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Kazimierz Szymiczek (Katowice)

Abstract. Quadratic form structure is investigated for fields with a unique anisotropic torsion
n-fold Pfhister form (n-T-local field) and for fields where torsion n-fold Pfister forms are either
universal, or half-universal (n-T-Hilbert fleld). It is proved that n-T-locality always- implies
(n—1)-T-Hilberticity but not conversely. Sufficient conditions are given in terms of the number ’
of orderings of the field ensuring the converse to hold. Numerous examples of T-local fields are
given by using techniques of abstract Witt rings. A going-up theorem is proved for n-T-locality,
n =1 and 2, in totally positive quadratic extensions. ’

Introduction, A. Fr8hlich [8] and X. Kaplansky [10] investigated quadratic forms
over fields that share with P-adic fields and real closed fields the pattern of behaviour
of value sets of binary forms. Their axioms imply the characterigtic feature of the
local theory — the existence of a unique non-split quaternion algebra. The set-up
and results of their work have been generalized in. [19] to the context of n-fold
Pfister forms (theirs corresponding to n = 1). The generalization of local theory
in [19] retains the relatively trivial behaviour of quadratic forms over formally real
Hilbert fields. In case n = 1, formally real Hilbert fields are just Buclidean (two
square classes) and for 7 3> 1 they are uniquely ordered and there are only two possible
value groups for all n-fold Pfister forms. This is in contrast to the situation we
encounter in non-real Hilbert fields, where the intersections of value groups of n-fold
Phister forms do not obey any éasily formulated rule. Thus it is natural to wonder if
there exists a generalized version of the local theory retaining the non-trivial features
of non-real generalized Hitbert fields and covering in a unified manner both non-real
and formally real fields: S

This paper axiomatizes such a generalization of local theory using a fruitful
method of transferring properties from non-real to formally real fields, familiar in
algebraic theory of quadratic forms. If a property of quadratic forms is important
for non-real fields and becomies vacuous or not-so-interesting for formally real fields,
it usually turns out to be equally important in the formally real case, when considered
only for torsion, instead of all, quadratic forms. In our context this approach reveals
a class of formally real fields that share essential properties With straightforward
generalization of .classical non-real local fields. Let us stress that what we get for
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formally real fields does not generalize the number-theoretic aspect of Hilberticity
or locality (for this, see [19]).

* We consider T-Hilbert fields, where torsion n-fold Pfister forms are hall-
~universal or universal, and 7-local fields, where there is only one anisotropic torsion
(n+1)-fold Pfister form. These two notions — known to be equivalent for non-
real fields ([19]) — turn out to be no longer equivalent for formally real fields. We
show that T-locality is stronger than T-Hilberticity and study the cases where the
two are actually equivalent. This is done in Section 1. The second section produces
numerous examples of T-local and T-Hilbert fields. Since T-locality and 7-Hil-
berticity are invariant relative to Witt equivalence of fields, one can try to identify
T-local and T-Hilbert types among the classes of Witt equivalent fields. It turns
out that for any 2" <16 the number of T-local and T-Hilbert types exceeds one half
of the number of all the types of Witt equivalent fields with 2" square classes. We
give constructions suggesting that the ocourrence of T-local and T-Hilbert types for
any finite number of square classes is equally high. In the final third section we
prove a going-up theorem for T'-locality in totally positive quadratic extensions tor
n=landn= 2. The general caseseems to require a new approach andhas beenleftopen.

Notation and terminology. We introduce the following unified T-notation.

TW(F) is the torsion ideal of the Witt ring W(F), usually written W,F.
TI'"F = I"FNTW(F).

TP,F s the set of isometry classes of torsion n-fold Pfister forms over F,
ofte% viewed as subset of W(F),

TR,F is the “nth torsion radical” of F,

TR,F = (\{DgP: $eTP,F}.

All fields are assumed to have characteristic # 2.

A field F is said to be n-T-local if there is a unique anisotropic torsion n~fold
Pfister form over F (up to isometry). ;

Fis said to be n-T-Hilbert if every torsion n-fold Pfister form ® over F is either
half-universal (i.e. |[F: Dp®| = 2) or universal (i.e. F' = D, &), and there are some
half-universal forms in TP, F.

Fy =Y F? is the set of non-zero sums of squares in F (totally positive ele-
ments of F).

Xy is the set of all orderings of F (empty, if F is non-real).
If K> F is a field extension and & is a form over Fy then @y = i(P), where
it W(F)—> W(K) is the functorial ring homomorphism.

Unexplained notation and terminology follows [14].

§ 1. T-Hilbert and 7-local fields. In this section we. investigate the relationships
among the following four properties of a field F. Throughout we assume n 32
is an integer.

(A) F is an n-T-local field.

(B) F is an (n—1)-T-Hilbert field.
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(C) F is an n-T-universal field (i.e. F = Dy(®) for every & TP,F).
(D) F satisfies 4,..4 (i.e. |TP,.(F| =1, cf. [7])

TrEorEM 1.1, (A) = (B) == (C) « (D).

We will need the following two lemmas.

Lemma 1.2 ([6], Corollary 1). For arbitrary field F, if ®eP,F and 20 =0
in W), then & = (=¥, V5, s VDY for some ye Dp(1,1) and y,e F.

Lemma L3, If n2 2, Fis (n—1)-T-Hilbert and & € TP, F, then 2¢ = 0 in W(F).

Proof. Suppose 2¢*1® =0 and 2¢ # 0 for some k>0. By Lemma 12,
2K m (P Yoy vy PuaidDs Where y e Dp¢l, 1) and y, e F. Consider

V= ((*J?sYz, '-':yr|-1>>ETPn~1F'

If ¥ is universal, then it follows that 2@ = 0, a contradiction. If ¥ is half-universal,
then y, ¢ Dp(¥), since otherwise ¥Y@{(y,»)> = Y®<1>) =0 and 2":13 =0,
Hence Dp(Y@(y>d) = Di(¥)Uy, Di(¥) = F and it follows that 2°® =0
if k> 0. Hence k& = 0 and 26 = 0, as desired. ‘

Proof of Theorem 1.1. (A4) = (B). Suppose 0 = & € TP, F. Thus F does not
satisfy A4, and so there exists an n-fold Pfister form ¥ killed by 2 in W(F) ([7],
Lemma 4.2). By (A), we must have & = ¥. Hence 2¢ = 0 and by Len}ma 1.2,
there are torsion non~universal (n—1)-fold Pfister forms over F (for instance,
L=, Vo wes Pam1 DY) 1 @ is such a form and a,be F, a ¢ Dy(0), b ¢ Dr(o), then
{~add>®o and {{—b)>®0c are anisotropic torsion n-fold Pfister forms, hence

_isometric, by (A). It follows that ab e Dp(s) and this proves that ¢ is half-universal.

(B) = (C). Let e TP,F. By Lemma 1.3, we have 246 =0 and then, by
Lemma 1.2, ¢ has a factor ¥ & TP, F. If ¥ is upiversal, it follows that @ = 0,
If ¥ is halb-universal and @ # 0, then a diagonal entry of & is not represented by ¥/
and so @ is universal. In any case @ is universal, as needed.

(C) = (D). Let & & TP, ., Fand suppose ¢ 3 0. Choose k=0 s0 that 2¥*'¢ = 0
and 20 # 0. By Lemma 12, 20 = {(=p, Y25 oz Yurrr 12> With y & Dedl, 1>
and y e F. Then ¥ = (=P, Yz, s V) € TP,F, ’ltlence_ by (C), ¥ is 1'1111versa_l.
It follows that W@<{Vysydp = 2% = 0, whence 2°¢ = 0, a contradiction. This

es TP, I = 0.

PIOV(;)) =:~"£(i“,). Suppose @ & TP, F. Then by Ay ‘<I'®<‘<—a>'> =0 for every
ael', It follows that a & Dy(®) for every ae F, that is, @ is universal. ‘

If 7 is an n-T-local field, we will write @ for the unique anisotropic torsion
n-fold Plister form over JF. o

COROLLARY 1.4, If F is an n-T-local field, then thg form y® is universal and
2p® =0 in W(F). . o

Properties (A) and (B) are known to be equivalent. 1f. the field F is non-’?lal
([193, Tlieorem B). However, for formally real fields this is no longer trug. he
“mi;limal” counterexample has 16 square classes (compare Example 2.4 in Sgctxon 2).


Artur


214 K. Szymiczek

ExaMPLE 1.5. Let K be a formally real, uniquely ordered, 1-T-universal field
with at least 8 square classes (the existence of such fields for any given finite number
of square classes 34 is proved in [18], The case 2.5.1, p. 217). Let F = K((%)) be
the formal power series field over K. Then F is 1-T-Hilbert but is not 2-T-local.
Indeed, torsion 1-fold Pfister forms over F are {1, —a), where ae K, = Rk,
and these are half-universal over F. Moreover, K, = R, K and K uniquely ordered
implies |K: Ry K| =2, hence K, consists of at least four square classes. Now, if
a,be K,\E? lie in distinct square classes of K, then {{—a, >} and {({~b, )
are anisotropic torsion forms and are not isometric since @b ¢ Dp(l, ¢). Thus F ig
not 2-T-local.

ExampLE 1.6. Here we show that (C) does not imply (B). Let F be an algebraic
number field with exactly one ordering. Then F is 2-T-universal yet is not 1-7-Hilbert.
In fact, if Fis any algebraic number field, then the index [F: Dp<l, —ap| is infinite
for every a € F\F2. This can be proved with the aid of [9], Satz 169. Let us mention
in passing that Dg<1, —a) consists always of infinitely many square classes and for
any ae F we have

F=J{Dp, ~b): be D1, —ap\F?}

(cf. [20], Theorem 3.1).

ExaMmpLE 1.7. F is 0-T-Hilbert iff F is non-real and has only two square classes.
F is 1-T-local iff F, consists of two square classes iff TW(F) = Z/2Z. Thus for
n = 1, (B) implies (A) but not conversely.

ProrositionN 1.8. The following are equivalent:
@) F is 2-T-local.

(i) TI2F = Z/2Z and u(F) = 4.

(ili) TI*F = Z)22.

Proof. (i) = (ii). 2-T-locality implies 4, by Theorem 1.1, and Ay implies
TI*F = 0 by [6], Theorem 3. On the other hand, TJ2Fis generated by 2-~fold torgion
Pfister forms, hence by 2-T-locality, TI?F = Z/2Z. Hence every form. in TI*F is

a 2-fold Pfister form-and I°F is torsion free. By [5], Proposition 1.8(3), we get
u(F) = 4. '

(if) = (iii} is trivial and to prove (iii) = (i) assume g € TI*F, q # 0. Againy is
a sum of 2-fold torsion Pfister forms, hence 0 % TP, F < TI*F = {0, ¢}. It follows
geTP,F and F is 2-T-local.

Remark 1.9.If Fis 1-T-Hilbert, then u(F) = 4. We proceed as in the proof
of (i) = (i) above to get TI°F = 0. Then, using Lemma 1.12 below, we see that any
two‘torsion 2-fold Pfister forms are linked, and universal (the latter by Theorem 1.1).
Hence any sum of torsion 2-fold Pfister forms equals a 2-fold Pfister form in W(F).
Again by [5], Prop. 1.8(3), we conclude u(F) = 4.
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For the balance of this section, we focus our attention on the cases where
(B) = (A). We will assume n3>2 and F formally real (cf. the comment following
Corollary 1.4).

Tugorem 1.10. Let F be formally real field and nz 2. If F is (n—1)-T-Hilbert
and | Xy < 2", then F is n-T-local.

COoROLLARY 1.11. (i) If F has just one ordering, then (B) = (A) for n=2.

(ily If F has 2 or 3 orderings, then (B) = (&) for n=3.

(i) IF | Fy| = 2", then (B) = (A) for nzm+1.

Here (iii) follows from. the fact that m< | X < 2"1.

Livma 1,12, Let F be (n—1)-T-Hilbert field, n>2, and &, and ¥, be aniso=
tropic n-fold Pfister forms over F. Suppose &y = d>®<1_,a>, P, = PQ<L,b),
where a,beF and &, ¥ & TP, F. Then there exists e € F such that

B, = dR<1,ed and ¥, = VYR, €.

Proof of the Lemma proceeds exactly as in [19], proof of Proposition 2.3, and
will be omitted. _

Proof of Theorem 1.10. Suppose &, and ¥, are apisotropic forms in TP, F.
By Lemmas 1,3 and 1.2, we can write :

V= =20y, Ba20
where y,ze DL, 1) .

(Dl == <<“‘y1 gy eins an>> »

We apply Lemma 112 with @ = (=, @3, 1, ty-1>p and ¥ = {~7, by, s bu-12d
and get

‘1)1 = <<—y3 Aoy ooy Quys -’.’,,>> ) T]_ = <<""Z’ bz» ves bn—l: en>>
and then apply Lemma 112 again with & = (=¥, e 2, ees Gpo2dPs
¥ o= <<"‘Z, Eys bz; (X3 bn-2>> to gct

‘I)1 = <<"'"y, Cpm gy Oy B2y vony an-—2>>! 9'11

H bn—2>> *

<<"’Z, Cy—15 €y bZ’

it

Continuing this procedure we arrive at
Py (P €y s G2 W= (lmZs ey s 2
for some ey, ..., ¢, & I'. Thus any pair of torsion n-fold Phster forms over F are
(n—1)-linked. Observe that —1 & D1, —p> and —1 & Dp{l, —z, hence
Py = (Y, 08 s aeny, Y= ({7, Cryy vy Cnlp)?

for any choice of ¢;e{l, =1}, i=2,...,n.

1.10.1)

We now prove that at least one of the forms <{Czez, s Cu&yp» is torsion, if

|Xpl <2t=1. We have the following identity:
z <<Cz€z, ey Cnen>> = 2"_1<1>s
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where (c,, ..., ¢,) Tuns through {I, —1}*~* ([16], p. 73), hence for every Pe X,
we have ‘

Z SgnP<<02€2’ (LT (.'"(?,,>> =201 )

where sgnp: W(F)—Z is the signature determined by the ordering P. It follows
that for every Pe Xy exactly one of the 2"! summands <{{c,e;, ..., ¢,€,>> has
signature at P equal to 2"~! while all the others have signature O at P. Since
| Xp[ < 2"71, there is at least one form @ = {{c e,, ..., ¢,€,>> which has signature
zero at every P € Xy, hence O is torsion. With this choice of @ in (1.10.1) we apply
Lemma 1.12 once again with ¢ = ¥ = @ and get finally &, = ¥, Thus F is
n-T-local.

Remark 1.13. The result in Theorem 1.10 is the best possible. In the next
section, for every n>2 we produce an example of an (n— 1)-T-Hilbert field with
| X5 = 2"~! which is not n-T-local (cf. Theorem 2.7).

§ 2. Construction of T-local and T-Hilbert fields. We will supply evidence here
that T-Hilbert and T-local fields ocour very often among fields with finite number of
square classes. For instance, there are 78 distinct Witt rings for fields with at
most 16 square classes. Of these 70 have non-zero torsion and 47 of them are T-local
or T-Hilbert of rank n<4.

More generally, we prove that for any finite number of square classes there are
n-T-local (hence (1~ 1)-T-Hilbert) fields of all admissible ranks 7 (cf. Proposition 2.1
and Theorem 2.5). We also show that counter-examples to the implication (B) = A)
exist for any finite number of square classes = 16 and all admissible ranks but one.
All these examples of fields have Witt rings of elementary type in the sense of [15],
p. 122,

We begin with an upper bound for the Hilbert, or local rank in terms of the
number of square classes. ‘

_ Provostmion 2.1, If F is n-T-Hilbert or (n+1)-T-local field, n>1 and
|F/F2 = 2" then n+1<m. Moreover, if F is formally real, then n+1 < m.

Proof. For non-real fields the result follows from Proposition 3.1 in [19],
So assume F is a formally real field. Then TP, F # 0, hence 2"** < u(F). By [5],
Theorem 2.4, we have u(F) <2". Hence n+1<m.

PROPOSITION 2.2. Let K be a field complete relative to a diserete valuation with.
residue class field F of characteristic different from 2 and let n2 2,
() K is n-T-local iff F is (n=1)-T-local.
(i) K is n-T-Hilbert iff F is (n—1)-T-Hilbert.
(i) K satisfies A, iff F satisfies A,_ 1

Proof. In view of the identity <((a, b>> = (La, abyy, every n-fold Pfister
form & over K has either diagonalization Ly vy @008 L8y, oy By s QuTDY,

where 7 is a uniformizer of K and 415 .-, ay are units. Call the two types of diagona-
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lization the first, and the second type, respectively. The type of diagonalization is
invariant under isometry. Moreover, if ay, ..., a,, by, ..., b, are units in K, then

by ooy Gty @YD = by, vy by, b))
< <<ala whvy (l,,...1>> = <<b1 > ety bn-—-1>> (l,,b,, € DK<<a15 seey an-1>>'

For a form & as above, let & be the first residue form of ®. Then & is torsion in
Ww(K) ilf & is torsion in W(F), and also, ¢ # 0 iff & # 0. All this follows from
standard facts about local ficlds (cf. [14], Chapter VLI).

(i) If K is n-T-local, then ® = @ is necessarily of the second type since other-
wise the (n—1)-fold torsion factor of ¢ multiplied by <{{(zn>) is an anisotropic
torsion n~fold Pfister form different from @. Since distinct anisotropic forms in
TP,.., F 1ift to distinct anisotropic forms in IP,., K and multiplied by {{z>) yield
distinet anisotropic forms in TP, K, it follows that & is the unique anisotropic torsion
(n—1)-fold Pfister form over F. The same argument proves the converse.

(i) For @ = {ay, ., Qymy, Gy, Where ay, ..., 4, are upits in K, we have

* DK((I)) == DK((“l, vees a,,..1>>ua,,1r-Dx<<a1, cees an—1>> .

Moreover, K/K? = F[F* x Z/2Z and & is K-universal iff & is F-universal. Also @ is
K-half-universal f & is F-half-universal. This is sufficient to prove (ii).

(iii) follows casily from the fact that & = 0 iff & = 0.

PROPOSITION 2.3. Let E be a field satisfying A,, n> 1, and let K and F be fields
satisfying

(2.3.1) W(K) = W(F)x W(E)

(direct product in the category of abstract Witt rings).
(i) K is n-T-local iff F is n-T-local.
(i) X is n-T-Hilbert. iff F is n-T-Hilbert.
(iiiy K satigfies A, iff F satisfies 4,. ‘
Proof. We have TP,K = TP,FxTP,E and TP,E = 0 by 4,. This proves (i)
and (ii). (i) follows from the fact that for & = (9y, B;) € P,FxP,E, we have

and

DK((I)) = ‘DF(KDI) X DE(@z)

(here the value groups are regarded as subgroups of groups of square classes ragh;r
than subgroups of multiplicative groups of fields). Notice that, given F and E,
the field X satisfying (2.3.1) always exists according to [12] (see also earlier papers
cited there), . ‘

Bxampre 2.4, Using the tables of quadratic form schemes in [17] and 'Prop;»-
sitions 2.2 and 2.3 above, we have compiled the following da.ta conﬁrmlng ; e
repeated occurrence of T-local and T-Hilbert types among fields with a finite Eurr tzxi
of square classes. While in the column below the number of square clasFes the o.n
number of objects is given, we split the total to show the number of objects coming

{ — Fundamenta Mathematicae 138/3
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from non-real fields (the first summand) and from formally real fields (the second
surnmand). Thus, for instance, 29 = 15+14 in the last column, last row but one,
means there are 29 n-T-Hilbert types altogether and 15 come from non-real ficlds,
while 14 come from formally real fields.

Number of:

square classes 1.2 4 8 16

Witt rings : 1 3=241 6=442 17=104+7 51 =27+24

Witt rings with non-zero .

. torsion 1 2=2+0 5=4+1 15=10+5 47 = 27--20
. T-local or T-Hilbert types 1 2=240 3 =241 10= 6+4 31 = [5+416

n-T-local types n=2 00 2=24+0 9= 6+3 28 = 15413

n-T-Hilbert types n=1 00 2=24+0 9= 643 29=15+14

1-T-local types 0 2=240 1=0+1 1= 041 2= 042

THEOREM 2.5. Let m and n be two positive integers and 2< n+1<m.
(i) There exists a non-real (n+1)-T-local field with 2" square classes.

(ii) There exists-a formally real n-T-local field with 2™ square clusses.

Proof. (i) is proved in [19], Theorem 3.2.(i). (ji) Here the proof is similar to
that of Theorem 3.2 in [19]. Starting with a formally real algebraic extension of Q
with 4 square classes represented by +1, 42, which is 1-T-local, we double the
number of square classes and keep the same local rank using Proposition 2.3 with
E = R. Using Proposition 2.2 we double the number of square classes and enlarge
by 1 the local rank of a given T-local field F. Combining these two methods furnishes
a complete proof of the Theorem.

THEOREM 2.6. Let m and n be two positive integers, n>2, m 2 4 and n+1 <m-
There exists a formally real (n—1)-T-Hilbert field F with 2" square classes which is
not n-T-local.

Proof. The result holds for » = 2 and m = 4 by Example 1.5. Using Propo-
sition 2.3 with E = R, we prove the result for n = 2 and any m > 4. Starting again
with the field in Example 1.5 and using Proposition 2.2 we prove the result for
n=3 and m = 5 and then applying Proposition 2.3 proves the result for n == 3
and any m>=5. Continuing this procedure, the Theorem follows by induction.

The last result in this section shows that the bound for the number of orderings
found in Theorem 1.10 to guarantee that (B) = (A), is the best possible, {or every
nxz2. ‘

THBOREM * 2.7. For every n2 there exists a formally real (n—1)-T-Hilbert
Sield F with {Xg| = 21 which is not n-T-local.

Proof. The field F in Example 1.5 satisfies the requirements for n = 2. By
induction, using. Proposition 2.2, the field F((13)) ... ((1,)) satisfies the requirements
for any n>3.

Remark 2.8. Using Theorem 2.7 and Proposition 2.3 one can prove by induc-
tion the following more general result: ‘
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For cvery n2 and every i>0 there is a field F, ; with {Xp, | = 2""*+i
such that F, ; is (n—1)-T-Hilbert and not n-T-local,

§ 3. Going-up theorems for T-local fields. R. Elman and T. Y. Lam [71,
Theorem. 4.5, proved a going-up theorem for the property A, in totally positive
quadratic extensions Ko F. Since n-T-local fields satisfy A,.q, ‘it is natural to
expect that, if a going-up theorem for n-T-locality exists, the best chance to discover
it is to look at totally positive quadratic extensions. On the other hand, K. Koziot
[11}, generalizing the results of C. Cordes and J. Ramsey [3], has already proved
a going-up theorem for n-T-locality in case of quadratic extensions K = F(/a),
where I is non-real and « ¢ R,.., F. He also proves that the going-up result is
false if ae R,..; I (and F is non-real),

To generalize these results to formally real fields it seems natural to replace
the radical R,.,F by its “torsion” counterpart TR, F, the intersection of value
groups of all torsion (1 1)-fold Pfister forms over F. As [7] suggests, there is 1o
hope for a going-up result for T-locality outside the class of totally positive quadratic
extensions. Thus we are led to the following conjecture. ’

CONIBCTURE. Let IF be a field, ae F.\NTR,.F and n=1. If F is n-T-local,
so0 is K = F(/a).

In this scction we prove the conjecture for n = 1 and n = 2. In crucial points
of the proof we make use of results that are not known to hold for arbitrary values
of », hence the approach is not easily generalizable to cover other cases.

We begin with the case n =

PROPOSITION 3.1, Let F be 1-T-local and aeF,. Then K = F(\/a) is dalso
1-T-local.

Proof. Torsion 1-fold Phster forms are (1, —¢) with ¢eF,. Since F %s
1-T-local, we have F, = F2uaf? = Di(l,1) and x® = <1, —a). Thus there is
exactly one totally positive quadratic extension K = F(/a). By [7], Corgllary 2.18,
we have Dy¢l, 1> = K, and it remains to prove that Dy{1, 1) consists of ‘Ewo
square classes, By Norm Principle [7], 2.13, the norm Ny induces a homomorphism

N: Dydl, 15/R2 = Dypdl, 1[F? ;
and again by Norm Principle and by (1.1) in [7], its kernel is trivial. Thus N i
injective and -
|Dg<L, 1R [ DCI IF?] = 2.

Now | Dg¢l, 19/K 2| 1, since otherwise K is Pythagorean, and then, by a're_sult
of Diller and Dress (cf. [7], Corollary 3.9), F is also Pythaglorean, a contradiction.
Thus K, consists of two square classes and X is 1-T-local. )

For the balance of this section we assume n 3 2. If K == F(\/a) we wn;f‘N foir
the norm Nyp. For a form ¥ over K'we write 5,(¥) for its transfer to F, where 515
the F-linear functional on K given by s(1) = 0, s(/a) = L.
(*
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PROPOSITION 3.2. Suppose F is an n-T-local field, a € Fy\R, . F and K = F(,/a).
Then )

(i) F < Dy(®) for every &€ TP,_,F.

(i) x & Dg(®) < N(x) € Dp(®) for every xe K and & TP, F.

(iii) N(Dx(®)) = D(P)nDpll, —a) for every P TP, F.

(iv) If z, ¢ Dg(P) and z,¢ Dy(P), then z,z,€ Dy(®) for zy,z,eK and
oeTP,_ F.

) TP, K # 0.

i) P = 0.

(vii) If 0 # ¥ e TP, K, then s4(¥) = ®.

(viii) sx(TP,K) = TP,F.

Proof. (i) Let be F and b ¢ Dy(®). Then {{~bd>@®P & TP,F and is aniso-
tropic. Since ¢ ¢ R,_, F, there exists ¥ € P, F such that ({—a)>®¥ is anisotropic
and it is torsion since a € F, . By n-T-locality, {({—~ad>>@V¥ = {{~b>>®P. Since
{{—ad>®@Y becomes hyperbolic over K, we get b e Dy(P).

] (.()ii) N(x) € D(®) « x € F-Dy(¥) by Norm Principle, and F-Dg(®) = Dy(®),
y (i).

(iif) follows from (ii).

(V) If zy, z, ¢ Dg(®), then by (ii), N(z,), N(zy) ¢ Dy(®). Since F is (n—1)-
T-Hilbert (by Theorem 1.1), N(z;z,) € D(®). Then z,z, € Dg(P), by (ii)

o (V) If TP, K = 0, then K satisfies A, and then, by Going-Down Theorem 4.12
in [7], F satisfies A,, a contradiction. ‘

. (v%), As shown in the proof of (i), there is We P, F such that ({—ad>@Y
is torsion and anisotropic. By n-T-locality, {(~a)>®¥ = p&. Hence (;&)y = 0.

(vii) F satisfies A,.,; by Theorem 1.1, hence K satisfies A,., by Going-up
Theorem 4.5 in [7], hence K is n-T-universal by Theorem 1.1. It follows that
—1e Dg(¥), hence 2¥ = 0. Thus ¥ = ({—»>>®O, where ye Dg<l,1> and
Oel, 1K Now O =73 <a)®<z)), where a,eF, ®,eP,_,F, z;,eK, by
Lemma 2 in [6]. Thus ,

s:(P) = ¥ b Disu({{~¥,2>), for some b,
Now as in the proof of the Going-up Theorem 4.5 in [7], we conclude that
(K=, 2))) = Z <<djn —CiY
where d;; e F and c;;e F,. :
Since @,(<dyy;, —¢;>> e TP, F = {0, ¥} and 2P = 0, we have
sx(P) = Z Z <b>@<Ldy, —¢») =0 or P,

We will show that 5,(¥) # 0. Otherwise, by Theorem 2.3 in [7], there exists © & P, F

such t}‘xat ¥ = tg. Now 7y torsion implies that 7 is torsion, by total positivity of tyllw

extension (cf. [7], (1:2)), hence ¥ # 0 implies ¢ = 7. By (vi) we get 0 = 1 = ¥

a contradiction. This proves (vii). i ’
(viii) follows from (vii).
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Now we switch to the case n = 2. We begin with an analog of a useful result of
Cordes ([2], Lemma 1).

Lemma 3.3, If Fis a 2-T-local field and {1, a), <1, by € TP, F, then D1, a>
= D1, b) iff abe R F. . ) .

Proof. (a, —¢d>, (b, =cd>eTP,F for every ce F and since Dy(l,ad
= Dp(1, b, if one of the forms is isotropic (anisotropic), so is the other. By
2-Tlocality, <{{a, —¢dd = (Kb, ~edd, whence abe Dg¢l, —c> for every ceF.
Thus abe Ry F. The converse is known to hold for any field F.

LeMmA 3.4. Suppose F is 2-T-local, a € F\\RyF and K = F(,/a). Then either

() Dp<l, ~ad # DpCl, ~b) for some be FL.\R,F, or

(i) F,. = RyFuaR,F.
Moreover, (i) implies ae TRy P,

Proof. If (i) does not hold, then Dg{l, —ad = D1, —b)> for every
be F.\R,F. By Lemma 3.3, we have abe R, F for every be F,\R,F, and (ii)
follows.

Now agsume (ii). Since the value set of a quadratic form consists of cosets
of R F (cf. [1]), we have

Dp(l, ay < Fy = R FUaR F< Dg(l, a),

whence Fy = Dgll, a).

We also have Ry F e Dpdl, 1> < F, and since Ry F has index 2 in F, we have
either R, F = Dp(l,1> or D1, 1) = F,. The first possibility is ruled out since
it is cquivalent with F satisfying A, ([7], Theorem 4.3) which is not the case:. Thus
Dp(l, 1y = F, = D1, a). Observe that (ii) implies also Dg<l, —a) = TR, F.
Now we have

aeFy = Dp{1,1>n D1, @) = D1, —ay = TRy F .

We are finally ready to prove

GoNG-uP THEOREM 3.5. Let K = F(./a), where ae F\NTR\F. Then, if Fis
2-T-local, so is K.

Proof. By Lemma 3.4, we may assume there is be F,\R,F such that
Dyl ~a) # Dycl, ~b. The forms {1, —ap and {1, —b) are not universal
(a, b ¢ R F) and since they are torsion, they are half-universal, by Theorem 1.1.
Thus there exists d € Dp<l, —ad\Dp(l, —bd. It follows that {{~b, ~d)) = z®
by 2-T-localily of F, and d = N(x) for some xe K. Thus

y @ = {~b, =N®)>> -
Now we will prove that every anisotropic torsion 2-fold Pfister form over K is iso-
metric with <¢{~b, —x>>. So let 03 Ve TP K Then s4(P) = p@ by Propo-
sition 3.2(vi)) and we observe that also 5,((=b, —x}}) = pd. Thus
g = W~{{~b, —x))> has the following properties:
geTrPK and  s(9)=0.


Artur


222 K. Szymiczek

From the exactness of the sequence (cf. [7], Corollary 2.10)
PRS PES PF

where i is the functorial map, we conclude that there is @ e I*F such that ¢ = ©,.
Here @ is torsion, hence by total positivity of the extension, also © is torsion. Thus
© e TI’F = Z/2Z, the latter by Proposition 1.8, Thus @ e TP, F = {0, ;®} and
in either case, ¢ = @ = 0 (by Proposition 3.2(vi)). This proves ¥ = {{~b, —x>>
and finishes the proof.

Remark 3.6. The result in 3.5 is inapplicable if F, < TR F. If this happens,
then necessarily F, = Dp{l,1). Indeed, if beF,<TR F, then beF,
< Dpdl, —b>, whence be Dp{l, 1>. :

For formally real fields with 8 square classes there are 3 cases where F is
2-T-local (IT, IV and V in [13]). Of these, one satisfies F, < TR, F(Case IV) and the
Going-up Theorem 3.5 does not apply. In the remaining cases we have

Dp(l,1> = F,. TR, F (Case II) and

Dy(1,1> # F, &TR, F (Case V).
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