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The existence of universal invariant measures on large sets
by

Piotr Zakrzewski (Warszawa)

Abstract. We consider countably additive, nonnegative, extended real-valued measures which
vanish on singletons. ‘Such a measure is universal on a set X iff it is defined on all subsets of X.
We prove, in particular, that there exists a universal ¢-finite measure on X which is invariant with
respect to a given group G of bijections of X iff there exists a universal o-finite measure on X such
that for every subgroup H of G of cardinality e, the set of all points of X with uncountable H-orbits
has measure zero.

0. Terminology. Our set-theoretic notation and terminology are standard.
Ordinals are identified with the sets of their predecessors and cardinals are defined
as initial ordinals. If 4 is a set, then P(4) denotes the family of all subsets of 4,
and | A| is the cardinality of 4. If f: X - Yis a function and 4 < X, then f [4] denotes
the image of 4.

All measures considered in this paper are assumed to be:

— nonnegative extended real-valued;

— countably additive;

— vanishing on singletons;

— assuming at least one positive finite value.

A measure is called universal on a set X iff it is defined on P(X). We adopt the
convention that the phrase “measure on X” always means “universal measure
on X7,

Let %, A be infinite cardinals. A measure p on X is called:

— x-additive iff every union of less than % sets of measure O has measure 0;

— finite iff p(X)<-+co;

— J-finite iff every set of positive measure is the union of less than A pairwise
disjoint subsets of positive finite measure.

Notice that if % > A and p is »-additive, then it is A-finite iff X is the union of
less than A sets of positive finite measure. Following traditional terminology, we
write. “o-finite” instead of “w,-finite”.

By an ideal on a set X we mean here a family 7 < P(X) which contains all single-
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tons, does not contain X and is closed under the operations of countable union and
of taking subsets.
An ideal I on X is called:

— x-complete iff every union of less than x sets from I belongs to I;

— A-saturated iff for every family & = P(X)\I of cardinality A there exist
two sets 4, Be & such that AnB¢ I

We define sat(l) to be the least cardinal A for which 7 is A-saturated.

. The most important (from our point of view) example of an ideal on X is the
ideal consisting of all sets of measure 0 for a given measure p on X. We call it the
ideal of p and denote it by I,. Notice that if » > 4> w and u is x-additive, then u
is A-finite iff I, is A-saturated.

We shall use some basic facts concerning the possibility of extcndmg a given
ideal I on X to the ideal of a measure on X.

PrOPOSITION 0,1. Assume that x is real-valued measurable. If 1 is any »-complete

ideal on a set X so that I is generated by < x sets, then I can be extended to the idea!
of a x-additive measure on X.

Proof. Let {B;: &<} be a family of < sets generating the ideal [ It is
easy to construct a set L < X such that |L] = x and [B:nL| < for each ¢ <,
We take an arbitrary »-additive measure u on L and define a measure m on X by

m(d) = p(4nL)
It follows immediately that /<7, ®

We say that an uncountable regular cardinal » has property E iff, for any set X,
every x-complete ideal on X can be extended to the ideal of a x-additive measure
on X. It is easy to see that for » > 2° property E is equivalent to strong compactness.
On the other hand, it follows from Fisher’s Axiom (see [3] for its formulation) that 2°
has property E. An unpublished result of Kunen states that if ZFC+ “There exists
a strongly compact cardinal” is consistent, then so is ZFC+ Fisher’s Axiom.

Finally, notice that if % is any infinite cardinal, then every ideal of a x-additive
measure on X can be extended to the ideal of a finite %-additive measure on X.

for Ac X.

1. Preliminaries. Throughout this paper, G denotes a certain group of bijections
of a given set X.

We say that a measure m on a set Z < X is G-invariant (or simply: invariant)
iff m(g[A]) = m(4) whenever A=Z and geG are such that g[4] =Z. We say
that an ideal J on a set Z < X is G-invariant (or simply: invariant) xﬁ' A e I implies
‘that g[4] e whenever 4<=Z and g € G are such that g[d] = Z.

These definitions still make sense in the case where (X, +) is a group and G is
“a subgroup of X. We'only have to identify each element g € G with the associated
left shift ¢;: X— X given by the formula @y (k) = g-h.

Harazishvili [2] and, independently, Brdss and Mauldin [1] proved that there
is no o-finite X-invariant measure on any group X. In fact, their argument gives
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the stronger result: there is no o-finite G-invariant measure on X-for any uncount-
able subgroup G of X. Moreover, it follows from a theorem of Ryll-Nardzewski
and Telgarsky [5] that, under the above assumptions, there does not even exist an
w;-saturated G-invariant ideal on X. On the other hand, Pelc [4] noticed that if G
is an at most countable subgroup of X, then a ¢-finite G-invariant measure always
exists on X, provided that [X|> the first real-valued measurable cardinal.

These results lead to the problem, formulated by Pelc (personal communication),
of finding necessary and sufficient conditions for the existence of a o-finite
G-invariant measure on an arbitrary set X. The aim of the present paper. isto give
a solution to this problem. In Section 2, we prove in fact a stronger theorem on the
existence of a x-additive A-finite G-invariant measure on X, under ‘the assuniption
that %> 1> w. As a tool we use the following auxiliary fact Wthh was proved
in [6].

LemMa 1.1 If pis a finite G-invariant medsure on aset Z é X t}zen there exists
a G-invariant measure m on X extending n and such that

I,={VeX: VgeG glVlnZel}. B -

Our investigations reveal deep connection between the-problem: of eXistence
of invariant measures on X and the problem of existence of invariant ideals on X.
The latter is discussed in Section 3 where, assuming again that %> 1> @, we find
necessary and sufficient conditions for the existence of a »- con"plete A= saturated
G-invariant ideal on X.

From now on we assume throughout the paper that x and 2 axe ﬁxed cardmals
such that %> 1> w.

We use some special notation to describe the action of Gon X. IfFc G, then. [F]
denotes the subgroup of G generated by F; if additionally x € X; then Fx denotes
the set { f(x): fe F}, called the F-orbit of x. If H is a subgroup of G, '&ve’ write

Oy(H) = {xe X: |Hx| = 4} ;
Os:(H) = {xe X: |Hx| > 1}.
Finally we define:

S¥G) = {O;(H): H— a subgroup of G of cardinality""l}';
SidG) = {0, ,(H): H— a subgroup of G of cardinalit‘y less than x} .

2. »-additive, »-finite measures. Our main result establishes a relationship
between the existence of a x-additive A-finite G-invariant measure on X and a certain
property of the family S,(G). The following observation is a first step in this dlrectlon

Lemva 2.1. If m is a x-additive A-finite G- invariant measure on X, then
8,(G) < 1I,.

Proof. Let H be an arbitrary subgroup of G of cardinality 4. We partition the
set 0,(H) into pairwise disjoint selectors {S,: @ < 1} of the famlly of alt H-orbits.
Since the ideal I, is A-saturated, there exists ap <A such that S, e L.

2%
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Notice that 8§, = U (h[S,]nS,) for each «a<li and, furthermore,
heH
O,(H)= ) S.. Hence, I, being invariant and x-additive, we conclude that
x<i
OA(H) € Im . W
In view of this lemma, the existence of a x-additive A-finite G-invariant measure
on X implies the possibility of extending the family S;(G) to ihe ideal of a x-additive

measure on X. Surprisingly, the converse implication is also true, so the main result
can be formulated as follows:

THEOREM 2.2. The following statements are equivalent:

(i) There exists a x-additive )-finite G-invariant measure on X.
(ii) The family S,(G) can be extended to the ideal of a »-additive measure on X.

Proof. In view of Lemma 2.1 only the implication (ii)— (i) requires a proof.
It will be based on the following lemma.

LemMa 2.3. Suppose that there exists a set Z < X and a G-invariant measure p
on Z with the properties:

(i) p is »-additive and finite,
(ii) there exists a family F< G such that |F| <1 and:

VAdcZ YgeG (g[A]nfUpf[Z] = G- pu(d) =0),

Then there exists a %-additive A-finite G-invariant measure on X.

Proof of Lemma 2.3. By Lemma 1.1, u extends to an invariant measure m
on X such that

(0) IL={VeX:VgeGglVlnZel,}.

Obviously, m is x-additive.
To see that m is A-finite, it suffices to represent X as a union of less than A sets
of positive finite measure. We have

X= U fiZlvzo(x\@zv Uf12])
vwhere, for each feF,
m(fIZ]) = m(Z) = p(2)
Consequently, it is enough to prove that
m(X\(Z quEJF flzm=o0.
To see this we use equality (0). Let g e G be arbitrary and let
A= g[X\(Zuf{;JFf[Z])]nZ.

and O<u(Z)<+c.

Then g"[A]r\fUF f[Z] = @; hence pu(A) = 0 by assumption (ji). This concludes

the proof of Lemma 2.3. W
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We continue the proof of Theorem 2.2. Let u be a x-additive measure on X
such that S)(G) < I,. We may assume that 4 is finite. We will prove that there exists
a set Z < X such that the measure u|P(Z) satisfies the hypotheses of Lemma 2.3.

CLAIM 1. There exists a set Z, < X such that:

@) nZ)>0,

(i) VAcZ, Yge G (gldlcZ, - u(AAg[4]) = 0).

Proof of Claim 1. Suppose that there is no such set. Then clearly

(1) For every set ¥ < X of positive measure there exists a set ¥ < Y and a func-
tion g € G such that

w(Vy>0, g[¥VlcY and VngiVl=4d.

We claim’ that (1) implies:

(2) For every set Y < X of positive measure there exists a subgroup H(Y) = G
and a set W(Y)c Y with the following properties:

@1 [H(Y)| <oy,
@2 H(\W(Y) =0,
(2.3) Vxe W(Y) |YnH(Y)x} =2
To see this, let R P(¥)x G be a maximal family such that
Vig>eR-u(¥)>0,

V1,810 Vo, 820 €ER-VinV, = @,
V,g>€eR=g[V]lcY and Vngl[V}=0

We define
HY)=[{geG: AV Y (V,g>eR}],

W(Y)=U{VcY:3geG <V,g>eR}.

Easy verification of properties (2.1)-(2.3) completes the proof of (2).
Now we construct by induction two sequences

Xy £<A), a sequence of subsets of X,
{Fe: <Ay, a sequence of subsets of G,

in such a way that putting
T= () X;

z<a

and H=[UF]
E<1

we get the following conditions satisfied

GB.1) w1 >0,
(32 Hi<4,
(3.3 T<O,(H).
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In each step.of ithe induction procedure we keep the condition
‘ V<A (u(XNXp) = 0 and |Fy < A)
fulfilled .

So, let Xy = X, Fy = H(X) and assume that we have already constructed
(X E<a)y and (Fy: £ <a) for a certain <. We put H, = [ F]; |H,| <A
E<a

We partition the set X into pairwise disjoint (sub-) selectors {Ss: B<v} of the family
of all H,-orbits; v<|H,|. We let P, = {B<v: p(S;) >0} and using (2) we define
X, = U W(sSp,

PePy

" F, = H,u U H(Sp)
BePu
We have

e WK, = U (SPNESH)V U Sh
BePy B¢ Pa

hence, by x-additivity of p, p(X\X,) = 0. Since it is also easy to see that |F,] < 4,
the construction is completed

It now remains to verify that conditions (3.1)-(3.3) are satisfied. Only the last
one requires a proof.

Let xe T. It is enough to show that

Va<d FEax\H,x #@.

Indeed, choosing x, € F,x\H,x for each o < 4, we obfain a set {x,: o« < i} = Hx of
cardinality A. Hence, by (3.2), it follows that {Hx| = A.

So let @ < A. Since x € X,, there is an ordinal f e P, such that x e W(Sj). Hence,
by (2.3), there exists a function g € H (Sp) such that g(x) e Sy and g(x) # x. But

then g(x) € F,x\H,x since x € H,x and |Sjn H,x| = 1. This concludes the proof
of (3.3). -

To complete the proof of Claim 1 it suffices to notice that conditions (3.1)~(3.3)
imply [H| = A andu(Q,(H)) > 0. This contradicts the assumption that Sy(G) < ;.
CLAM 2. There exist a set Z<Z, and a-family F< G such that
() (2)>0 and |F| <3,
(i) YA=Z YgeG(g [A]nfUFf[Z] =G-ud) =0).
3 €

Proof of Claim 2. Suppose that the claim is false, i.e.
(4) For every set W< Z, of positive measure and for any family F< G of
cardinality less than 4 there exists a set 4 = W and a function ¢ € G such that
glAdln USfIWl=@ and pu(d)>0.
JeF

We construct by induction two sequences
{Xg: € < A, a sequence of subsets of X,
(Fg: £< 2>, a sequence of subsets of G.
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Our goal is to obtain, as in the proof of Claim 1, the set T’ = ) X;and the subgroup
H = [ Fy] of G with properties (3.1)~(3.3). =2
&< .
During the induction procedure we now control the condition
VE<A (u(Z\Xp = 0 and |[Ffl <w).

So, let X, = Z,, F, = {idx} and assume that we have already constructed
(Hy: &<a) and (Fy: & <a) for an ordinal <. Let U Fy = {faz B<v}iv<i
Let R, < P(Z) %G be a maximal family such that % :

KV,g>€R>p(V)>0,

<Viigl>) <V2’ gZ>ERa_’V1nV2 =0

<V,G>ERa->9[V]nﬂU flZ1=9.
<

S

We define )
X, =U{Vcz;:3geG (V,g> R},
F,={geG:3V<Z, (V,g)eRs}.

Now suppose that, contrary to our intentions, w(ZNX)>0. We set W = Z;\X,
and F = {fp: B <v}. By (4) there exists a set A < W and a function g € G such that

gldl= X\NU f[W] and u(d)>0.
. By
We have
USRIl (X\’Ufp[Zd) UﬁUf;s[Zx\W] .
p<v <v <v
Hence 4 = AU A,, where

gld,le X\ﬂyfalle .
gl4;] c’L(J FHIZ Y.

For each f<v we set By = A;n(g™" o f) [Z\W]; then

BycZ, and (fp'log[Bp]czl\Wczl\B,,;

hence p(B;) = 0 by the properties of Z; (see Claim 1 (ii). Since 4, = pngﬂ’ we

get j1(4,) = 0. But this implies that #(4,)>0 and, cqnsequently, the pair {4, 9>
violates the maximality of the family R, . This contradiction proves t}}at p_(Z IN\NXL) = g
Since E, is wl-saiuratcd, we also have |F,] <w,. The construction 1s completel.

We now verify conditions (3.1)~(3.3). Clearly, w(T) = w(Z) and |H|<A.
To prove (3.3) let xeT. It is enough to show that

Va<i Fox\(UF)x#9.
F<a
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We fix an ordinal @ < 4. Since x € X, there exists a pair {V, g> € R, such that xe V.
But then g € F, and g(x) e X\(U Fy)x.
. &<a

This completes the proof of Claim 2 since, as we have already seen, conditions
(3.1)~(3.3) lead to a contradiction.

To conclude the proof of the theorem it suffices to notice that the set Z with the
measure pu|P(Z) satisfies the hypotheses of Lemma 2.3. M

There naturally arises the question whether condition (ii) of the above theorem
.may be replaced by a simpler one. We will show that this can be done in some cases.

First we need two technical Lemmas.

LeMMA 2.4, Let p be a finite x-additive measure on X. The following statements
are equivalent .

D Su@ <1,

(i) Si(@® =1,.

Proof. It is obvious that (i) —(i). For the converse, assume that SA(G)CY,
and suppose, contrary to the claim, that S3{G)\I, # @. Then there exists a sub-
group Hc G and a cardinal ¢ such that |H| <%, A< <3 and (O (H)) > 0.

.Let {S;: & <o} be a partition of O,(H) into pairwise disjoint selectors of the
family of all H-orbits of cardinality g.

We may assume that u(S,)> 0.
For every £, 0 <¢ < 1, we consider a maximal family R, = P(S;) x G such that
V9> eRy-»u(V)>0,
Fiy 910, {V2r 92> ER;»VinV, =@,
V9> € Re>g[V]c Sy, '
and we set
Ye=U{rcsS,:dgeG V,gdeRy},
Fe={geG:IVcs, V.gdeR}.
Finally, we define '

Y= () Y, and H, =
o<g<s ! [O};LAF‘]‘
It follows easily that -
CH =14, p(¥)>0 and Y<cOuH):

but this is impossible. M

LEMMA 2.5, Assume that x is regular. The following statements are equivalent:
(}) For every subgroup H of G, if |H| <x then 1XNO5 (H)| = x.
(i) The family S,(G) can be extended 1o a x~complete ideal on X.

Proof. Implication (i) — (i) is obvious. To see that the converse is true, it suffices

t ily
0 Prove that IX\:E)DAcl > x for every family {4,: <o} < S;(G) of cardinality
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o<x%. So let, for each ¢<p, A; = 0,(H,), where H, is a subgroup of G and
|He <%, We define H=[U HJ]. It is- enough to notice that |H| <% and
s<e

gl() 03 ,(H) = 05,(H). B

If condition (i) of Lemma 2.5 holds, then the x-complete ideal generated by
the family S,,(G) will be denoted by I,(G). In view of Lemma 2.4 and Theorem 2.2
the existence of a x-additive A-finite invariant measure on X is equivalent to the
possibility of extending the ideal I,,(G) to the ideal of a x-additive measure on X.
This leads to the following refinement of Theorem 2.2.

TREOREM 2.6. Assume that # is real-valued measurable and |G| < %. The following
statements are equivalent:

(i) There exists a %-additive A-finite G-invariant medsure on X.

(ii) For every subgroup H of G, if |H| <x then | XNO 3 (H)| 2 .

Proof. Only the implication (i) — (i) requires a proof. Let G = {ge: E<u}
For each ordinal «, A <o <x, we set H, = [{g,: € <a}]. It is easy to see that the
family {05 ,(H.): A<Sa <} generates the ideal 1;,(G). Hence, in view of Proposi-
tion 0.1, I,,(G) extends to the ideal of a x-additive measure on X n

If we assume that x has property E, then the above characterization is obviously
true without any restriction on the cardinality of G.

THEOREM 2.7. Assume that x has property E. The following statements are
equivalent:

(i) There exists a x-additive A-finite G-invariant measure on X.

(ii) For every subgroup H of G, if |H|<x then | X\Os(H)=>x A

In particular, under Fisher’s Axiom, the above characterization is true for
x = 2% :

The additional assumption on » cannot be eliminated from the formulation
of Theorem 2.7. In fact, if » is a regular cardinal such that the implication (if) » @)
holds for every group G, then x has property E. This follows immediately from the
next result. .

PROPOSITION 2.8. Assume that x is regular. If Iis a x-complete ideal on X,
then there exists a group G of bijections of X such that I = LG

Proof. Let I be a x-complete ideal on X generated by 2 family {Bs: &<v}
such that |B,| > 4 for each {<v.

For every & <v, it is easy to construct a group G, of bijections of X with the
following properties:

(1) |Gel = 4,
() 0x(Gy = B,
() Vx¢ By Gex = {x}.

We define G to be the group of bijections of X generated by eU Gy.
<v B
In order to see that I,(G) = I, take H to be an arbitrary subgroup of G such.
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that [H| <. Then there exists a set T v with |7} <» and H= [ G]. It is easy
el
to see that Oy ,(H) = U B, Hence, by x-completeness of I, we have O, ,(H)e I
feT

This shows that I,,(G) =T and the converse inclusion follows from (1) and (2). M

Remark 2.9. If we agree that the phrase “w-finite measure” means “finite
measure”, then all results of this section remain true for A = w. The proofs, however,
must -be changed (see [7] for details).

3. x-complete 1-saturated ideals. An examination of the reasonings in the
previous section shows that the key role in our arguments is played by these pro-
perties of x-additive A-finite measures which are expressible in terms of their ideals.

" For example, the proof of Lemma 2.1 gives the following more general result.

LemMa 3.1. If I is a w-complete A-saturated G-invariant ideal - on X, then
S(Gcl | :

This observation leads to an interesting corollary of Theorem 2.2.

PROPOSITION 3.2.- The following statements are equivalent:

(i) There exists a x-additive A-finite G-invariant measure on X.

(if) There exists a x-additive A-finite measure on X whose ideal is G-invariant. @

Under some additional assumptions we may even obtain a much stronger fact.

PROPOSITION 3.3. Assume that either x% is real-valuéd measyrable and |Gl <%
or that % has property E. The following statements are equivalent:

(1) There exists a x-additive A-finite G-invariant measure on X.

(ii) There exists a x-complete )\-saturated G-invariant ideal on X.

Proof. Let I be a x-complete A-saturated invariant ideal on X, Lemma 3.1

implies that S)(G) = I. By an easy modification of the proof of Lemma 2.4 we obtain
the following:

Crawm: Let J be a x-complete )-saturated ideal on X. Then
50 <=V i Su@eJ.

This implies that $,,(G) < I, and hence | X\O5 A(H)| > for every subgroup H
of G such that | H| < x. The existence of a x-additive A-finite invariant measure on X
follows now from Theorem 2.6 or Theorem 2.7, respectively. B ‘

These results turn our attention to the problem of existence of an arbitrary
s-complete A-saturated invariant ideal on X, As might have been expected, the
solution closely resembles the result obtained for invariant measures.

THEOREM 3.4. The following statements are equivalent:

(i) There exists a n-complete A-saturated G-invariant ideal on X,

(ii) The family Sy(G) can be extended to a %-complete )-saturated ideal on X,

Proof. Implication (i)~ (ii) follows from Lemma 3.1. The proof of the con-
verse is based ‘on the following counterpart to Lemma 2.3:
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LEMMA 3.5. Suppose that there exist a set Z < X and a G-invariant ideal J on Z
with the propertics:

(i) J is x-complete and A-saturated,
(ii) there exists a family F< G such that |[F| <2 and

YA4=Z VgeG (g [A]nfUFf[Z] =@-Ael).
Then there exists a x-complete A-saturated G-invariant ideal on X
Proof of Lemma 3.5. We define an ideal I on X by
I'={AdcX: VgeGgldlnZeJ}.

1t is easy to see that I is x-complete and G-invariant. It remains to verify that I'is

A-saturated.
Let H = [F], |H| = ¢ <. If we show that

I={AcX: VheH h[AlnZeT},

then it will easily follow that T is v-saturated, where v = max(g*, sat(/), w;) <2

(see the proof of Proposition 3.1 from [6]). ’ )
Let H = {h;: & <g}. In order to prove (1) we take a set 4 <= X with

@ Vhe H h[dlnZeJ
and we show that del Let geG be -arbitrars.'. Ff:r caqh E<p, set
By = (g hy)[Z]lnyg [A]1nZ and notice that, J being G-invariant

BeeJ iff (gtegTVBles.
But, since (fz ' g~ H[Bl e hz*[A]1nZ and h?[A] N Z eJ by (2), this implies that
3) BeeJ for each £<g.

We claim, moreover, that
ZNU Bsed. .
@ (¢141nZ) égn g,

Indeed, we have
-1 B < AN U h [ ] »
g (g [4]r \Z/‘:Uqz ] X‘ 2o iz

follows from assumption (ii). .
» ﬂ?i;iﬁ)y ?3) and (4) imply, by »-completeness of J, that g[4]nZ eJ. Since the

choice of g was arbitrary, this completes the proof of (1), z?.nd Ihlence of Lemma3.5. M
Now, in order to prove Theorem 3.4, we show that if J is a x-complete A;ls:.}tlu;

rated ideal on X extending the family S3(G), then ‘there exists a set Z< X sug A ?n

the ideal JAP(Z) on Z satisfies the hypotheses of Lemma 3.5. We proceed as
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the proof of Theorem 2.2. With a minor modification of the arguments used there
we prove the following claims:

CLAM 1. There exists a set Z, =Z such that

0 Z, ¢7,

(i) YA<Z; VgeG (g[d] cZ, —+ AAg[A] €J):

CLAM 2. There exist a set Z<=Z, and a family F< G such that
(i) Z¢J and [F| <),

(i) VA<Z Vge G (g [A]r\fUFf[Z] =@-del)

This can be regarded as a satisfactory outline of the proof of Theorem 3.4,

References

[11 P.Erdés, R. D. Mauldin, The nonexistence of certain invariant measures, Proc. Amer. Math
Soc. 59 (1976), 321-322. ’

[2] A.B. Harazishvili, 0 niekotorych tipach invariantnych mi
s itnych mier, Dokl. A, N. SS,
(1975), 538-540. SR 222 6

[3]1 P.J. Nyikos, A4 provisional solution to the normal Moore s, :
s space problem, Proc. Amer. Math.
Soc. 78 (1980), 429-435. ’ mer. Math

[4] fx.sfelc, Invariant measures and ideals on discrete groups, Dissertationes Math. 255 (1986),
[5]1 C. Ryll-Nardzewski, R. Telgarsky, The nonexistence of universal invariant measures,
Proc. Amer. Math. Soc. 69 (1978), 240-242.,
[6] P. Zakrzewski, On universal semiregular invariant measures, J i
s ournal of § 1
(1988), 1170-1176, ' °f Symbolie Logio 33

{71 — Paradoxical decompositions and invariant measures, to appear.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF WARSAW
PKIN IX p.

00-901 Warsaw, Poland

Received 4 June 1987

icm

Locally ‘connected curves viewed as inverse limits
by

Jacek Nikiel (Wroctaw)

Absiract. Every locally connected curve is the limit of an inverse sequence of regular continua
with monotone bonding surjections. Moreover, any space which is the limit of an inverse sequence
of connected graphs with monotone bonding surjections is a rather small continuum.

1. Introduction. All spaces considered in this paper are assumed to be metric,
all maps are continuous, d always denotes a distance function, and ‘continunm’
means ‘compact connected (metric) space’.

We will say that a space X is:

() a graph provided X is a one-dimensional (compact) polyhedron;

(b) a completely regular continuum provided X is a continuum such that
int(Y) # 0 for each nondegenerate subcontinuum Y of X;

(¢) a regular continuum if X is a continuum such that for any &> 0 and each
x € X there exists an open neighbourhood U of x in X such that bd (U) is finite and
diam U < & (regular continua are often called ‘“rim-finite continua’);

(d) a curve provided X is a continuum of dimension 1.

Clearly, every connected graph is a completely regular continuum and every
regular continuum is a locally connected curve. Moreover, each completely regular
continuum, is regular (see for example Proposition 3.2 below).

Recall that a (continuous) map f: X— Y is said to be monotone if f~'(y) is
connected for each ye Y.

It is well-known that every curve X is the limit of some inverse sequence (X, f,)
of (connected) graphs (see e.g. [2], Theorem 1.13.2, p. 145; it is not difficult to see
that the sequence can be chosen in such a manner that all the bonding maps,
fot X, X,, are surjections). If X is locally connected, one can use the general
method of S. Marde$ié to produce an inverse sequence (Y, g,) of locally connected
continua Y, with monotone bonding surjections g,: ¥,.;— Y, such that
X = liminv(¥,,g,) ((¥;, g, is obtained as a ‘modification’ of (X,,£,); see [8],
p. 164 — the proof of Theorem 2). However, in general, almost nothing can be
proved about (¥,, g,). In particular, ¥,’s need not (and often they can not) be graphs;
they are simply locally connected continua. The only essential infofmation on
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