # .77&(7),

14. there is some je K;,\K; such that &;.;(j) # fou+ ()

If the induction can be carried out ther let £, = {J {F;; i w}. The fact thatf, is
a bijection follows from (9) and (10) and the choice of the sequence {c(n); n E.(D}.
The fact that (4) is satisfied follows from (11) and (5) follows from the construction.
To see that (6) holds let n € w. Then n< K, and it suffices to show that

{Bey; P, (f5: S}

4*
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is finite. But note that

{Bec); Pr(fp )} S {Beo®; Pr(fpfor T KD}
= {feo(n); PKn(f;;,fa(n))}

and the last set is finite by the induction hypothesis.

Hence, it suffices to show that if § > o(n)+1 then Py (f;, f,) fails. First note
that (14) ensures that Py, (f,, fo(n) fails for every m > n+1 and so it may be assumed
that o(m) < p <o(m+1), where m >n. But now it follows that Py, ,(f3, foms1))
holds if Py, (f3, f,) does since K, = K, ;. Hence (12) ensures that either Py, (f;, F,)
fails or (K 1\Ky) NAens1y) O Ag\range(F,) # 0. But the first possibility implies
that Pg, (fp, f;) fails and so the second must hold. Now an application of (13) yields
that Py (f3, hyeq) fails, and hence so does Py ( Jos S

It now suffices to show that the induction can be carried out. To this end suppose
that /; and K; have been constructed so that properties (8) to (14) hold. (To begin
the induction simply choose K so that 4,¢)\Kp < 4, and (£, T Ko) ' (Ao0y\Kp)
= A,0\Kp and k51 Kyndy) — ANA ) consists of 2-cycles.) Choose T to be
finite and such that F; t T<foqeny Tis closed under both F;and fy(;4 1y, K;uicT
and (fueqy T T)UF; is injective. Let

B = {fe(c(+INa(); Pr{fp:foivn))} -
Then B is finite. Now choose K;,, 2 T such that for each f € B there is
je (K \T) NAp O Agregy)\range(F;)

and K;., is closed under Joti+1y- As well, it may be assumed that
(K,-H\Ki)f\A,,ﬁ.H) # 0. Now let C = {f & (o (i+ INo(D)); Py,,,(fys fois 1)} Once
more the induction hypothesis implies that C is finite. Now define

hivit Kivy > A \range(F)u 4. 1)

such that A;,; consists of 2-cycles and Ry () # () and Ay, () # JSati+ 1y forall
BeC and jeK,,,.

Except for (12) it is easy to verify that properties (7) to (14) all hold. To see that
(12) helds suppose that feo(i+ D\a (i), and both Py Jo: F)) and Py, (3, foi+n)
hold. There are two possibilities. The first one is that Pr(fy, foci4 1) ‘i:(;lds. In this
case f e B and so the choice of K;y, ensures that (12) is satisfied. If, on the other
]Etand, Pr(fy, foqis1y) fails then, since Py, \(f3, foti+1y) does hold, there is some
7€ Ky \T such that fy(j) # fo;41)(j). Hence

Je K \NK) N Ay N4y
It suffices to show that j ¢ range(F,). But since range (F;t T) = domain(F, T T)

and F; 1 TS, 44y it follows that, if j i ] j i
il o(i » if j & domain(F ), then F(j) = £, .
This contradicts that P (f3, F) holds. ® O = Fen @) # 50
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