

On small sets in the sense of measure and category

by

Ireneusz Recław (Gdańsk)

Abstract. We show assuming Martin's Axiom that there exists a set of reals of cardinality continuum whose every Borel image into the reals is Lebesgue negligible and meagre. This is an answer to a problem of E. Grzegorek. We also construct a γ -set which can be mapped onto the unit interval by a Borel function.

Assuming Martin's Axiom, F. Galvin and A. W. Miller [6] constructed a set of reals of cardinality continuum such that every continuous image of this set into the reals is Lebesgue negligible and meagre. This was an answer to a question of Sierpiński. E. Grzegorek has posed the following question: assume Continuum Hypothesis, does there exist a set of reals of cardinality continuum such that every Borel image of it into the reals is Lebesgue negligible and meagre? (see [3]). D. H. Fremlin and J. Jasiński [3] showed that a set with this property exists if we assume Martin's Axiom and if there exists k < c such that P(k) contains a proper uniform ω_1 -saturated k-additive ideal. But this assumption implies the negation of Continuum Hypothesis. The following theorem solves Grzegorek's question under Martin's Axiom.

THEOREM 0. Assume Martin's Axiom. There exists a set $X \subseteq \mathbb{R}$ such that |X| = c and f(X) is Lebesgue negligible and meagre for every Borel measurable function $f \colon X \to \mathbb{R}$.

DEFINITION 1. A topological space X is a Δ -set iff for every double sequence $(J_n^k: n, k \in \omega)$ of finite Borel covers of X there exists a double sequence $(\overline{J}_n^k: n, k \in \omega)$ such that $\overline{J}_n^k \subseteq J_n^k$ and $|J_n^k| \leq 2^n$ and $X \subseteq \bigcup_{k \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} J_n^k$.

Lemma 1. Assume Martin's Axiom. Every subset of the reals of cardinality less than continuum is a Δ -set.

Proof. Let $X \subseteq R$ be such that |X| < c and let $(J_n^k; k, n \in \omega)$ be a double sequence of finite Borel covers of X. We define a partially ordered set (P, \leq) as follows:

$$P = \{(f, H_0, H_1, \dots, H_m): f: m+1 \times m+1 \to \bigcup_{k,n} P(J_n^k) \land f(i,j) \subseteq J_i^j \land f(i,j) \leqslant 2^i \land H_j \subseteq X \land |H_j| \leqslant 2^m, H_j \subseteq \bigcap_{i=0}^m f(i,j) \land m \in \omega\}$$

icm©

and $(f, H_0, ..., H_m) \leq (f', H'_0, ..., H'_m)$ iff $m \geq m'$ and $f \supseteq f'$ and $H_j \supseteq H'_j$ for every $0 \leq j \leq m'$. It is not hard to see that (P, \leq) has C.C.C. and that the sets $G_x = \{(f, H_0, ..., H_m): \exists 0 \leq j \leq m \ x \in H_j\}$ for $x \in X$ and

$$G_{ii} = \{(f, H_0, ..., H_m): (i, j) \in \text{dom } f\}$$

are dense in (P, \leq) . So there exists a \mathscr{G} -generic filter \mathscr{F} , where

$$\mathcal{G} = \{G_x : x \in X\} \cup \{G_{i,i} : i, j \in \omega\}.$$

Let $F=\bigcup \left\{f\colon \exists (f,H_0,...,H_m)\in \mathscr{F}\right\}$. F is a function defined on $\omega\times\omega$. Let $\bar{J}_n^k=F(n,k)$. We have $X\subseteq\bigcup\bigcap\bigcup\bar{J}_n^k$.

We will use the following notation:

$$[M]^{\circ\circ} = \{N \subseteq M : N \text{ is infinite}\}.$$

$$[M]^{<\omega} = \{S \subseteq M : S \text{ is finite}\}.$$

$$[M]^{*\omega} = \{ N \in [\omega]^{\omega} : N - M \text{ is finite} \}.$$

$$(S, M)^{\omega} = \{ N \in [\omega]^{\omega} : S \subseteq N \subseteq S \cup M \text{ and } S < N - S \}.$$

where S is a finite and M an infinite subset of ω .

LEMMA 2. Let $(J_n: n \in \omega)$ be a sequence of finite Borel covers of $[\omega]^{\omega}$. Then

$$\forall S \in [\omega]^{<\omega} \forall M \in [\omega]^{\omega} \exists N \in [M]^{\omega} \exists (\bar{J}_n: n \in \omega) \forall n \in \omega$$

$$\overline{J}_n \subseteq J_n \wedge |\overline{J}_n| \leqslant 2^n \wedge (S, N)^{\omega} \subseteq \bigcap_{n \in \mathbb{N}} \bigcup \overline{J}_n$$
.

Proof. In this proof we will use the following version of the theorem of Galvin and Prikry:

For every J, a finite Borel cover of $[\omega]^{\omega}$, and every $S \in [\omega]^{<\omega}$ and $M \in [\omega]^{\omega}$ there exist $N \in [M]^{\omega}$ and $B \in J$ such that $(S, N)^{\omega} \subseteq B$.

There exist $N_0^0 \in [M]^{\omega}$ and $C_0^0 \in J_0$ such that $(S, N_0^0)^{\omega} \subseteq C_0^0$. Let $a_1 \in N_0^0 - ((\sup S) + 1)$. Then there exist $N_0^1 \subseteq N_0^0 - (a_1 + 1)$ and $C_0^1 \in J_1$ with

$$(S \cup \{a_1\}, N_0^1)^{\omega} \subseteq C_0^1$$

and there exist $N_1^1 \subseteq N_0^1$ and $C_1^1 \in J_1$ with $(S, N_1^1)^{\omega} \subseteq C_1^1$. Of course,

$$(S, N_1^1 \cup \{a_1\})^{\omega} \subseteq C_0^1 \cup C_1^1$$
.

Suppose that we have defined $\{a_1, a_2, ..., a_{n-1}\}$ and $N_{2^{n-1}-1}^{n-1}$. Let $a_n \in N_{2^{n-1}-1}^{n-1}$ and let $P_0, P_1, ..., P_{2^{n-1}}$ be all subsets of $\{a_1, a_2, ..., a_n\}$. Then we can find $N_0^n \in N_{2^{n-1}-1}^{n-1} - (a_n+1)$ and $C_0^n \in J_n$ such that $(S \cup P_0, N_0^n)^\omega \subseteq C_0^n$. Inductively, there exist $N_i^n \subseteq N_{i-1}^n$ and $C_i^n \in J_n$ such that $(S \cup P_i, N_i^n)^\omega \subseteq C_i^n$. Observe that

$$\bigcup_{i=0}^{2^{n}-1} (S \cup P_i, N_{2^{n}-1}^n)^{\omega} = (S, N_{2^{n}-1}^n \cup \{a_1, a_2, ..., a_n\})^{\omega};$$

and so

$$(S, N_{2^{n-1}}^n \cup \{a_1, \ldots, a_n\})^{\omega} \subseteq \bigcup_{0 \le i \le 2^{n-1}} C_i^n.$$

Let $N = \{a_i: i \in \omega\}$ and $\bar{J}_n = \{C_0^n, C_1^n, ..., C_{2^{n-1}}^n\}$. Since, for every n,

$$(S, N)^{\omega} \subseteq (S, N_{2n-1}^n \cup \{a_1, a_2, ..., a_n\})^{\omega},$$

we have $(S, N)^{\omega} \subseteq \bigcap \bigcup J_n$.

LEMMA 3. Let $(J_n^k: n, k \in \omega)$ be a double sequence of finite Borel covers of $[\omega]^{\omega}$ and let $M \in [\omega]^{\omega}$. Then there exist $N \in [M]^{\omega}$ and $(\overline{J}_n^k: n, k \in \omega)$ such that $\overline{J}_n^k \subseteq \overline{J}_n^k$ and $|\overline{J}_n^k| \leq 2^n$ and $[N]^{*\omega} \subseteq \bigcup \bigcap \bigcup J_n^k$.

Proof. Let $\{S_k\colon k\in\omega\}=[\omega]^{<\omega}$. We first construct a decreasing sequence $(N_k\colon k\in\omega)$ and a double sequence $(\overline{J}_n^k\colon k,\,n\in\omega)$ such that $\overline{J}_n^k\subseteq J_n^k,\,|\overline{J}_n^k|\leqslant 2^n$ and $(S_k,\,N_k)^\omega\subseteq\cap\bigcup\overline{J}_n^k$ and $N_0\subseteq M$.

There are $N_0 \in [M]^{\omega}$ and $(\overline{J}_n^0 : n \in \omega)$ such that $\overline{J}_n^0 \subseteq J_n^0$ and $|J_{n|}^0| \leqslant 2^n$ and $(S_0, N_0)^{\omega} \subseteq \bigcap_{n} \bigcup \overline{J}_n^0$ (Lemma 2) and inductively, there exist $N_{k+1} \in [N_k]^{\omega}$ and $(\overline{J}_n^{k+1} : n \in \omega)$ with $\overline{J}_n^{k+1} \subseteq J_n^{k+1}$ and $|\overline{J}_n^{k+1}| \leqslant 2^n$ and $(S_{k+1}, N_{k+1})^{\omega} \subseteq \bigcap_{n} \bigcup \overline{J}_n^{k+1}$ (Lemma 2).

We define a sequence $(b_l: l \in \omega)$. Let $b_0 = \min(N_0)$ and

$$b_{l+1} = \min(N_{k+1} - (b_l + 1))$$

where $k_{l+1} = \sup\{k \in \omega \colon S_k \subseteq b_l + 1\}$. Let $N = \{b_l \colon l \in \omega\}$. We claim that $[N]^{*\omega} \subseteq \bigcup_{n} \cap \bigcup_{n} J_n^k$. Let $L \subseteq {}^*N$. Then there exists b_l such that $L - (b_l + 1) \subseteq N$. There is a $k \in \omega$ for which $S_k = L \cap (b_l + 1)$. Then $(S_k, N_k)^\omega \subseteq \bigcap_{n} \bigcup_{n} J_n^k$ and $\{b_m \colon m > l\} \subseteq N_{k_{l+1}} \subseteq N_k$. Thus $(S_k, L - (b_l + 1))^\omega \subseteq \bigcap_{n} \bigcup_{n} J_n^k$. Since $(b_l \colon l \in \omega)$ is increasing, $L \in (S_k, L - (b_l + 1))^\omega$.

THEOREM 1. Assume Martin's Axiom. Then there exists a Δ -set of reals of cardinality continuum.

Proof. From Lemma 3, using standard methods (see [2], [4], [5], [6]), we get a set $X = \{X_{\alpha} : \alpha < c\} \subseteq [\omega]^{\omega}$ such that |X| = c and for every α , $\beta < c$ if $\alpha < \beta$ then $X_{\beta} \subseteq {}^*X_{\alpha}$ and for every double sequence $(J_n^k : k, n \in \omega)$ of finite Borel covers of $[\omega]^{\omega}$ there exist $(\overline{J}_n^k : k, n \in \omega)$ and $\alpha < c$ such that $\overline{J}_n^k \subseteq J_n^k$ and $|\overline{J}_n^k| \le 2^n$ and $\{X_{\beta} : \beta \geqslant \alpha\} \subseteq \bigcup \bigcap \bigcup \overline{J}_n^k$.

We will show that X is a Δ -set. For every $(I_n^k : k, n \in \omega)$, a double sequence of finite Borel covers of X, there exists a double sequence $(J_n^k : k, n \in \omega)$ of finite Borel covers of $[\omega]^\omega$ such that $I_n^k = \{B \cap X : B \in J_n^k\}$. There exist $\alpha < \mathfrak{c}$ and $(J_n^k : k, n \in \omega)$ such that $J_n^k \subseteq J_n^k$, $|J_n^k| \leq 2^n$ and

$$\{X_{\beta}\colon \beta \geqslant \alpha\} \subseteq \bigcup_{k} \bigcap_{n} \bigcup J_{n}^{2k}$$
 and $\{X_{\beta}\colon \beta < \alpha\} \subseteq \bigcup_{k} \bigcap_{n} \bigcup J_{n}^{2k+1}$

(Lemma 1). Thus the double sequence $(\bar{I}_n^k: k, n \in \omega)$, where $\bar{I}_n^k = \{X \cap B: B \in \bar{J}_n^k\}$ has the properties required in the definition of a Δ -set.

THEOREM 2. (a) Every Borel image of a Δ -set is a Δ -set.

(b) Every Δ-set of reals is Lebesgue negligible and meagre.

Proof. (a) Evident.

(b) Let $X \subseteq R$ be a Δ -set. We may assume that $X \subseteq (0, 1)$. Let

$$J_n^k = \{ [i \cdot 2^{-2n}, (i+1) \cdot 2^{-2n}) : 0 \le i \le 2^{2n} - 1 \}.$$

Then there exists $(J_n^k\colon k,\,n\in\omega)$ such that $J_n^k\subseteq J_n^k,\,|J_n^k|\leqslant 2^n$ and $X\subseteq\bigcup_k\bigcap_l\bigcup J_n^k$. Observe that $m(\bigcup_k\bigcap_l\bigcup J_n^k)\leqslant 2^{-n}$ (m denoting Lebesgue measure), so that $m(\bigcup_k\bigcap_l\bigcup J_n^k)=0$. Let $(a,b)\subseteq (0,1)$ and let $n\in\omega$ be such that $2\cdot 2^{-n}\leqslant b-a$. Then there exists i such that $0\leqslant i\leqslant 2^{2n}-1$ and $[i\cdot 2^{-2n},\,(i+1)\cdot 2^{-2n})\cap \bigcup J_n^k=\emptyset$ and $[i\cdot 2^{-2n},\,(i+1)\cdot 2^{-2n})\subseteq (a,b)$. Hence, for every $k\in\omega$ the set $\bigcap_l\bigcup J_n^k$ is nowhere dense.

Theorem 0 is a direct consequence of Theorems 1 and 2.

Remarks. Every A-set is a C'-set.

A. W. Miller has proved the following theorem: It is consistent with ZFC that for every set of reals of cardinality continuum there is a continuous map from that set onto [0, 1]. It follows that we cannot prove Theorem 0 in ZFC.

Recently I have learnt that S. Todorčević solved Grzegorek's problem independently. In 1981 he showed that under MA there exists a set of reals of cardinality continuum such that every Borel image of it is a γ -set. This implies Theorem 0. This result is not published.

We can take any positive sequence (m_n) with $m_n \to +\infty$ in place of (2") in the definition of a Δ -set.

Let $(J_n^k: k, n \in \omega)$ be a sequence of finite Borel covers X. Let $n_0 = 0$ and let (n_i) be strictly increasing and such that $\forall n \ge n_i \ m_n \ge 2^i$. Let

$$J_{n}^{*k} = \{A_{0} \cap A_{1} \cap ... \cap A_{m} : A_{i} \in J_{i}^{k}\}$$

and let $\bar{J}_{l}^{*k} \subseteq J_{l}^{*k}$, $|\bar{J}_{l}^{*k}| \le 2^{l}$. For $n \in \omega$ let

$$\overline{J}_n^k = \{A_n \colon A_0 \cap A_1 \cap \dots \cap A_n \cap \dots \cap A_{n_{l_0}} \in \overline{J} *_{l_0}^k\}$$

where $l_0 = \min\{l\colon n_l > n\}$. Since $n \geqslant n_{l_0-1}$, $m_n \geqslant 2^{2l_0-1}$, we see that $|J_n^k| \leqslant m_n$. Observe that $\bigcup_k \bigcap_l \bigcup_l J_l^{*k} = \bigcup_k \bigcap_l \bigcup_l J_l^k$.

A family $J \subseteq P(X)$ is an ω -cover if for every finite set $F \subseteq X$ there exists $B \in J$ such that $F \subseteq B$.

A topological space X is a γ -set if for every J, an open ω -cover of X, there exists a family $\{D_n\colon n\in\omega\}\subseteq J$ such that $X\subseteq\bigcup\bigcap D_n$.

Now we construct an example of a y-set which can be mapped onto [0, 1]

by a Borel function. Observe that every continuous image of a γ -set is Lebesgue negligible and meagre.

THEOREM 3. Assume Martin's Axiom. Then there exists a set $X \subseteq \mathbb{R}$ with the properties:

- (1) There exists a countable set D such that $X \cup D$ is a y-set.
- (2) X+F is Lebesgue negligible (meagre) if F is Lebesgue negligible (meagre).
- (3) There exists a continuous function $f: X \to [0, 1]$.

Define a function $g: [\omega]^{\omega} \to 2^m$ by

$$g(A) = \varphi$$
 iff $\varphi(n) = \begin{cases} 0 \text{ if the } n \text{th term of } A \text{ is even }, \\ 1 \text{ otherwise }. \end{cases}$

Let $E = \{2n : n \in \omega\}$.

Fact 1. g is continuous.

Fact 2. For every $A \in [\omega]^{\omega}$ with $|A \cap E| = |A \cap (\omega - E)| = \omega$ we have $g([A]^{\omega}) = 2^{\omega}$.

LEMMA 4. Let J be an open ω -cover of $[\omega]^{\omega}$ in $P(\omega)$ and let $M \in [\omega]^{\omega}$ be such that $|M \cap E| = |M \cap (\omega - E)| = \omega$. Then there exists a family $\{D_n : n \in \omega\} \subseteq J$ and $N \in [M]^{\omega}$ such that $[N]^{*\omega} \subseteq \bigcup_{m} \bigcap_{n \geqslant m} D_n$ and $|N \cap E| = |N \cap (\omega - E)| = \omega$.

The proof of Lemma 4 is similar to the proof of Lemma 1.2 in [6].

Proof of Theorem 3. Let $\{J_{\alpha}: \alpha < c\}$ be the family of all open ω -covers of $[\omega]^{<\omega}$ in $P(\omega)$ and let $\{h_{\alpha}: \alpha < c\} = \{h \in 2^{\omega}: |h^{-1}(1)| = |h^{-1}(0)| = \omega\}$ and $\omega^{\omega} = \{m_{\alpha}: \alpha < c\}.$

Using Lemma 4 and methods of [5] and [6] we construct a set $Y = \{Y_{\alpha}: \alpha < c\}$ such that

- (a) $Y \subseteq [\omega]^{\omega}$ and |Y| = c,
- (b) $\forall \alpha, \beta \ \alpha < \beta \Rightarrow Y_{\beta} \subseteq * Y_{\alpha}$,
- (c) For every α , if J_{α} is an open ω -cover of $Y \cup [\omega]^{<\omega}$ then there exists a family $\{D_n: n \in \omega\} \subseteq J_{\alpha}$ such that $Y \cup [\omega]^{<\omega} = \bigcup_{n \in \mathbb{Z}} \bigcap_{n \in \mathbb{Z}} D_n$,
 - (d) $\forall \alpha \forall n$ the *n*th term in Y_{α} is greater than $m_{\alpha}(n)$,
 - (e) $\forall \alpha \ g(Y_{\alpha}) = h_{\alpha}$.

Let *i* be the standard homeomorphism from $P(\omega)$ onto the Cantor set on the real line and let *j* be a continuous function from $\{h \in 2^{\omega}: h^{-1}(1) = |h^{-1}(0)| = \omega\}$ onto [0, 1]. Define X = i(Y), $D = i([\omega]^{<\omega})$ and $f = j \circ g \circ i^{-1} \wedge X$. The sets *X* and *D* and the function *f* have properties as required (see [5], [6]).

COROLLARY 1. Assume Martin's Axiom. Then there exists a y-set which can be mapped onto [0, 1] by a Borel function.

Proof. The function f from Theorem 3 can be extended to a Borel function on $X \cup D$.

The author wishes to express his thanks to D. H. Fremlin, E. Grzegorek, J. Jasiński and J. Tryba for fruitful discussions.

260

Treneusz Reclaw

References

- E. Ellentuck, A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1) (1974), 163-165.
- [2] P. Erdös, K. Kunen and R. D. Mauldin, Some additive properties of sets of real numbers, Fund. Math. 113 (1981), 187-199.
- [3] D. H. Fremlin and J. Jasiński, G_δ-covers and large thin sets of reals, Proc. London Math. Soc. (3) 53 (1986) 518-538.
- [4] D. H. Fremlin and A. W. Miller, On some properties of Hurewicz, Menger and Rothberger, preprint.
- [5] H. Friedman and M. Talagrand, Un ensemble singulier, Bull, Sci. Math. 104 (1980), 337-340.
- [6] F. Galvin and A. W. Miller, γ-sets and other singular sets of real line, Topology Appl. 17 (1984), 145-155.
- [7] F. Galvin and K. Prikry, Borel sets and Ramsey's theorem, J. Symbolic Logic 38 (2) (1973), 193-198

UNIWERSYTET GDAŃSKI ul. Wita Stwosza 57, 80-952 Gdańsk Poland

> Received 6 April 1987; in revised form 14 July 1987

BOOKS PUBLISHED BY THE POLISH ACADEMY OF SCIENCES, INSTITUTE OF MATHEMATICS

- S. Banach, Oeuvres, Vol. II, 1979, 470 pp.
- S. Mazurkiewicz, Travaux de topologie et ses applications, 1969, 380 pp.
- W. Sierpiński, Oeuvres choisies, Vol. I. 1974, 300 pp.; Vol. II. 1975, 780 pp.; Vol. III. 1976, 688 pp.
- J. P. Schauder, Oeuvres, 1978, 487 pp.
- K. Borsuk, Collected papers, Parts I. II, 1983, xxiv+1357 pp.
- H. Steinhaus, Selected papers, 1985, 899 pp.
- W. Orlicz, Collected papers, Parts I. II, 1988, Liv+viii+1688 pp.
- K. Kuratowski, Selected papers, 1988, Lii+610 pp.
- T. Ważewski, Selected papers, 1990, xx+572 pp.

MONOGRAFIE MATEMATYCZNE

- 43. J. Szarski, Differential inequalities, 2nd ed., 1967, 256 pp.
- 51. R. Sikorski, Advanced calculus. Functions of several variables, 1969, 460 pp.
- 58. C. Bessaga and A. Pełczyński, Selected topics in infinite-dimensional topology, 1975, 353 pp.
- 59. K. Borsuk, Theory of shape, 1975, 379 pp.
- 62. W. Narkiewicz, Classical problems in number theory, 1986, 363 pp.

DISSERTATIONES MATHEMATICAE

CCXCIV. W. Krawcewicz, Résolution des équations semilinéaires avec la partie linéaire à noyau de dimension infinie via des applications A-propres, 1990.

CCXCV. R. Dobreńko, The obstruction to the deformation of a map out of a subspace, 1990.

BANACH CENTER PUBLICATIONS

- 10. Partial differential equations, 1983, 422 pp.
- 11. Complex analysis, 1983, 362 pp.
- 12. Differential geometry, 1984, 288 pp.
- 13. Computational mathematics, 1984, 792 pp.
- 14. Mathematical control theory, 1985, 643 pp.
- 15. Mathematical models and methods in mechanics, 1985, 726 pp.
- 16. Sequential methods in statistics, 1985, 554 pp.
- 17. Elementary and analytic theory of numbers, 1985, 498 pp.
- 19. Partial differential equations, 1987, 397 pp.
- 20. Singularities, 1988, 498 pp.
- 21. Mathematical problems in computation theory, 1988, 597 pp.
- 22. Approximation and function spaces, 1989, 486 pp.
- 23. Dynamical systems and ergodic theory, 1989, 479 pp.
- 24. Numerical analysis and mathematical modelling, 1990, 566 pp.
- 25. Combinatorics and graph theory, 1989, 251 pp.
- 26. Topics in algebra, Parts 1 and 2, to appear.