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On algebras with bases of different cardinalities
by

Andrzej Kisielewicz (Wroclaw)

Abstract. In the beginning of the sixties, E. Marczewski posed the following problem: if 4 is
an algebra having two bases of different cardinalities, is it true that for all n > 2 the number pn of
essentially n-ary polynomialsin 4 is greater than zero? In this paper we answer this question
showing that actually a much stronger fact is true: for all 3> 2 the number py is infinite. .

0. Introduction. Given an algebra 4, let p, = p,(4) denote the number of
essentially #-ary polynomials in A4 (for n> 1), and let p, = po(4) be the number
of constants. In connection with a special attention focused on algebras with bases
of different cardinalities (cf. [7, 10, 13, 17]) E. Marczewski put foreward the following
conjecture (see [16], cf. [14], P 527, P528):

(M) if an algebra 4 has two ‘bases of different cardinalities, then p(4)>0
for all n>2. '

The conjecture can be also formulated in terms of equational logic or in terms
of composition of functions, and is still of some interest in connection with investiga-
tion of p,-sequences and spectra of equational theories (see [16] and §3 below,
of. also [2, 8, 11, 18, 19]). Some partial results connected with this conjecture were
obtained in [16, 3, 4]. The condition p,> 0 for other classes of algebras was con-
sidered also in [6, 20].

In this paper we use the following four properties of algebras 4 with bases of
different cardinalities:

(P1) the cardinality || is greater than 1, i.e. A is nontrivial;
(P2) for some n>m>0 there exist polynomials Gi(E1s weer Xun)s Ti(Xps wrer Xn)
over d (i=1,..,n j=1,..,m) satisfying identically

gt(f;l(xl: ey xn): seey m(x1> weny X )»= Xis

fj(gl(xl, (83} xm)y '-"gn(xl’ vy xm)) =X

®

forall i=1,..,nand j=1,..,m (see [7] or [9], §31);
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(JT) every algebra with the properties P1, P2 (every nontrivial model of identi-
ties (1)) is infinite (this is a result of Jonsson and Tarski [10]);

(GR) if an algebra has property P2 with some n>m > 0, then it has also pro-
perty P2 with the same m and some arbitrarily large » (this is by the result of
Goetz and Ryll-Nardzewski [7]).

Using some more recent techniques of investigation of composition of functions
we prove

THEOREM 1. If an algebra A has two bases of different cardinalities, then X ERN
Jor all nz2. Moreover, one of the following holds: (i) po(d) = 0 and pi(d) =1,
or (i) po(4) = 0 and p,(4) = %y, or (iii) po(4) = 1 and pi(4) 2N, or else (iv) both
Po(4), pi(4) = .

Examples showing that each of the conditions (i)-(iv) can actually hold are
provided. An application in equational logic and an interesting problem arising in
this connection are presented in § 3. :

Our terminology is standard. As a general references ‘we recommend [9, 14]
and [19]. '

1. Proof of Theorem. Our proof splits into three cases: Let C be the subalgebra
of 4 consisting of the constants of 4. Clearly, C has property P2, as well. If follows,
by JT, that either |C| <1 or |C|>&,. Hence, we have the following three possibili-
ties for po(d) = [Cl: py(d) = 0, po(d) = 1 or Po(A)= 4. In each of these cases
a different approach is applied.

Throughout the paper, by 4 we denote an algebra satisfying Pl and P2, and
by g;, f; — polynomials of 4 satisfying (1), with some m fixed, and » suitably large.

Case 1. py(4) = 0. In this case p;(4) = |P“)(4)|, where P®(4) is the algebra
of unary polynomials of 4 (cf. [9], p. 38). Clearly, P*)(d) is a model for identities 1),
and therefore, by JT, either p,(4)<1 or Dp((4) 2 8,. On the other hand, since
|4l > 1, the unary projection is an essentially unary polynomial of 4, i.e. pi(4) = 1.
This means that condition (i) or (i) of Theorem 1 is satisfied.

To prove the first statement of Theorem 1, we modify the proof given in [16]
applying an idea wused in [4].

Denote by I the idempotent reduct of 4, i.e. the algebra generated by all poly-
nomials f(x,, ..., x,) of 4, n=2, satisfying f(x, ..., ¥) = x for every x € A. Poly-
nomjals of I are just idempotent polynomials of 4, and therefore p,(4) = p,(I) for
all 7. On the other hand, by the general result. of [12], for idempotent algebras
P2 2Ny implies p, 28, forall n > 2. Hence, to prove the first statement of Theorem 1
it is enough to show that the number of essentially binary idempotent polynomials
in d, p,(I)=N,.

To this end define

9¥ ) = gilx, x, ..., %)
and for any n-tuple o = (i, ..

(i=1,2,..,n)
- By with 4, e {1, 2}
(2) f}?(xlixl) =j:i(gt(xi‘))"':g;r(xi,.) (j= 132:-"3 m)-
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Clearly, f} arc binary polynomials of 4, and moreover, by virtue of (1), all these
polynomials are idempotent, i.e. Ji(x, %) = x,

Now, let B be the set of all binary idempotent polynomials of 4. If we denote
d = py(I), then |B| = d-2, since B contains essentially binary polynomials of I
and two projections, in addition. We define a mapping ¢ of the set S of all n-tuples
= {iyyuny by With fo€ {1, 2} into the set T.of all m-tuples {hyy oy by with
I, e B by the formula ’

P(0) = (00, %)y oo [0 XD -

Observe that if ¢(@) = @(f) for some o = (if, ..., 5> and Bo=CJ1s s dnys 1€,

Sy, x) = f,"(x, vxg) for all j=1,..., m, then using (1) we have

(3) gier) = g f10r 0 x2), s Sl X2))
' = g( ST, X}, oos Ry, X3)) = g3(x;)
for all k= 1,..,n
Since, by assumption, there is no constant polynomial in A (and [4]>1), it
follows that i = j, for all k = 1, ...,n, i.c., @ = B. This means that the mapping .
is one-to-one. Comparing now the cardinalities of the sets-S and T we conclude that

< (d+2)" .

Since m and o are fixed, while n can be chosen arbitrarily large, it follows that d3=x,.
This completes the proof in the case when py(4) = 0.
Cuase 2. py(d) = 1. In this case |P"X(4)| = p,(4)+1, and similarly to Case 1,
we infer by JT that py(4) = n,. Hence, condition (iii) of Theorem 1 is satisfied.
To prove the first statement denote the unique constant in 4 by 0 and consider
the following unary polynomials of A:

si(x) = £(h(x),0,0,..,0),
Where h(x) runs over the set PU)(4), j = 1, ..., m. Since
G e $4(0) = A(x)

and there are infinitely many distinct 2(x) in P*(4), there must be also infinitely
many distinct polynomials in one of the sets

S = () he PU(A)}

for some j = 1, ..., m. Moreover, since p,(4) = 1, all these polynomials, except at
most one, are essentially unary.

Using analogous arguments for any / we conclude that for every i=1,...,n
there exists some j = 1,...,m such that the following condition C(i,j) holds:
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C(i,j): there are infinitely many A(x) in P®(4) such that the functions
50, ..., 0, (%), 0, ..., 0) with A(x) standing on ith place are essentially unary and
pairwise distinct.

If follows that there is some j=1,..,m and distinct indicies i, ...,
€{1,2, ..., n} such that k> nfm and C(i, j) holds for all i = i, ..., §,. For simplicity,
we assume that {i;, ..., i} = {1, ..., k} and for any r <k we consider polynomials

P?(xn s xr) =f:](h(x1)’ KXoy vees Xpy 07 0: siey 0)

with those A(x) which yield infinitely many distinct essentially unary functions
fi(h(2), 0, ..., 0). '

All these polynomials p? are essentially r-ary. Indeed, each of them depends
on x;, since by assumption, f;(k(x), 0, ..., 0) does. Furthermore, if 2<r, then
substituting in  pi(xy,..,%), ¥, =0 and xy=..=x =0, we obtain
Ji0,x,,0, ...,0); here we use the fact that p;(d) = 1. This expression depends
on x, by the assumption that C(2,f) holds (2 < r<k), and therefore pj(x, ..., X,)
depends on x,, as well. By similar arguments, p’j'(xl, «.sy X,) depends on the remaining
variables x;, ..., x,..

On the other hand, the polynomials pj(xy , ..., x,) in question are pairwise distinct.
This is so, because the substitution X, = ..=x,=0 yields functions
j}(h(x1), 0,0, ...,0), which are pairwise distinct by assumption.

_ Thus, we have proved that there are infinitely many essentially r-ary polyno-
mials in 4, for any r<k.

Since k > n/m, and n can be arbitrarily large, if follows finally that p,(d)=,
for any r>2, thus completing the proof in Case 2. '

Case 3. py(d) >,. First we have to show that p,(d) > &, which is no longer
a consequence of JT in this case. To prove this we modify the proof of Case 1.

Let 0 4 be a fixed constant of 4. For any subset « of {1, 2, ..., n} we denote
by fj(x) the function fi(yy, ..., »,) where y, = x for kea and y, = 0, otherwise
( = 1, ..., m). Bach fj(x) is of course a unary polynomial of 4. Define a mapping ¢
of the power set of {1,2,...,n} into a set of m-tuples by the formula

@@ = (S, s SulX)> -

Similarly to Case 1 we prove that ¢ is one-to-one. (Here, assuming that for some
o # B, o(® = @(P), we obtain as in Case 1, 0 = x, contradicting the fact that
{4]>1. Observing that if f7(x) does not depend on x, then

S5 = f40,0,..,0) = C; (for any o),
and writing d = p,(4) we obtain, as in Case 1, the inequality
2"<(d+n".

This yields again d>n,, as required.
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To prove the first statement, we start from the observation that i1 this case
we can assume that every element of A is a constant in A. Indeed, if not, we can
consider the subalgebra C of constants of 4, which clearly has both properties P1
and P2, and p,(C) < p,(4) for all n. (We remark that it is enough to combine this
observation with the results of [4] and [5] to get the verification of Marczewski's:
conjecture, p,(4) > 0.) To prove that also in this case P(A)= 8, we need one more
construction.

For any i = 1, .., n we find a polynomial hix, x;) with the properties

(E1) Afxq, x;) depends on x,, ’

(H2) hl(xa X) = yi(x» Xy oy X)

(note that g(x, x, ..., X) may be a constant), .

To this end denote by k; the least integer k > 0 such that giXiys vy X;,) s DOt
a constant function for some iy, ..., 4, € {I, ..., k}. Note that gilxy, ..o, X,) 1s DOt
constant, in view of (1). Note also that the corresponding function Gi(Xigy ooer X3,)
for k = k;> 1 depends on all k variables, since otherwise some substitution Xy = Xy,
yields a nonconstant function, contradicting the fact that k is minimal. Denote this
function by g(xy, ..., x), k = k.

Now, if k = I, then g,(x, x, ..., x) is a nonconstant function, and hi(xy, x3)

= g(Xz, X3, ., X;) is as required.

If k2, then g (x, x, ..., x) = C, for some C,e 4. Also, any identification of
variables in g (xy, X3, ..., %) = g(¥,, ..., ;) yields clearly the same C,, i.c., for
any xy, .., x, & A we have .

(G) g(xys vy ) = C; whenever x, ..., X, are not pairwise distinct.

On the other hand, since g (xy, ..., x;) depends, in particular, on x,, there are some
a3, .., & in A such that g(x;, a,, ..., a;) depends on x,. If follows that

hixys x3) = g(x1, %2, @3, ..., @)

depends on x,, as well, i.e., 4,(x;, x,) is nonconstant. Hence, in view of (G), A;(x, x5}
depends on x;, too. Also, by (G), A(x,x) = C; = g(x, X, ..., x), and since by
assumption any element of 4 is a constant, 4,(x, , x,)is a polynomial of 4, as required.
Now, as in Case 1, we are able to show that there are infinitely many binary
idempotent polynomials in 4. We just modify slightly the proof given in Case 1.
For any m-tuple « = iy, .., i,> with % & {1, 2} we define (instead of (2))

f;‘(x:l? xz) == fl(hl(xl ¥ xh)’ ey hn(xi, xln)) (j = 11 sery m) .

Bach polynomial f(x,, x;) is idempotent in view of H2 and (1). Instead of (3) we
now have the identity ‘

hxy 0%0) = Ry(xq, xjk) ,

which, in view of Hl, yields i = j.
The remaining part of the proof is the same as in Case 1.
The proof of Theorem 1 is thus completed.
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2. Examples. Examples below show that each of the conditions (i)-(iv) of Theo-
rem | is satisfied by a certain algebra with bases of different cardinalities.

(i) Examples of algebras satisfying p, = 0 and p, = 1 are given in [16].

(ii) For an infinite set X consider a one-to-one mapping & of X" to X" (m <n)
such that ®(<0,...,0%) = <0, ...,05e X", &(1,..,1») =<1, ...1>eX" and
D(<2,...,23) = <0,1,..., 1> X" for some fixed elements 0,1,2¢ X. Suppose
that ¢ is given by

(i=1,2, .,n,
(G=1,2,..,m)

Y= gi(xl: . :xm)
Xy =f;'(y1’ ey yn)

and take F = {g;,..,g,, /1, .., [n}. Then the algebra X = <X, F> has no con-
stants, since for any polynomial p(x,,..,x) of X, p(0,..,0) =0, while
p(L, ..., 1) = 1. On the other hand, p,(X) > 1, since g(x) = g,(x, ..., x) is a unary
polynomial of X other than the unary projection (g(2) = 0).

Now, the algebra P™(X) of n-ary polynomials of X has bases with m and n
elements, and obviously p, = 0 and p; > 1 (cf. [9], p. 38). By virtue of Theorem 1,
Py 3¥,, i.e. condition (ii) of Theorem I is satisfied.

(iii) Suppose now that @ is one-to-one mapping of X™ to X" such that
O(<x, s x0) = 0, %, ..., xy € X" for any xe X, and F is defined as previously,
Then g,(x, ..., x) = 0 identically and therefore 0 is a constant in X = X, F).
Since p(0, ..., 0) = 0 for any polynomial p of X, there is no other constant in X,
i.e. po = 1. As in Example (ii), P™(X) has bases with m and 1 elements, and py = 1,
which by Theorem 1 means that condition (iif) holds.

(iv) Finally, an algebra P™(X) with bases of different cardinalities and py > 1
is constructed as in the previous examples starting from a mapping ¢ of X™ to X"
which satisfies &(<x, ..., x)) = <0, 1, x, ..., x> (n>2). Then 0 and 1 are constants
in X= (X, F>, and by virtue of Theorem 1, p, >N, for P™(X).

3. Application in equational Jogic. Examining our proof of Theorem'1 one can
see that we have in fact proved the following

THEOREM 2. In.every nontrivial model A of the identities (1) with any n>m> 0,
Pld) 28 for all k> 2. Moreover, one of conditions @@)-(@v) of Theorem 1 holds.

This theorem can be viewed as generalization of the result of Jonsson and Tarski
(JT). Turning to more recent terminology, given a variety V of algebras, the spectrum.
of V, spec(V), is the set of the cardinalities of finite members of V; in symbols

spec(V) = {new: @de V)[4 = n}.

JT states that the variety given by (1) satisfies~the condition spec(V) = {1}, This
peculiar condition has been also considered by other authors (see e.g. [1, 15, 18
(p. 382), 19 (p. 38)]); the varieties given by (1) with #>m >0 are the most typical
examples of nontrivial varieties satisfying this condition. In this connection the follow-
ing question arises. )
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ProBLEM. Is it true that for a variety ¥, spec(V) = 1 if and only if for every
nontrivial 4 in ¥ and every n>2, p(d) is infinite?

The problem to find a counterexample to it, in somewhat different terminology,
was asked by J. Dudek during the conference in Wien, 1984. The most natural candi-
date for examining is, of course, the well-known Austin’s variety of groupoids [1]
given by the single identity

(O AP *)z) = x.

But even in this particular case the problem seems to be not easy. This illustrates
difficulties which can arisc cven in very special problems on DPy-sequences. On the
other hand, note that the condition spee(V) = 1 involves no identities and poly-
nomials. Therefore, if the answer to our problem is positive, it is likely that new
nonstandard techniques have to be applied to prove it (cf. [11], where results and
methods of theory of finite groups were applied to solve other general problem on:
Py-sequences).

Added in proof (December 19, 1989). The problem above has a solution in the negative. There
exists a vaviety ¥ of algebras in typo €2,2) such that spec(V) = {1}, pa(P) = &, and pa(¥) = 0 for
all #2>2. In Austin’s varicty pu(¥) = ¥, for all n 2 2. For these and related results see A. Kisiele-
wicz, Varicties of algebras with no nontrivial finite members, in: Lattices, Semigroups, and Universal
Algebra, J. Almeida et al. (eds.), Plenum Press, to appear,
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Configurations of points in sets of positive measure and in Baire sets
' of second category

by

Frangois Destrempes and Ambar Sengupta (Ithaca, NY)

Abstract. Let Ey, ..., E, be subsets of a topological group G. If G is locally compact Hausdorff
and every E; has positive Haar measure, or if G is simply a topological group and the E;’s are Baire
sets of second category, then there exist non-empty open subsets V3, ..., ¥, of G such that any con-
figuration Xy, ..., %, With x; & ¥ for all #, admits a translation by some element ¢ of G such that
xit € E; holds for all i, We prove this and related facts which generalize some classical results.

Tntroduction. A well-known result of Steinhaus [4] says that if 4 and B are sets
of positive Lebesgue measure in the real line then the difference set 4~ B has non-
empty interior. This was a strengthening of an earlier result of Sierpiniski. Steinhaus
also proved stronger and more general results about configurations of points lying
in linear sets of positive measure. In Section 1 of this paper we prove results which
greatly generalize and unify the results of Steinbaus, and the approach followed
leads to considerably simpler proofs. Our results also easily imply the following result
(see Bick [2]): if E is a set of positive lebesgue measure in R” and C is a finite set of
points in R" then E has a subset C* which is similar to C, in the sense that C can be
transformed into C* by applying a rigid motion followed by a ‘radial’ scaling down
with respect to some point. In particular, the set E contains the vertices of some
equilateral triangle, of some square, eic. Analogous to Steinhaus’ result is the result
of Piccard (quoted in Oxtoby [3]) which says that if 4 and B are Baire sets of second
category in R then 4— B has non-empty interior. This was generalized to topological
groups by Bhaskara Rao and Bhaskara Rao [1]. We present, in Section 2, a version
which relates to the existence of configurations of points.

1. Configurations in sets of positive measure. Let X be a topological space #
a o-algebra of subsets of X, u a non-negative, finitely additive and countably subaddi-
tive set function on # with u(@) = 0. Let & be the set of elements of # on which p
is finite. Bquip & with the pseudo-metric d(4, B) = u(AAB). Let " be the set of
all compact sets belonging to & and which satisfy

u(K) = inf{u(¥): V open, Vel and Vo K},
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