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Definitions of finite
by

Paul E. Howard and Mary F. Yorke (Ypsilanti, Mich.)

Abstract. We consider the statement which asserts the equivalence of two definitions of finite
to be a weak form of the axiom of choice. The relationships between several statements of this type
are considered.

The assertion that two definitions of finite are equivalent can be considered to
be a weak form of the axiom of choice. See for example [4], [8], [9], [14] and [15].

ZFA will denote Zermelo-Fraenkel set theory weakened to permit the existence
of atoms without the axiom of choice and we will use the notation P(4) to denote
the power set of any set 4. We will consider the following definitions of finite taken
from [8]:

DrerINITION 1. A is finite(I) if every nonempty family of subsets of 4 has an ele-
ment maximal under set inclusion.

Ta. A is finite(la) if it is not th
finite (1)

II. A is finite(I) if every non-empty monotone (i. e. linearly ordered by inclusion)
family of subsets of A has a maximal element.
IIL. A is finite(IIY) if the power set of 4 is Dedekind finite.
IV, A is finite(IV) if A is Dedekind finite.
V. A is finite(V) if |A4| = 0 or 2|4]| > |4].
VL. A is finite(VI) if |4] = 0 or 1 or |4|>>]4].

VIL A is finite(VII) if it is not the case that (4 is well orderable and o < |4]).

In addition we will say that a set is finite(D) if 4 has at most one element or
A = CuD where |C| < |4]| and |D| <|4]. We note that finite(I) is equivalent to
the usual definition of finite. Therefore a set which is finite(I) will simply be called
ynite. We also note that a set is finite(If) if and only if P(4) has no infinite
< -chain. The proof is left to the reader. We refer the reader to [8] for other historical
information and a proof of

on of two disjoint sets neither of which is

2
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170 P.E. Howard and M. F. Yorke

THEOREBM 1. If a set is finite according to any of the above definitions then it is
finite according to any definition which follows.

A straightforward argument also gives

THEOREM 2. Finite(IV) implies finite(D) and finite(D) implies ﬁm’te(VII).'

Theorems 1 and 2 are proved in ZFA. In the theory ZFA +AC all of the above
definitions are equivalent. If X and J are any two of I, Ia, I, III, IV, V, VI or VII
we let E(J, K) be the sentence in the language of ZFA which says: For every set x,
x is finite(K) if and only if x is finite(J). ' '

We will observe the convention that when we write E(J, K), J occurs before K,
in the above definition so that by Theorem 1, A is finite(J) implies 4 is finite (K)t
In what follows we will abbreviate this J< K. We first note: If M<K and J<L
then E(/, K) implies E(L, M). Combining this with the results of [8], [9] and [15]
and several well-known independence results gives us diagram 1.

Many of the arrows in diagram 1 can be reversed. We leave the proofs to the
reader.

TrHEOREM 3. (In ZFA) E(VI, VIT) implies AC. (dnd therefore every arrow in
the upper right hand diagonal of diagram 1 can be reversed.)

A

7 R
\

(¥infinitem){2m = m) E(IVI) Ella,vil}

ZAYAVAN

Dedekind finite—-ﬁn?fe El, V) E(la,Vi) E(ll,vu)

E(1,1V) E{la,V) E(vi) E(in,vi)

E{1L,In) Ella,IV) E(ILY) £y E{QV,VIl)

N AVAVAVAVA

Efivv) Efv,vi

EII,Iu)«-uE(la,ll)-—H—b-E(II,H!l EfliLiv) [ 0AY] E[V, V1)

~AG

Diagram 1

m

wvie
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TuroreM 4. E(V, VI) implies AC.

TueoreM 5. E(IV, V) implies (for every infinite cardinal number m, 2m = m).

THEOREM 6. E(IIL, TV) implies (every Dedekind finite set is finite).

TuroreM 7. E(Ia, IIT) implies E(I, III).

Tueorem 8. E(la, II) implies E(, II).

We now construct Fraenkel-Mostowski models of ZFA to show that several
of the implications in diagram 1 cannot be reversed and to show the independence -
results mentioned above regarding finite (D). )

Given a model M’ of ZFA which has 4 as its set of atoms, a permutation
model M of ZFA is determined by a group G of permutations of 4 and a filter I’
of subgroups of G which satisfies )

(Yae A)@He I)(Vy € H) (Y {a) = a)
and

VY eG(WHe NWH) *el).

Bach permutation of A extends uniquely to a permutation of M’ by e induction
and for any ¥ € G we identify  with its extension.

If H is a subgroup of G and xe M’ and (V¢ e H)(Y(x) = x) we say H fixes x.
If it is also the case that (Vi € H)(Vy e x)( () = ») we say H fixes x pointwise.
The permutation model determined by M, G and I' consists of all those xe M’
such that for every y in the transitive closure of x, there is some He I’ such that H
fixes y. We refer the reader to [7, p. 46] for a proof that M isa model of ZFA.

We will construct six permutation models M1 through M6. In what follows
if G is a group of permutations of a set 4 and E< 4, then fixg(E) will denote
{feG: (Vxe YY) = x)}. '

M1, M2 and M4 are respectively the basic Fraenkel model, the ordered Mo-
stowski model and the second Fraenkel model found in [7, pp. 48-49]. To con-
struct M3, let M3’ be a model of ZFA+AC with a countable set 4 of atoms and -
an order < of 4 with order type of the rationals. G3 is the group of all permuta-
tions y of A4 with the property that for every bounded subset B of A, 1 (B) is bounded
and I3 is generated by the groups fixg;(E) such that E is a bounded subset of A.
M3 is the model determined by M3’, G3 and I'3. Similarly, M5 is the model deter-
mined by M5, G5 and I'S where M5 is M3’ and G5 = {¢: ¥ is a permutation
of 4 and {te A: Y(t) # t} is finjte}. For each finite subset E of 4, let

G(E) = {y€G5: (VaeE)[Y(a) = a and
(Vte A)((t<a implies ¥ (#) <a) and (a<rt implies a <y @®))]}

I'5 is the filter of subgroups generated by the groups G(E) such that E is a finite
subset of A. To construct M6 we let M6 bé M3', G6 = G5 and I'6 is the filter
generated by the subgroups fixgs(E) for E a bounded subset (under <) of A.
1‘
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THEOREM 9. In M1 there is a set B which is finite(D) and not finite(VI).
Proof. We will need the following lemma,. the proof of which we omit:

LemMA. If C is any set such that o < C, then C* (all finite sequences of elements
of C) satisfies |C* x C*| = |C*| and therefore C* is not finite(VI).

Let C = Auw (in M1). By the Lemma B = C* is not finite(VI). We show B
is finite(D) by constructing two sets X and Y€ M1 such that B = XU ¥, | X| <|B|
and |Y| < |B|.

Define a sequence of natural numbers (n(k): ke w) by

n0) =0 and nk)=nk-1)+2k.

We note that #(k) = k(k-+1) but the recursive definition will be more useful to us.
Partition B into a countable number of pieces {B(k): k € w} where
B(k) = {se B: |range(s)n 4| = k}
and finally let
X =U{B(): @icw)n@)<j<nQi+)},
Y=U{B(): @icw)(nQi+)<j<n(2i+2)}.

Since @ is a support of B(k) for each k € w, X and Y are in M2. It is also clear
that B = XU Y and that X and ¥ are disjoint. We complete the proof of Theorem 9
by showing that | X| = |B} is false in M2. The proof that | ¥| s |B| in M2 is similar.

Suppose that |X| = |B| then there is a one to one function f in M1 from ¥
into X. Suppose f has support E< A and that |E| = r € w. Choose an odd integer
_2i+‘1 greater than r, then n(2i+2) = n(2i+1)+2(2i+1) so B(j)< ¥ for any ; sat-
isfying n(2i+1) <j < n(2i+1)+2(2i+1). Therefore if we let j, = n(2i+1)+(2i+2)
and choose seB(j,) then se ¥ and f(s) e X. It follows that f (s) € B(k) where
k<nQ2i+1) or n(Q2i+1)+2(Q2i+1)<k. In the first case

Jo—k = nQi+ )+ 2+2—k> n(i+1)+2+2-ni+1) = 2+1>r.
So k+r<j,. Since |range(s)n 4] = j, and
| |((ange f () n ) U E| < [range 7 (s) 0 A| +|E| = k+r
we conclude that
(;ange(s)r\A)-[((rangef(s))mA)uE] # O

which implies that for some ¥ & fixg,(E), Y(/(5)) = f(s) and (s) # s. Since fis
one to one this means E is not a support of f, a contradiction.

icm
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Similarly in the second case

k—jo = k—(mQi+1)+2i+1)
2 nQ2+1)+2Qi+ 1)~ (n 2+ 1) +2i+2) = 2i+2>r

therefore k > j,+r. This implies the existence of a ¥ e fixg,(E) such that Y(s) = s
and y( £ (s)) # f(s) again contradicting the choice of E as a support of f. Theorem 9
is therefore proved.

Tarorem 10. In M1, E(I1, III) is true and E(L,1a) is falce

Proof. The proof that E(I,Ia) is false in M1 can be found in [8].

That E(II, III) holds in M1 follows from the fact that every set which can be
linearly ordered in M1 can be well ordered in M1. (This fact can be proved using
the following property: For every finite E< 4 and y € G'1, there is a ' € G1 such
that (Yae E)('(a) = ¥(a)) and for some positive integer n, ()" = the identity
permutation. We leave the details to the reader.)

CoroLLARY. E(la, II), E(Ia,TII) and OP are false in M1.

Tueorem 11. In M2 E(L,II) is true and E(Y, III) and E(IL, III) are false.
Proof. This theorem follows from the results of [8].

THEOREM 12. In M3, (every Dedekind finite set is finite) and OP is false.

Proof. We first assume x is an infinite set in M3 and show x has an infinite
subset which is well orderable in M3. Suppose X has no such subset and that E is
a bounded subset of 4 such that for every ¥ € fixg;(E), ¥ (x) = x. (Thatis, Eis a sup-
port of x).

Since x is infinite and has no infinite well orderable subset, there mustbeatex
and Y, € fixgs(E) such that y(¢) # £. Assume EUF is a bounded support of ¢
where FNE is empty. Then by our assumption F # &.

CramM. If ¢ and ¢’ are chosen in fixgs(E) so that

W (FOo(F) AW (FOYo(F)) = O
then ¥ (¢) # ¥'(2).

For suppose the hypotheses of the claim are satisfied, then
W) UEOYE) i (Foyo(F))] = &

so (1) W (FOPo(FN] A (FUe(F)) =

We can therefore choose an g € ﬁxm(E) such that o € ﬁxm((l// NV (FOye(F )))
and ¢ agrees with ¥, on F. Therefore o(t) = Wo(t) % ¢. Further, since-
W) "W(F)VE is a support of ()" (1), o(@) 1y (1) = ()~ Y (¢). Tt follows
that (4") "1y () # ¢t and therefore that y(¢) # y'(z). This completes the proof of
the claim.
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Since Eu Fuy(F) is bounded (in the ordering on A4), there is an ae 4 such
that

(Vte EUFUYo(F)) (t<d).

Choose an element b € 4 so that @ <b and choose a countable number of pairwise
disjoint intervals {I(j): je o} such that for all je w, I(j) < [a, b].

For each jew—{0} let ¥ e fixs3(E) be chosen so that y,(FU(F)) < I(j).
Then for j as above, I(j) will be a bounded support of y,(¢). By the claim,
W) W y(e) if i # j. Further (¢) e x and, since Eu [a, 8] is a bounded support
of y(r) for all je w—{0}, the set

{Yi®: je 0—{0}}

in addition to being infinite, is well ordered in M3, Therefore x has an infinite well;
ordered subset in M3.

Since 4 has no linear ordering in M3, OP fails in M3. Thus Theorem 12 is

proved.
THEOREM 13. In M4, E(I, ) is true and E(1,IV) is false.
The proof is left to the reader.

We now turn to M'5. Facts about M5 will appear in Theorem 14 through 16.
For xe M5 and E< 4, we say E is a support of x if E is finite and

(VY eGE) (V) =x).

If a, b.e A4, we will use (a, b) and [a, b] to denote the open and closed intervals
respectively relative to the linear ordering < of A. (a; b) will be used to denote the
transposition in G3.

Turorem 14 (support lemma). If E and F are supports of x € M5, then EnF
is a support of x.

Proof. Since every element of G(EnF) can be written as a finite product of
transpositions in G(EnF), it suffices to prove:

Lemma. If € G(ENF) is a transposition (dy; d,) then W(x) = x.

The proof of the lemma which we omit is by induction on the number of elements
in (EuF) n{dy, d,).

We note that from Theorem 12 we can conclude that each element ¢ of M5
Ezzs ;1 minimum support E with the property that for all y € G5, yr() = ¢ implies

E
THEOREM 15. E(L,1a) is true in MS5.

Proof. Let C be an infinite set in M5 with support E. If C is fixed pointwise
by G(E), then C is finite(Ia) and we are done. Otherwise choose ¢ € C with minimum
support F where F is not a subset of £ and choose a € F—E. Let E' = (Eu F)—{a}

icm
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and let C(1) = {y(*): Y€ G(E) and a<W(a)}. C(1) has support EUF and
therefore is in MS5. Similarly C(2) = {§(#): ¥ € G(E") and y/(a) <} is a subset
of C and in M5. C(1) and C(2) are disjoint since a is an element of the minimum
support of z. We also claim that C(l) and C(2) are infinite, for suppose
E' = {bQl), ..., b(n)} where b(I)<..<b(® and b()<a<bd(+1). For
de(b(j), b(j+1)) define Y(d) (a permutation of 4) by Y (d) = (d;a), then
¥(d)e G(E'). Further if d # d’ then y(d)(t) # ¥ (@) (). (f YD) = Y@@
then o = y(d")"1y(d) fixes ¢ and therefore must fixF, the least support of 2. But
o(a) = d which is not in F.) This proves the claim.
Since we can write C = C(1)u(C— C(1)) the theorem is proved.

TreoreM 16. E(Ia, IT) is false in MS5.

Proof. We show that A4 is the union of two infinite disjoint sets in M5,
(4 = {a: a<ay}uf{a: ay<a} for any fixed g, in A) but that every non-empty
monotone family of subsets of 4 has a maximal element.

Suppose Z is such a family with no maximal element and that Z has support E.
E partitions 4— E into open intervals and for at least one of these intervals J and
some xeZ, xnI and (4—x)nI are non-empty (otherwise Z is finite). Choose
dexnl and ee(d—x)nI, then (d; &) e G(E) so (d; e)(x) e Z. But x&(d; e)(x)
and (d; e)(x)&x contradicts the monotonicity of Z.

THEOREM 17. In M6 A is finite(V) but not finite(D).

Proof. The fact that 4 is not finite (V) can be seen by supposing f'is a bijection
from 2x A4 to A in M6 with support ESA and considering f(0, 4) and f(1, a)
where a is not in E.

The fact that 4 is finite(D) in M6 follows from the following two lemmas:

LEMMA. IfA = CuDwhere C,De M6 and C and D are disjoint, then C or D
is bounded.

LeMMA. If C is a subset of A and A— C is bounded then C and A have the same
cardinal number in M6.

Combining our results with diagram-1 gives diagram 2. Numbers on the impli-
cation edges of diagram 2 refer to theorems in this paper or references where the
results may be found. Similarly, numbers on the non-lmphcatlon edges refer to model
numbers in this paper or are reference numbers.

Several other definitions of finite have appeared in the literature. We refer the
reader to [3] for two definitions due to Joseph Diel which lie between finite(I) and
finite(IT) in strength: A set 4 is “almost finite™ if there is no function from 4 onto
o and is “strongly Dedekind finite” if there is no function from a proper subset of
A onto A. The relationship between these and Ia, II and III is an open problem.

In [15] Tarski has given a series of definitions of finite. We list those which are
not known to be equivalent to any of the definitions given so far. Following Tarski’s
notation: A set 4 is finite(T(n)) if for every S < P(4), (if every collection of n non-
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empty, pairwise disjoint subsets of 4 contains an element of S, then there are 2n+1
elements x(7), 1 <i<2n+1 of S such that 4 =) {x()): 1<i<2n+1}). We pose
the question of how these definitions fit into the scheme described in this paper.

[1]
[2]
(3]
4]
I51
[e]
7]

[8]

AC <3 (V)

J<vi
1

+ [5,13}

E{sV)
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{¥infinite m}{2m=m) L5, El J< z)
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(s}
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M4
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