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On small sets in the sense of measure and category
by

Irenensz Reclaw (Gdansk)

Abstract. We show assuming Martin’s Axiom that there exists o set of reals of cardinality
continuum whose cvery Borel image into the reals is Lebesgue negligible and meagre. This is an.
answer 10 a problum of E. Grzegorek. We also construet a p-set which can be mapped onto the
unit interval by a Borel function.

Assuming Martin’s Axiom, F. Galvin and A, W. Miller [6] constructed a set
of reals of cardinality continuum such that every continuous image of this set into
the reals is Lebesgue negligible and meagre. This was an answer to a question of
Sierpifiski. E. Grzegorek has posed the following question: assume Continuum
Hypothesis, does there exist a set of reals of cardinality continuum such that every
Borel image of it into the reals is Lebesgue negligible and meagre? (see [3]).
D. H. Fremlin and J. Jasinski [3] showed that a set with this property exists if we
assume Martin’s Axiom and if there exists k < ¢ such that P(k) contains a proper
uniform w,-saturated k-additive ideal. But this assumption implies the negation
of Continuum Hypothesis. The following theorem solves Grzegorek’s question under
Martin’s Axion.

THEOREM 0. Assume Martin's Axiom, There exists a set X S R such that
|X| = ¢ and f(X) is Lebesgue negligible and meagre for every Borel measurable
Junction fi X—R.

DEFRINITION 1. A topological space X is a 4-set iff for every double sequence
(J¥: n, k e w) of finite Borel covers of X there exists a double sequence (7% n, kew)
such that J* = J¥ and |74 <2" and X< l.k) n e

n

LemMa 1. dssume Martin's Axiom. Every subset of the reals of cardinality less
than continuum is a 4-set. ’

Proof. Let X< R be such that | X] < ¢ and let (J¥: &, ne w) be a double se-
quence of finite Borel covers of . We define a partially ordered set (P, <) as follows:

P = {(fs HO: le ey Hm):
fimtlxmalo UPTYAfGDEH AfENSEAHSXAH| <27,
ks m
Hs N fG,)Armeo}
i=0
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and (f, Hy, ..., H) < (f, Hy, ..., H)) iff m>m’ and f2 f and Hjé Hj for every
0<j<m'. It is not hard to see that (P, <) has C.C.C. and that the sets
G = {(f, Hy, ..., H,): 30<j<m xe H}} for xe X and
Gy = {(f, Hy, ..., H,): (i,j)edomf}

are dense in (P, <). So there exists a @-generic filter &, where

9= {G,: xe X}u{G,: i,jew}.
o Let F= U {/: 3(f, Hy, ..., H,) e F}. F is a function defined on wx w. Let
Tk = F(n, k). We have X< U~ '

k n

We will use the following notation:

[M)® = {Nc< M: N is infinite},
[M]®9 = {Sc M: S is finite},
[M]** = {Ne[w]”: N-M is finite},
(S, M)* = {Ne[w]": SSNSSUM and S<N-S},
where S is a finite and M an infinite subset of w.

LEMMA 2. Let (J,: ne ) be a sequence of finite Borel covers of [w]”. Then
VSe[w]*°YMe[w]'ANe [M]°AJ,: new)Vneow

T STA T2 A (S, N N\ UT,.

nao

Proof. In this proof we will use the following vetsion of the theorem of Galvin
and Prikry:

For every J, a finite Borel cover of [0]®, and every S [0]<° and Me [w]”
there exist Ne [M]” and BeJ such that (S, N)°< B.

There exist No e [M]° and CgeJ, such that (S, NO)®< €. Let a, e Ng—
—((supS)+1). Then there ‘exist N¢ S N§—(ay+1) and Cs e J, with

(Sufa,}, N Cl
and there exist N = Nj and Cf e/, with (S, N})* < ¢}, Of course, ‘
(S, Nivfa ) sciuck,

Suppose that we have defined {4, a,, ..., a1} and Nyho . Let a, & Njmho |

1l
FLETT™
and let Py, Py, ..., Py, be all subsets of {ai, a3, oy @} Then we can find
Nj e N34

1—(a,+1) and C§ e J, such that (SUP,, N)®< C". Inducti [
0 & V2 2 f a » No)* = Co. Inductively, there
exist N S NiL, and C'eJ, such that (SuP, N)"< CI. Observe that
2n-y k ‘
,L-Jo (SUP, Nyuy)® = (8, Njuoy Ufay, as, ..., a,N®y
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and so
(S, Non_yufag,..ap)’s U Ci.

‘ 0<i<27-1
Let N = {a;: iew} and J, = {C8, Ci, ..., Con_1}. Since, for every n,
(S, N)* = (S, Njn_y U {ag, @z, o 1)
we have (S,N)"’.C_Q UJ,.

Lovma 3. Let (J5: n, ke w) be a double sequence of finite Borel covers of |w]®
and let M & [0]®. Then there exist Ne [M]° and (J%: n, ke o) such that Ji< J¥ and
174 < 2" and [NT*s U N UJr

Lo
Proof. Let {S,: ke o} = [0]*®. We first construct a decreasing sequence
(Ny: ke w) and a double sequence (J,: k,n e ) such that Tec gk, 1TH < 2" and
(Se, N)® = N UTs and Nos M.
n

There arc Npe[M]® and (Ji: ne @) such that J2eJ? and [y <2" and
(Sos NoY*s (N UJS (Lemma 2) and inductively, there exist Ny, € [Ny]” and
»

TE: new) with Fie JEH and |TE <2 and (S NS N UTH
(Lemma 2). "
We define a sequence (b;: /e w). Let by = min(No) and

byyy = min{Ny, ,— O+ 1)

where kyiy = sup{ke w: S,sh+1}. Let N={b: lew}. We claim that
[NP**< U UJ: Let LE*N. Then there exists & such that L—(bi+1) s N.
k »n

There is a ke for which S, =Ln(b+1). Then (S, N)°s N\ UJTs and

(b m>[}S Nyyo , € Nio Thus (Si, L=+ D) UJE Since (by: lew) is
increasing, L & (Sy, L—(B+1))". "

TugoreM 1. Assume Martin's Axiom. Then there exists a A-set of reals of
cardinality continuum.

Proof. From Lemma 3, using standard methods (see [2], {41, [5], [6]), we get
aset X = {X,: a<c}S[w]” such that |X| = ¢ and for every o, f<c¢ if a<f
then X; &* X, and for every double sequence (J}: k, ne w) of finite Bsrel covers
of [w]® there exist (J¥: k,new) and a< ¢ such that J*<J¥ and |75 <2" and
{Xp: Bpza}s Lk)Q UTe

We will show that X is a 4-set. For every (I¥: k,ne w), a double sequence
of finite Borel covers of X, there exists a double sequence (7% k, ne o) of finite
Borel covers of [0]° such that If = {BnX: BeJy}. There exist a<c¢ and
(7%: k,new) such that Tk Jx, |75 <2" and '

(X;: Rzd}s U NUTF  and  {X: B<a}s &mui:"“
k n n


Artur


258 v Ireneusz Rectaw

(Lemma 1). Thus the double sequence (I;: k,ne w), where If = {XnB: BeJtl
has the properties required in the definition of a A-set.

THEOREM 2. (a) Every Borel image of a A-set is a A-set,

(b) Every A-set of reals is Lebesgue negligible and meagre.
Proof. (a) Evident.

(b) Let X< R be a 4-set. We may assume that X < (0, 1). Let

W= {27 (i+1)272: 0<ig 2™ 1},
Then there exists (Jy: k,ne w) such that J¥<J¥, |74 <2" and X< J nyJe
k n

Observe that M( UTh<2™ (n denoting Lebesgue measure), so that
m(UN UJg) =0. Let (a,5)=(0,1) and let new be such that 2-2°" < bh—ag,
k n

Then there exists | such that 0<i<2*"—1 and [1-27%", (i+1)2" ") A YT = @
and [i-27%, (i+1)-27*") = (a, b). Hence, for every k& o the set N UJ¥ is nowhere
dense. "

Theorem 0 is a direct consequence of Theorems 1 and 2.

Remarks. Every 4-set is a C’-set.

A. W. Miller has proved the following theorem: It is consistent with ZFC that
for every set of reals of cardinality continuum there is a continuous map from that
set onto [0, 1]. It follows that we cannot prove Theorem 0 in ZFC.

Recently I have learnt that S. Todor&evié solved Grzegorek’s problem inde-
pendently. In 1981 he showed that under MA there exists a set of reals of cardinality
continuum such that every Borel image of it is a y-set. This implies Theorem 0.
This result is not published.

We can take any positive sequence (my,) with m, = + o in place of (2") in the
definition of a 4-set. .

Let (Jf: k,new)bea sequence of finite Borel covers X, Let n, = 0 and let ()
be strictly increasing and such that Vazn, m, =2\ Let

T4 = {donA;n..d,: 4;eJ8}
and let J¥ < J* 174 < 2" For new lot

Ii={d; dgndin..ndyn.nd eJ*)

Mo

where Ip = min{l: m>n}. Since n>my, m,>2%7! we o that 1T < m,.
Observe that U\ UT* < U UJTE.
. k1 k1

A family J < P(X) is an w-~cover if for every finite set F< X there exists BeJ
such that F B,

A topological space X is a y-set if for every J, an open w-cover of X, there
exists a family {D,: ne w} SJ such that X < U n D,

m nzm

Now we construct an example of a y-set which can be mapped onto [0, 1]
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by a Borel funciion. Observe that every continuous image of a y-set is Lebesgue
negligible and meagre.
TuroREM 3. Assume Martin’s Axiom. Then there exists a set X < R with the
properties:
(1) There exists a countable set D such that XU D is a y-set.
(2)‘ X+ F is Lebesgue negligible (meagre) zfo .f; is Lebesgue negligible (meagre).
(3) There exists a continuous function f: X — [0, 1].
Define a function g: [w]® —2" by
0 if the nth term of 4 is even,

gy =9 il o@= {1 otherwise .

Let E = {2n: ne w}.

Fact 1. g 1s continuous.

Fact 2, For every Ae|w]” with |dnE| = |dn(@—E) =w we have
g([4]") = 2°.

LemMma 4. Let J be an open w-cover of [0]” in P(w) and let M e [w]® be such
that | M E| = |M~(w—E)| = o. Then there exists a family {D,: ne w}<J and
Ne[M]® such that [N <= U N\ D, and INNE| = |[Nn(w—E)| = .

m nzm

The proof of Lemma 4 is similar to the proof of Lemma 1.2 in [6].

Proof of Theorem 3. Let {J,: @< c} be the family of all open w-covers of
[0]® in P(w) and let {h: a<c}= {he2” |A7'() = |"*0)] = w} and
o = {m,: a<c}

Using Lemma 4 and methods of [5] and [6] we construct a set ¥ = {¥,: a < ¢}
such that : .

(2) Yo [w]” and | Y| = ¢,

/ =Yy * Y.,

((]3 ;Z; fv:r;f, if }.;f, is an open w-cover of Yu[w]™® then there exists a family

{D,: new}sJ, such that YUlw]*® =U N D,

m n>nt

(d) Vo¥n the nth term in Y, is greater than my(n),
(&) Vo g(Yo) = ha.

Let { be the standard homeomorphism from P(w) onto EI;e Cantoi 1set on the
real lino and let / be a continuous function from {he2”: h ) Sl,) = [h71(0)| = w}
onto [0, 1], Define X = i(¥), D = i([w]*®) i\‘nd_]f:—‘jo goi™* A X, The sets X
and D and the function f have properties as required (see [5], [6]).

CoRrROLLARY 1. Assume Martin’s Axiom. Then there exists a y-set which can be
mapped onto [0, 1] by a Borel function. '

Proof. The function f from Theorem 3 can be extended to a Bore) function
on XuD. ’ .

The author wishes to express his thanks to D, H. Fremlin, E. Grzegorek, J. Ja-
sifiski and J. Tryba for fruitful discussions.
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