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On a classification of pointwise compact sets of
the first Baire class functions

by

Witold Marciszewski (Warszawa)

Abstract. The paper is concerned with compact separable subspflces of the sp‘ace By(w®) of
the first Baire class functions on irrationals endowed with the pointwise t?pology, i.e. Rosenthal
compacta. We associate to each separable Rosenthal compactum K an ordinal 'numbcr 71(@ < Cf’z,
which indicates the “Borel complexity” of the compactum. The index 77(K) is a topological in-
variant of the function space Cp(K) endowed with the pointwise toPology. ‘We construct Rosenthal
compacta of arbitrarily large countable index and we use them to give examples of open linear con-
tinuous maps raising the Borel class of linear spaces.

§ 1. Introduction. Our terminology follows [En), [Ku] and [Se].. We shall fienote
by R the real line; o is the set of natural numbers and o is the Baire space, i.e. to-

i irrationals.
POIOicilzpt;l‘? ,Xl; —Y, where X and Y are separable metrizablf: spaces, is of the
first Baire class if f~X(U) is an F,-set for every open U= Y@GE Yisa segarable
Banach space, this means that fis a pointwise limit of a sequfence of continuous
maps from X into ¥), cf. [Ku, § 31]. Given a separable met{lzable space }.(, we
denote by B;(X) the space of real-valued first Baire class functions on X equipped

i topology of pointwise convergence. :

wnhlfﬁics p:per ?:conferned mainly with compact spaces which_can l.ae embedded
in the space B,(w®) of the first Baire class functions on irrationals, i.e. with Rosenthal
compacta, see [Go]. For fundamental facts about Rosenthal compacta we refer the
reader to the papers by Bourgain, Fremlin, Talagrand [BFT], Godefroy [Go]
and Negrepontis [Nel. In the sequel we shall oft.en use the deep result by
Bourgain, Fremlin and Talagrand [BFT, Th. 3F] stating that Rosenthal f:ompact;
K are Fréchet topological spaces, i.e. for every set AcK and a point x&
there exists a sequence of points from 4 which converges to x. . )

Let us notice that if A is a metrizable space which is a continuous image of
irrationals (i.e. 4 is an analytic space), then compact sub‘spaces of_Bl(A) are 'Ros-,en—
thal compacta, as the map f—fo u, where u: w® - A is a continuous surjection,

. . o
embeds B,(4) homeomorphically into B(0™).
Let K1 (be a separable compact space; given a countable dense subset D of K
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we denote by Cp(K) the space of real-valued continuous functions on K endowed
with the topology of pointwise convergence on the set D. We shall consider the
space Cp(K) as a subspace of the product RP, identifying a continuous function
f: K— R with the restriction f/D.

The results of this paper have been motivated by the following characterization
of separable Rosenthal compacta given by G. Godefroy [Go, Th. 4]:

THEOREM (Godefroy). 4 separable compact space K is a Rosenthal compactum
if and only if for every countable dense subset D of K the space Ci(K) is analytic.

‘We shall consider separable Rosenthal compacta K such that for some count-
able dense subset D of K the function space Cp(K) is a Borel subset of the pro-
duct R”. Many “classical” compacta, e.g. the Helly space (cf. [En, Exercise 3.2E]),
the two arrows space (cf. [En, Exercise 3.10C]), the space of functions from [0, 1]
into [0, 1] of total variation < 1, enjoy this property; however, there exist separable
Rosenthal compacta which do not belong to this class, cf. 5.2. If C,(K) is a Borel
set in RP for some countable dense D < K, then this is also the case for every such D
and, moreover, if D, D" are countable dense subsets of K and «, o’ are the Borel
classes of Cp(K) and Cp(K), respectively, then o’ < 1+o (see Theorem 2.2; actually,
we do not know any example showing that « could differ from o). This allows us
to introduce the index 7(X) of a separable Rosenthal compactum K — an, ordinal
number which indicates its “degree of Borel complexity” (we write n(K) = w,
if Cp(K) is not Borel for countable dense D = K). We prove that the index n(X)
is a topological invariant of the function space C,(K) of real-valued continuous
functions on K endowedw ith the pointwise topology (Theorem 3.5). We also show
that if the function spaces C(K), C(L) on Rosenthal compacta K and L are homeo-
morphic in the weak topology, then #(K) < 1+n(L) (Theorem 3.1; we do not know
examples showing that in this case #(K) and 5(L) could not coincide). There exist
separable Rosenthal compacta K with arbitrarily large countable index n(K). We
construct a family of such compacta in Section 4 and we use these compacta in

Sec. 5 to obtain examples of open linear continuous maps ¢: EL)—T;’Fbetween separ-
able linear metric spaces E, F, such that E is an absolute F,; and F may have arbi-
trarily high Borel class (we are not aware of any other similar examples in the
literature). We close the paper with some comments and remarks (Sec. 6).

Let us end this section with some explanation of the notation and terminology
used throughout this paper. We denote by 2° the countable product {0, 1}, i.e. to-
pologically the Cantor set.

Given a set X, we denote by R¥ the Tikhonov product of the real line, X being
the index set. For every Y < X, my: R¥* = RY is the projection; we shall write 7,
instead of =y, for xe X. ‘

Given a compact space K, we denote by C(X) the Banach space of real-valued
continuous functions on K endowed with the sup norm. The space C(K) equipped
with the weak topology wiil be denoted by C,(K), while C,(K) will denote the space
C(K) endowed with the pointwise topology.
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1 would like to thank R. Pol for some valuable discussions on the subject of
this paper.

§ 2. Borel index of separable Rosenthal compacta. In this section we establish
a few simple facts about the Borel structure of function spaces Cp(K) for Rosenthal
compacta K and we define the index 5(K) (for the definition of Cp(K) see Sec. 1).
" We begin with an observation related to a theorem from [DGLvM] that the
function space C,(X) is not a G,-set in the product R”, unless the space X is
discrete.

2.1, TueoreM. Let K be an infinite separable Rosenthal compactum. For every
countable dense subset D of K the space Cy(K) is not a Gy,-set in RP.

Proof. Let S be the subset of the countable product R® of the real line con-
sisting of sequences converging to zero; the set S is not a G,,-set in R®, of. [BM],
[DGLvyM, Th. 6]. It is enough to show that § embeds in Cp(K) as a G; subset.

Since the compactum K is a Fréchet space (see Introduction), there exists
a sequence of distinct points (d,)se, Converging to some xe K\{d,: new}. Let
us fix a sequence of continuous functions f,: X— [0, 1] such that f,(d,) = 1 and

£, 1) nf (0, 11) = @ for all m # n. Now, we can define a map ¢: S— Cy(K)

by the formula
ol@) = Y af, for (a)es
new

(notice that for every sequence (4,) € S the series Y, @, f, is uniformly convergent).
It can be easily verified that ¢ is a homeomorphic embedding. Moreover, we have

0(S) = {fe CoK): f(x) = 0, Vnew
Vdef, 40, 1]) f(d) = f(d)fi(d) and
Vde K\U {£,*((0, 1]): new} f(d) = 0}
=N U {fIF@I<k Y nN{f f@

keow n>k
= f(d)Ff(D}: defy {((©0,1]), ne w}
AN 7@ = 0}: de K\U {470, 1)): me }}.

Hence ¢(S) is a Gj-set in Cp(K).

The next theorem shows that for a Rosenthal compactum X, and for any D, D’
countable dense subsets of X, the Borel classes of Cp(K) and Cp(K) almost coincide.

2.2. TuroreMm. Let K be a separable Rosenthal compactum and let D, E be
countable dense subsets of K. If Cp(K) is a Borel set of the class « then Cg(K) is a Borel
set of class < 1+o. If, in addition, D = E then Cg(K) is of Borel class <a.

Proof. Tt is enough to consider the case when the compactum X is infinite.
Firstly, let us assume that D < E. Let ¢: Cp(K)— Cy(K) be the identity map. The
map ¢ is a bijection of the first Baire class. Indeed, for every e £ the composition
of the projection m,: Rf— R (see Sec. 1) and the map ¢ is a pointwise limit of the
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_ sequence of continuous functions 7, o ¢, where (d,) is a sequence of points of D
convering to e (by Fréchet property of K, cf. Sec. 1). The inverse map ¢~ * is con-
tinuous. From [Ku, § 35. VII] it follows that we can find F,;-sets 4 = R® and B < R®
such that Cy(K) = 4, Cx(K) = B and a bijection yy: 4— B of the first Baire class
such that 1~ is continuous and ¥ extends.p. Using Theorem 2.1 we infer that the
space Ci(K) = y(Cp(K))n B is a Borel set of class < a. Similarly, if Cg(K) is of
the Borel class B then a< 1+,
From these inequalities we obtain the required conclusion for the case of arbi-

trary countable dense subsets D, E; it is enough to consider the set DUE.

- Now, for each separable Rosenthal compactum K we define an index #(X)
(an ordinal number < w,) in the following way:

min{u: there exists a countable dense subset D <K such that
_ the space Cp(K)-is a Borel set of class o in RD} if such
n(K) = sets D exist,
@y in the opposite case .

There exist Rosenthal compacta K with n(K) = w, (cf. 5.2).

We shall check that if K is an infinite separable compact subset of a space
B,(M) with compact metrizable M, and K has a dense subset, which consists of
functions continuous on M, then #(X) = 2. We prove this fact in a more general
form, which will be used in Section 5.2.

2.3. THEOREM. Let M be a metrizable compact space and let K be a compact
subset of the product R™ such that there exists a countable dense subset D < K con-
sisting of functions continuous on M. Then the space Cyp(K) is an F,s-set in RP.

Proof. Let us observe that for each function f: D— R, fe Cp(K) if and only if

(Vmew) @new) @ty, ..., e M) (Vd,ee D)
(I}fgld(ta)—e(t,-)l <n”l=|fd-fll<sm™).

Let F(m,n, k) = {(f,ty, ..., i) € R° x M*: (Vd, e € D)(max|d(t)—e(t)|=n"*
) i<k :

or |fd)—f(@l <m™")}. For mynew, k= 1,2, .., F(m, n, k) is a closed subset
of the product R” x M*. Hence the projection 7 zo(F(m, n, k)) paraliel to the compact
axis M* is also closed, Now, one can describe the space Cp(K) by the formula

CD(K) = ﬂ U U ﬂ:RD(F(’n: n, k)) 3

meonen kew
which shows that Ci(K) is an F,ysubset of R®.

Since each metrizable compact space embeds in the space of continuous func-
tions on the unit interval Cy([0, 1]) endowed with the pointwise topology, we
obtain the following corollary:

2.4, CorOLLARY. If D is a countable dense subset of a compact metvizable space K
then the space Cn(K) is an F,s-set in R®.
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§ 3. Borel index and homeomorphisms of function spaces. Using a method: of
factorization of homeomorphisms on function spaces from [Ma] we shall prove the
following (cf. also 6.4):

3.1, THEOREM. Let K, L be compact spaces such that the function spaces C(K)
and C,(L) endowed with the weak topology are homeomorphic. If K is a separable
Rosenthal compactum, then so is L and n(L) <1+n(K), n(K) <1-+n(L); thus, in
particular, if n(K) 2o then n(K) = n(L).

From Theorem 3.1 we obtain immediately the following corollary:

3.2, COROLLARY. Let K, L be compact spaces. If K is a separable Rosenthal
compactum and if the Banach spaces C(K) and C(L) are linearly homeomorphic
then L is a separable Rosenthal compactum and n(L) < 1+n(K), n(K) < 1+n(L).

Before we start the proof of Theorem 3.1, let us state two auxiliary facts:

3.3. LemMA ([Ma, Lemma 4.1], cf. also [Is, Proof of Theorem 1]). Let X be
a set and let E be a linear subspace of the product R*. If f: E— R is a continuous map
then f depends on countably many coordinates, i.e. there is a countable set Y= X
and a continuous map g: ny(E)— R® such that f = g o ny|E.

3.4. LEMMA. Let X, Y be sets and let f: E—F be a hemeomorphism between
linear subspaces E < R¥ and Fc RY. For every countable subsets Soc X, To= ¥
such that the projections ms|E: E—R% and np|F: F— R™ gre injective, there
exist countable subsets Sy < X, Ty Y such that Sy =Sy, To =Ty and. the function
gy o fo (ns,|[E)™! maps ng,(E) homeomorphically onto mr,(F).

Lemma 3.4 can be proved in a similar way to Lemma 4.2 in {Ma] and therefore
we decided to omit the proof; let us only indicate that the required sets §; and T}
can be obtained by a certajn back-and-forth induction based on Lemma 3.3.

Proof of Theorem 3.1. As in the proof of Theorem 2.2, we can assume that
the compact spaces K and L are infinite. Let ¢: C,(L)— C,(K) be a homeomor-
phism’ and let M(K) = C(K)*, M(L) = C(L)* be the spaces of Radon measures
on the compacta K and L. Let us denote by Bg, By, the unit balls of M(XK), M @),
respectively, endowed with the weak* topolegy. By a theorem of Godefroy and
Talagrand [Go, Proposition 7, Remarque], the ball By is a Rosenthal compactum.
For arbitrary subsets S By and T< By let ig: C,(K)—R® and i C,(L)—»R"
be defined by the formulas

is(S)(W) = p(f)
ir(f)) = p(f)

If we identify, using iy, and ig, , the spaces C,(K) and C,(L) with subspaces
of the products RP* and RP*, respectively, then we can consider the maps is, ir as
projections onto R® and R7, respectively.

Let us choose a countable dense subset D<K and let S, = {65: de D},
where 8, is the probability measure concentrated at the point d. If the set S<Bg
contains S, then the map is: C,(K)— R’ is injective. We show that there exists

for pe s, fe C(K),
for peT, fe C D).
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a countable subset T, = By, such that the map ip: C,(L)~R™ is also injective.
Indeed, applying Lemma 3.3 to the map ig, o ¢: C,(L)—~R® we infer that there
exist a countable subset T < By, and a continuous map g: ip,(C,(L)) —R* such
that is, o ¢ = g o iy,. Since the map i5, o ¢ is one-to-one, the set T, has the required
property. Obviously, for arbitrary subset T« B, containing T,, the map
ip: C (L)~ RT is also injective. Using Lemma 3.4, we can choose countable sub-
sets Sy < By, T; < By such that S, =8y, T, =T, and the map ¥, = is, o @ o iy,
is a homeomorphism between the spaces ir,(C(L)) and is,(C,(K)).

We now verify that the space i5,(C,(K)) is analytic, which would ensure that
ir(C(L)) is also analytic. Let us consider a map iy, o iz, ¢ ig,(C(K)) = is,(C,(K)).
For arbitrary 6, € Sy, the map f—f(9,) is a real-valued continuous function on
is,(C,(K)). As was noticed before, By is a Rosenthal compactum and the convex

hull W of the set {64, —5,: de D} is dense in By; by the Fréchet property of By ‘

(see Sec. 1), for every measure u e S there exists a sequence of measures u, e W
such that p =limp, and hence p(f) =limu,(f) for each fe C,(K). Since each
n n

function pt, o i;nl is continuous (each y, being a linear combination of elements of
So), it follows that the function p o iz is a pointwise limit of a sequence of
continuous functions on is,(C,(K)) and therefore the map is,  iz,* is of the first
Baire class (cf. [Ku, § 31.VI}). From the theorem of Godefroy [Go, Th. 4] we
obtain that the space is,(C,(K)) is analytic (recall that S, = {5, de D}) and so
is the space is,(C,(K)), cf. [Ku, §39.1].

Let 4 = ir,(C,(L)); we shall prove that the compactum L can be embedded
in the space B;(4), which will show that L is a Rosenthal compactum; of. Sec. 1.

Let us define 2 map u: L—R* by the formula

uG)(f) = iz (f)(x) for xeL, fed.

The continuous map u separates points of the compact space L and hence it is
a homeomorphic embedding. We show that for each x e L the map u(x): 4—+R
is of the first Baire class, i.e. u(L) = B,(4).

Let us fix a point x e L. Applying again Lemma 3.4 we can find countable
sets Sy < By and T, =B such that Sy =S, T,u{s,} T, and the function
Y3 =is, o ¢ oir,' maps ir,(C,(L)) homeomorphically onto is,(C(K)). Similarly
to the preceding case one can verify that the map h = s, o ig," is of the first Baire
class. Let p: ip,(C,(L)) - R be the projection onto d.-coordinate, i.e. p(f) = f (5,
= ip ' (f)(x) for fe ir,(C(L)); since 6, e T, the function p is continuous. Now,
the fact that u(x) is of the first Baire class on 4 follows from the formula

u(x) =poyytohoy,.
) The separability of the Rosenthal compactum L follows from the fact that T,
1s a countable set of measures which separate the points of the space C(L) and each

Radon measure 1 on L has separable support [Go, Proposition 8], i.e. there is

a separable compactum M <L such that u(U) = 0 for arbitrary open subset
UcI\M. :
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To complete the proof we have to show that #(L) < 1 +n(K) and n(K) < 1 +n(L).
Since we have already proved that L is a separable Rosenthal compactum, by the
symmetry of assumptions it is enough to check that (L)< 1+#n(K). Assume that.
n(K) < w;. Choose countable dense subsets E < K and F< L such that the space
Cy(K) is a Borel set of class 7(K). Let S3 = {3,: ee E} c Brand Ty = {§,: f e F}
< By. The spaces is,(C,(K)) and ip,(C,(L)) are homeomorphic to the spaces Cy(K)
and Cp(L), respectively. From Lemma 3.4 it follows that there exist countable sets
Sy < By and T, < By such that S; = S, T3 = T, and the map ig, 0 ¢ o iz} is 2 homeo-
morphism  between the spaces ir,(C (L)) and ig(Cu(X)). The maps
is, oI5y 1 Isy(CW(K)) ~is (CW(K)) and ip, o ir' s iny(C(D) = ip(C,(L)) are injec- -
tions of the first Baire class, and their inverse maps are continuous. The spaces
is,(C(K)) and i (C,(L)) are Borel sets of class < 7(K); hence the space ir,(C,(L))
is a Borel set of class < 1+#(X) (cf. proof of Theorem 2.2), which ends the proof.

We now show that the index 5(KX) of a separable Rosenthal compactum X is
a topological invariant of the function space C,(K) equipped with the pointwise
topology (cf. 6.5).

3.5. TueoreM. Let K and L be compact spaces such that their function spaces
C,(K) and C,(Ly endowed with the pointwise topology are homeomorphic. If K is
a separable Rosenthal compactum then so is L and n(K) = n(L).

Proof., The fact that L is a separable Rosenthal compactum can be proved
in much the same way as in the proof of Theorem 3.1.

We shall show .that n(K)=n(L); it is enough to consider the case when
7(K) < w;. Let us choose a countable dense subset D = K such that the space Cp(X)
is a Borel set of class 7(K) in RP. Applying Lemma 3.4 one can find countable dense
sets Ec K and Fc L such that D < E and the spaces Cx(K) and Cy(L) are homeo-
morphic. From Theorem 2.2 and the definition of the index 7 it follows that Cx(K)
and Cg(L) are Borel sets of class (K), hence (L) <#(K). By symmetry, we have
n(K) = n(L).

§ 4. Rosenthal compacta of arbitrarily large countable Borel index. In this section '
we construct separable Rosenthal compacta whose function spaces have arbitrarily
large Borel class (Sec. 4.1, 4.2). The idea underlying our approach is close to a con-
struction from [LvMP] of function spaces on countable sets, with arbitrarily high
Borel classes. We show (Sec. 4.3) that the Rosenthal compacta we obtain can be
embedded in the space B,(2°) of functions of the first Baire elass on the Cantor set
(not every Rosenthal compactum embeds in B;(2%), ¢f. [Po]). Furthermore, we can
embed these Rosenthal compacta in compact subspaces of B,(2”) which have dense
subsets consisting of continuous functions (Sec. 4.4). Such special embeddings will
be used in Section 5 to obtain some open linear maps between linear metric spaces
raising their Borel class. .

4.1, THEOREM. For every countable ordinal number 0.3 2 there exists a separable
Rosenthal compactum K such that a<n(K) < 1+a+1. :

3 — Fundamenta Mathematicae 133/3
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 These compacta will be associated in a standard way with almost disjoint fa-
milies on o (in particular, the third derived set of these compacta is empty), which,
in turn, will be related to Borel subsets 4 of the Cantor set 2°; thus each our com-
pactum K = K, will correspond to a Borel set 4 = 2%

-4.2. Construction of compacta K. Let 4 be a dense Borel subset of additive
class « > 2 in the Cantor set 2°. We shall associate with 4 a separable Rosenthal
compactum K, such that a <y(K,) < 1+a+1.

Let 2" be the set of functions from {0, 1, ...,n—1} into {0, 1}, ne o, and let

= {xe2°: x|n = s}, where x|n is the restriction of a function x: w—{0,1}
to the set {0,1,...,n—1} and se2". Let us put S = {J 2" The open-and-closed

new
sets V,, for seS, form a canonical base for the product topolooy of the
Cantor set 2°.

For every se2" and ne o, let f;: A—R be the characteristic function of the
set ¥, A. Let f, denote the characteristic function of the singleton{x}, and let 0 be
the function identically equal to zero on 4. The space K, = {fi: seS}u
U{f.: x €A} u{0}isa compact subset of the Tikhonov cube {0, 1}*; K is a Rosen-
thal compactum, since it is contained in the space B (4),cf. Sec. 1. Let T'= { f,: se S}.
For each x € 2° we define B, = {f,,* n€ w}, a branch in T. For distinct x, y € 2%
the intersection B, " B, is finite, hence &, = {B,: x & 4} is an almost disjoint family
of subsets of the countable set 7"and we can consider K as a eompactum associated
in a standard way with this family, cf. [AU, Ch..V, § 1.3], [En, Exercise 3.6.1].

We shall verify that the space C(K,) is a Borel set of class < 1+a+1 (notice
that T is dense in K,). We shall identify the family 27 of all subsets of T with the
Cantor set. The map which assigns to each point x € 2° a subset B, < T is a homeo-
morphism of the Cantor set 2° onto the subspace # = {B,: x €2°} of the space 27
and it maps the set 4 onto &,.

Let us fix an 7 € o and a finite subset F < T. We define a function ¢ (F, n): #"—27
in the following way:

@ (E,n)(Byys oos By,) = (U B )AF

for By, .., By, €%, where A is the symmetric difference. The map ¢ (F,n) is
continuous. Let

HF,n)={CcT: C=( U‘Bx,)AF for some xy, ..., x, €4} ;
i=1

we have ¢ (F, n)~Y(H(F, n)) = #}. Hence, from a theorem of Saint-Raymond [S-R],
[JR, Th. 5.9.12] it follows that H(F, n) is a Borel set of additive class « and so is
the set H = J {H(F,n): new, Fis finite subset of T}. Let H' = {T\C: Ce H}.

The function C—T\C maps homeomorphically H onto H’. One can easﬂy check
that HUH' = {UNT: U is an open-and-closed subsct of KA}
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Let Q denote the set of rational numbers. We show that for arbitrary bounded
function v: T—R '

(*) veCy(K,) if and only if (Vp,ge Q p<q)
Fre0n, 9 v, oo))eHuH’) .

If the function u: K,— R is continuous then the set u(K,)= R is compact
and scattered, since the compactum K, is scattered. Hence, for arbitrary p,ge Q
with p<gq there exists re(Qn(p,g))\u(K,) and therefore the set u™*((r; 0))
is open-and-closed in K.

Since K, is a Fréchet space (cf. Sec. 1), the function v: T— R can be extended

to a continuous function on K, if and only if for every sequence (a,) of points of
the set T convergent in K, there exists the limit limwv(a,). Hence, for arbitrary
n

bounded function v e R'™\Cy(K,) there exist a point ac K, and sequences (a,),
(b,) of points of T converging to a such that v(a,) <p < g < r(b,) for some p, g € Q-
Then for each number r e O n(p, g) the set v™*((r, 0)) does not belong to HUH’,
since for arbitrary open-and-closed subset U < K, either a € U and then U contains
all but finitely many points of the sequence (a,) or a ¢ U and U contains only finitely
many points of the sequence (b,).

For arbitrary number r & Q we define a map ,: R”— 27 in the following way:

l//,,(TJ) = v—l((r’ OO))

The map 1, is of the first Baire class, hence the set y, '(HuUH') is a Borel set
of additive class 1+a, cf. [Ku, § 31.1IT]. Property (*) yields a description of the
space Cp(K,) by the formula:

CrK) =N{U{  (HUH): re @n(p, 11)}
p,geQ p<qin U {ve R™: o(T) = [—m, m]}

mew

for ve RT.

which shows that the space Cp(K,) is & Borel subset of class <1-+u+1 in RT.

To complete the proof it is enough to show that for arbitrary countable dense
subset D of the space K, the Borel class of the space Cp(K,) is at least .

The set A’ = AN{x: f, e D} is also of additive class a (D is countable). For
arbitrary x e 4’ let v,: D— R be the characteristic function of the set B, (notice
that the set T'is contained in D, since every point f, € T is isolated in K,). It remains
to observe that the map x—v, is-a homeomorphic embedding of the set 4’ onto
a closed subset of the space Cp(K,). This completes the proof of Theorem 4.1.

4.3. Compact subsets of the space B;(2°) of arbitrarily large Borel index 7.
Let A be a dense Borel subset of 2° of additive class « 3= 2, such that every point
of 4 is its point of condensation. (cf. [Ku, § 23.11I]), and let K, be the compact
space defined in 4.2. We shall show that the space B,(27) contains a subspace L,
homeomorphic to K.
:‘ .
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Let O ={xe2*:IncwVk>n x(k) =0}; @ is homeomorphic to the
space of rational numbers and P = 2°\Q’ is homeomorphic to the space of irratio-
nals. Let O’ = {g,: ne »} and let d be any metric in 2°. Let us choose a sequence
of distinct points p, € P, n € w, such that limd(p,, 4,) = 0. Let u: P— 4 be a con-

tinuous injective map onto 4, cf. [Si], [Ku, § 37.1]. We define an extension v of the
map u over 2° by the formula

ve) = {Zg))

the map v is of the first Baire class. To see this, we use a classical Baire’s criterion;

L
for xeP,
for x = ¢, ;

namely, we verify that for every closed subset F < 2%, the restriction v|F has a point -

of continuity relative to F, cf. [Ku, § 34. VII]. Given a compactum F < 2%, either F is
contained in Q' and then has an isolated point, which is a point of continuity of v|F,
or there exists a point p € P F and then the continuity of 1 and the definition of the
sequence (p,) implies that o|F is continuous at p.

The mapping which assigns to each function fe K, the composition fov is
a homeomorphic embedding of the set K, into the space B((2%): the functions f; are
continuous on A and hence each composition g, = f; o v is of the first Baire class
on 2° and, for every x € 4, the composition g, = f; o v is a characteristic function
of an at most two-element subset of 2°. The compactum L, = {g,: se S}u
u{g,: xe A} u{0} = B,(2*) is homeomorphic to Kj.

Let us end this section with the following observation, which will be used in
the sequel:

(6)) 4:(x) < guul)

this is so, because f, < fi,.

for new, te2”*! and xe2°;

4.4. Some further refinements of the construction. Let L, be the subspace of
B,(2%) defined in 4.3. For every s € S we choose a sequence of continuous functions
gi: 2°—{0, 1} such that

()} ‘ limgi(x) = g(x) for every xe2”,
-n

(€] gr(x) < g '(x)
(observe that (3) can be achieved in view of ).

Let us put D = {g3: se S, new} = C(2®) and let M, be the closure of D in
the space {0, 1}*°. Evidently, M, contains the space L,; we shall show that M, is
contained in B(2”). Let us consider

for every k,new, te2"!, xe2®

Ny=LiuDU{xp X nEO<B(2%);

it is enough to prove that if the characteristic function yy of the set X < 2° is an accu-
mulation point. of the set D then yy e N,.
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If the set v{X) is a singleton then xy = g, for some xe€ 4, or X = {p,}, or else
X = {g,}, for some ne . Hence xy € N,. Assume that there exist points x,y € X
such that v(x) # v(y). Choose new so that for every se2” either v(x) ¢ ¥, or

 v(») ¢ V,. By condition (2), there exists k € @ such that for izk, gi(x) = 0 or

gi(») = 0 for se2". Now, it follows from (3) that
(4) Vizn+kVie2Vjco glx)<gly'™(x) = 0 or gi(y)<gli () = 0.

Let us consider the neighbourhood U= {fe {0, 1}*": f(x) =f(3) = 1} of
the point xy. Property (4) yields: (V/=n+k)(Vte 2)(Vje w)(g! ¢ U). Hence xy is
an accumulation point of the set {gi: s€2', I<n+k, i€ w}, and therefore xy = g,
for some se2', I<n+k.

Summing up the construction in this section: we have obtained a compact sub-
space M, of B,(2) such that continuous functions form a dense subset in M, and M,
contains a topological copy of the compactum K, defined in Sec. 4.2. )

Remark. Since (M) = 2 (see Theorem 2.3), the construction applied to
any Borel set of class > 2 shows that the index # is not monotone.

§ 5. Open linear maps raising the Borel class of a linear space. Recall that a separ-
able metrizable space is an absolute Borel set of class > 1 (or an absolute F,4-set)
if it can be embedded in a compact metric space as a Borel set of class « (as
a F,;-subset, respectively), cf. [Ku, § 35.IV].

We shall use the spaces M, described in 4.4 to obtain the following example:

5.1. ExampLE. For every ordinal number o <w, there exist separable locally

onto

convex linear metric spaces E, F and an open continuous linear operator ¢: E~F
such that E is an absolute Borel space of type F,; and F is an absolute Borel set of
class >a.

Let us fix a Borel set 4 = 2% of additive class o, satisfying the conditions from
Sec. 4.3, and let L, and M, be the Rosenthal compacta constructed in Sec. 4.3
and 4.4, :

For the dense subset T" = {g,: s& S} = Ly, the space Cp(L,)is homeomorphic
to Cr(K,); hence it is an absolute Borel set of class > «, cof. 4.2. Theorem 2.3 shows
that the space Cp(M,) is an absolute Borel set of type Fy; and from Theorem 2.2 it
follows that this is also the case for the space Cp,(M,). Let us put E = Cpor(My)
and F = Cp(L,). The map ¢: E-F defined by the formula ¢(f) = f|T’ for
f& Cpup(M,) is a linear continuous surjection. We check that ¢ is open: for every -
function fe Cp (M) the basic neighbourhoods of f have the form

V=1{g e,CDUT‘(MA)v: 1f()—g(x)| <& for xe F},

where >0 and F is a finite subset of DUT’. By the Tietze—Urysohn Extension
Theorem, (V) = {ge Cp(Ly): [f(x)—g()| <e for xe FnT'}, hence (V) is
open in Cr(L,).

“The above construction can be modified to produce the following example. .
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5.2. ExampLe. There exists an open continuous linear operator ¢: E— F
mapping a separable locally convex linear metric space E, which is an absolute
F,;-set, onto a non-Borel locally convex linear metric space F.

Let X be a dense analytic non-Borel subset of 2°. Applying the construction
from Sec. 4.2 to the set X one obtains an example of a separable Rosenthal com-
pactum Ky < B,(X) for which the space Cr(Ky) is non-Borel, because the set X
embeds as a closed subset in Cp(Ky) (cf. 6.3).

Now, we follow the construction from Sec. 4.3. Let # be a continuous map of |

the space P onto the set X. Let us extend the map » to a map v: 2° — X of the first
Baire class such as in 4.3. The set Ly = { fov: fe Ky} is homeomorphic to Ky
and consists of functions of the second Baire class on 2°. Let T' = {f;ov: se S}.
For every se § we choose a sequence of continuous functions gg: 2°~ {0, 1},
n € w, which converges pointwise to f, o v (notice that f; o v is of the first Baire class,
£, being continuous), and let D = {g;: se S, ne w}. Let My be the closure of D
in the product space {0, 1}2”. Theorem 2.3 shows that the space Cp(My) is an absolute
F,;-set. Following the reasoning from the proof of Theorem 2.2 one can show that
the space Cp (My) is also an absolute F,s-set. Now, we put E = Cp,p(My),
F = Cp(Ly) and define the operator ¢: E— F as in the preceding example.

§ 6. Comments and remarks

6.1. Open maps do not raise the Borel index. A continuous image of a separable
Rosenthal compactum need not be a Rosenthal compactum; however, open con-
tinuous functions map separable Rosenthal compacta onto Rosenthal compacta,
cf. Godefroy [Go, Propositions 5 and 6]. We shall skow that open continuous maps
do not raise the index # of Rosenthal compacta.

THEOREM. Let K and L be separable Rosenthal compacta and let ¢: K—L
be an open continuous surjection. Then n(L) < n(K).

Proof. It is enough to restrict ourselves to the case when the compactum X is
infinite and 7(K) < w;. Let us choose a countable dense subset D < K such that
Cp(K) is a Borel set of class 5(K).

By Bourgain’s result [Bo], in each Rosenthal compactum the set of points with
a countable base of neighbourhoods is dense; let E = {e,: ne w} be a dense subset
of L consisting of such points and let {U¥},.,, be a base of neighbourhoods of the
point e, in L,

Let us consider the subspace X of the space Cp(K) consisting of functions
which are constant on the fibres of . Using the fact that ¢ is open one can easily
show that

X=N iﬂ kU N{{feCo®): | f(=f@)|<i™"}:e,de Do~ (U} .
new lew kew - R .
Hence the set X is a F;-subset of the space Cp(K). From Theorem 2.1 it follows
that X is a Borel set of class <#(K) in R. It remains to observe that the set X is
homeomorphic to the space C,(p(L).
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6.2. Embedding of compacta K, into the balls By.., where X is a separable
Banach space which does not contain /;. Let us recall the theorem of Odell and Ro-
senthal [Ne, Th. 1.17] that for a separable Banach space X which does not contain
an isomorphic copy of the space Iy, the unit ball By. of the second dual X** endowed
with the weak™ topology is a separable Rosenthal compactum (notice that
n(Byw) = 2, by theorem 2.3). .

We shall show that the well-known factorization technique of Davis, Figiel,
Johnson and Pelczynski [DFJP] allows one to associate with every compactum M,
constructed in Sec. 4.4 a separable Banach space E, such that the unit ball Bpy in
its second dual is a Rosenthal compactum. containing a topological copy of M,.

"Let A be a Borel subset of the space 2 as in Sec. 4.3 and let M, be the compac-
tum constructed in 4.4 (in the sequel we adopt the notation introduced in Sec. 4).
The set D is a dense subset of the space M, consisting of continuous functions on 2°.
Let —D = {~f: fe D} = C(2") and let W be the convex hull of the union Du—D
in the space C(2“). We denote by Bg(w) the unit ball of the Banach space C(2°).
Let ||]l, be the Minkowski gauge of 2"W+27"Bepey in C(2°), where n= 1,2, ...
For every function fe C(2”) we define

A1 = (3 171

The space E4 = {fe C(2%): ||| flll <o} equipped with the norm [i|-[l| is
a separable Banach space, cf. [DFJP, Lemma 1}.
" Let it W— C(2°)** be the embedding defined by the formula:
* i(£) () = p(f) = [ fdu for fe W, pe CQ*.
We prove that the set i(/¥) is relatively sequentially compact in the dual space
(C(2°)**, w¥) equipped with the weak* topology.

Let Z be the closure of the set W in the product R*"; [BFT, Theorem 5E}
yields that the set Z is a compact subset of the space B,(2%). Using the formula (x) we
can extend the map i to an embedding it Z —(C(2°)**, w¥). From the fact that Z
is a Fréchet space (cf. Sec. 1) and from the Lebesgue Dominated Convergence
Theorem it follows that the map i is a homeomorphic embedding of the set Z into
the space (C(2*)**, w¥). Since each sequence of points of the set W has a subse-
quence convergent in the space Z, every sequence of points of i(W) has a subsequence
which converges to some point of i(Z) = C27)**. .

Now, [DFIP, Lemma 1 {xii)] yields that the canonical embedding E,; : EZ
maps the unit ball By, onto a relatively sequentially compact subset of (E4™, w¥).
Hence the space /, does not embed isomorphically into E4, cf. [Ne, ThcoFeg‘l.l?].

Letj: E,— C(2°) be an inclusion. Then the map j**: EX* s C(2°)** is injective
and maps homeomorphically the ball (Bg, w*) onto the weak* closure of the set
i(Bp,) in the space C(2”)**. It can be easily checked that the set W is contained
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in the ball Bg,; hence, the Rosenthal compactum (Bpy, w*) contains a topological
copy of the set Z and therefore also copies of the spaces Ky and M .

6.3. We do not know if the property 7(K) < w, characterizes separable Roscn-
thal compacta which can be embedded topologically in B;(2°). As we have mentioned,
there are separable Rosenthal compacta, which do not embed in B,(2), cf. [Po],
but all known examples of this kind bave the index n = w;.

6.4. TueoreM 3.1 extends a result of Godefroy [Go, Proposition 10], who
proved that if the function spaces C,(K), C,(L) of separable compact spaces K, L are
homeomorphic and K is a Rosenthal compactum, then so is L.

6.5. The assumption of compactness of the space L in Theorem 3.5 is essential,
since, as was shown by Gul’ko and Khmyleva [GKh, Theorem 4], the spaces
C,([0,1]) and C,(R) are homeomorphic.

6.6. Theorems 3.1 and 3.5 show that if 4 is a Borel set in 2” of additive class
o>2 and B is a Borel subset of 2° of the additive class > 2+0+1 then the spaces
C,(K), C,(Ky) and also the spaces C,(K,), C,(Kp) are not homeomorphic, where K
and Kj are compacta described in Sec. 4.2. Let us notice that, by a result of Aharoni
and Lindenstrauss [AL], for all uncountable Borel subsets 4 < 2% the Banach spaces
C(K,) are Lipschitz homeomorphic. :
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