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Existence and nonexistence of universal graphs *
by

Lawrence S. Moss (Ann Arbor, Mich.)

Abstract. By the Four Color Theorem, for every planar graph G there is a map of the vertices.
of G into K| preserving the edge relation. If we require the map to be an embedding, then we get
the following negative result: There is no countable planar graph H such that for all countable
planar G there is a one-to-one homomorphism of G into H. A similar result holds for the countable
graphs of a fixed finite degree. In contrast, we prove existence theorems for universal countable-
graphs under isometric (hence isomorphic) embeddings for the classes of all countable graphs or
those of a fixed diameter or colorability.

Let <&, 4 be a category, a pair consisting of class of objects and a class of
morphisms. An object U € 0 is called universal if for every X e O there is a morphism
me A of X into U. Questions concerning the existence of universal objects arising.
in graph theory were raised by Rado in [4]. He considered the classes # of all count-
able graphs and %, of all countable locally finite graphs, and the classes &, of
weak embeddings and &, of strong embeddings of graphs. (“Locally finite” means
that each vertex has finite degree. A weak embedding of G into H is a one-to-one
map i from the vertex set of G to the vertex set of H such that if x and y are neighbors
in G, then i(x) and i(y) are neighbors in H. A strong embedding has the converse.
property as well.) Obviously, (¥, &,,> has the complete graph on countably many
vertices as a universal object, and Rado showed that <%, &> has one also. An
argument attributed to de Bruijn showed that (%,;, &, does not have a universal
object. A fortiori, <%,,, &,> fails to have one also. ;

The purpose of this paper is to investigate the situation with various classes of
countable graphs, including planar graphs, graphs of a fixed finite degree, graphs
of a fixed finite diameter, and k-colorable graphs. We will consider the classes of -
mappings mentioned above as well as the graph homomorphisms and the isometric
embeddings.

1. There is no universal planar graph. We consider first the class ¥, of countable
planar graphs. Let # be the class of graph homomorphisms. These are the maps
which take edges to edges; they are not necessarily one-to-one. By the Four Color-
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Theorem [1], {%,, # has K, as a universal object. That is, a four coloring of the

vertices gives a map into K, and the fact that neighboring vertices get different .

colors insures that the image does not have loops. (It might be interesting to note
that this is the only way I know to see that {%,, #) has a universal object.) We
will show in contrast that <%,, &,,> does not have a universal object.

6 : Go ' [

Consider the three graphs G, G,, and G, shown in the figure. We regard G as
a subgraph of both G, and G4 in the obvious way. Note that these are triangulations,
so no new edges can be added to Gy or Gy without destroying planarity.

Lemma 1. Suppose i is a weak embedding of G into a planar graph H. Then
there is at most one j extending i such that j is a weak embedding of either G, or G
into H. .

Proof. Suppose toward a contradiction that j and k are different maps with
both of these properties. There are essentially three cases, depending on the domains
of j and k. The first case is when the domains are both G,. There are two subcases
here, depending on' whether

{j(ao) sj(bo) ’ ](CO)} = {k(ao)s k(bo) > k(CO)}

ornot. If the two sets were equal, then since j are k different and injective, we will
show by considering j(a,) that the image k[G,] would have all the vertices and more
edges than G,. If j(a,) = k(a,), then j(b,) = k(c,). Since j(b) is a neighbor of
J (o), k(b) = j(b) would be a neighbor of k(cy). If j(ap) = k(by), then k(a) would
be a neighbor of k(b,). Finally, If j(a,) = k(c,), then k(a) would be a neighbor
of k(co). Any of these possibilities contradicts the planarity of H. The second sub-
case is when the sets above are different. Suppose without loss of generality that
J(ap) does not belong to the second set, in particular that it differs from k(d,). Then
the subgraph of H induced by j[G,]Uk[G,] has a contraction to a graph con-
taining Kj 3 (and possibly more edges) in the following way:

J@o),  k(a), id); (@) {j(bo), k(bo),i(B)}  {ilco)s k(co), i(e)} .

(It is possible that j(bo) # k(bo), but both are neighbors of i(p). The same is true
for ¢,.) This again contradicts the planarity of H,
The second case is when the domains of j and k are both G 1» and the final case
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is when both domains occur. These are argued as the first, with a few different
details. B

Notice that this result did not use much about d, only that the interior of G
is a connected planar graph containing neighbors of a, b, and ¢. For example, it
would apply if the interior of G looked like G, or G,. We will therefore iterate the
original construction, defining a tree of graphs. First we fix some notation. We
use s and ¢ as variables ranging over sequences of 0’s and 1’s — that is, over maps
from sets of the form {0, ..., n} into {0, 1}. Given a sequence s, we use 5 0 and 5'1
to denote the natural one point extensions.

Define graphs G, by recursion on s as follows: If s is the empty sequence 2,
then G, is a copy of K, with vertex set {a,, b;, ¢;, d}. Suppose that G, is given and
has vertices of the form a,, &,, ¢,, d for ¢ an initial segment of s. Then G~ is an
extension of G, having additional vertices ag, byng, and ¢y~g. It has additional
edges .

{as"Oa bs"o} ’ {as"os cs"o} )
{ass as"o} s {bs: bs"O} > {Cs’ C'ro} »
{bss a0} {ess o} {€ss Bena} -

The graph G~ is also an extension of G, via three new vertices. This time the vertices
are asny, byny, and cy~;. The additional edges are

{as"la bs"l} ’ {bs"h Cs"-l} ’
{as’ as"l} 2 {bss bs"l} E {c.vs Cs“l} 3
{ass Cs"l} H {b.w as"‘l} » {cs’ bs"l} .

An obvious induction on sequences shows that each G, is maximal planar and
contractible to K. So Lemma 1 applies to G, G~y and G,ny. If 2 is a subsequence
of s then we identify G, with a subgraph of G, in the obvious way.

LeMMA 2. Suppose i is a weak embedding of G, into a planar graph H, and let s
be any sequence. Then there is at most one map j extending i such that j is a weak em-
bedding of either Gyny or Giny into H.

Proof. By induction on s, using the generalization of Lemma 1 noted above.
That is, this lemma clearly holds when s = 1. Suppose it held for s, and let j and k&
be two extensions of i which weakly embed (say) Gy~ into H. By induction hypo-
thesis, the restrictions of j and k to. G, agree. Now j = k by the generalization of
Lemma 1. B

Given 2 function /2 @ {0, 1}, we define G, to be the union U, Gyy,, where f|n
is the restriction of f to the set {0, ..., n—1}. Each G, is a well defined countable
planar graph.

. THEOREM 3. There is no universal countable planar graph under weak embeddings.

Proof. Suppose H is any countable planar graph. To see that H'is not universal
we show that there is some f such that G, does not embed weakly inte H. In fact

{bs"‘o » CS"O} ]

{as"‘l 4 cs"l} »
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we claim that only countably many of the G, do embed weakly into H, so that there
are uncountably many which do not,

Suppose toward a contradiction that there is an uncountable set & of functions
and an & -indexed set {i,: fe &} such that for all fe &, i, is a weak embedding
of G into H. The set {i;[G,: fe #} of restrictions is a subset of the set of maps
from G, into H. This set is countable, so there are f s f* from & such that

ir]Gy = ip]|G;. Let s be the largest sequence such that s is a subfunction of both f

and f'. We 'may assume without loss of generality that 50 is a subfunction of fand
and "1 is a subfunction of f'. But then i (|Gng and i,|Gny are weak embeddings
of Ggny and G-y, and they extend ir|G;. This contradicts Lemma 2. M

Let o be the class of strong homomorphisms between graphs. These are the
maps which take edges to edges and conversely. They need not be one-to-one.
As a corollary to Theorem 3, we see that there is no unjversal countable planar
graphs under strong homomorphisms. This follows from the proof last theorem
and the observation that for all f; every strong homomorphism of G, into any
graph is one-to-one. Indeed, if G is any graph such that every two distinct vertices x
and y of G have distinct sets of neighbors, then every strong homomorphism 7 of G
is one-to-one. For if z is a neighbor of x but not of y, then i(x) # i(y) lest i(z) be

a neighbor of /(). This remark will apply as well to the negative result in Theorem 4
below.

2. There is no universal graph of fixed finite degree. For A finite, let %, be
the class of countable graphs of maximum degree 4. It is well known that each finite
graph of degree 4 is (4-+1)-colorable, and for infinite graphs this follows by the
Kb&nig Infinity Lemma. Therefore (%,, #) has # 4., as .a universal structure.
For the weak embeddings we can use the method of the last section to prove a non-
existence result.

THEOREM 4. For finite 4, there is no universal countable graph of degree A under
weak embeddings.

Proof. For 4 = 2 this is immediate, so we will assume 4 > 2. Let G be a one
point graph whose vertex is a, and let F, and F, be the graphs shown in the figure.
We regard each of these as an extension of G in the obvious way.

by by ¢
. A_, .
a a o ag a d a
G Fo A

For any graph F and any set S of its vertices, let o (F, S, 4) be the graph
obtained by adding new vertices and edges to. insure that all vertices in S have
degree A. That is, if xe $ has degree 4’ < 4, then we add A— 4’ points, and join
each of these to x. None of the new points are joined to each other or to any of the
-other points of F.
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Define graphs G by recursion on ne :
Gy=F,
Gy = (G}, Gh—{ao}, 4).

We regard Gj as a subgraph of G§**, and we set G, = U,G,. G, is defined from F,
in the same way. Note that every vertex of G, except a, has degree 4 in G,, and G,
has no cycles except the triangle. Similar remarks apply to G.

LeMMA 5. Suppose i is a weak embedding of G- into a graph H of degree A.
Then there is at most one map j extending i such that

(@) J is a weak embedding of either Fy or Fy into H;

(b) If the domain of j is F,, then j extends to a weak embedding of G,, and simi-
larly for Fy and G,;

(¢) If the domain of j is Fy, then j(a,) lies on a cycle, and similarly for Fy and j(a,).

Proof, Again suppose that j and k were different maps with these three proper-
ties. Suppose first that the domains were both Fy,. Let j* and k* be the extensions
10 G,. Let G' = Go—{a,}. By injectivity of j* and finiteness of 4 we see that for
all x e G, the neighbors of j*(x) in H are exactly the images under j* of the neighbors
of x. It follows that the cycles in j*[G’] are exactly the images of cycle in G'. Also,
the only neighbor of j(a,) in j*[G'] is j(co). Thus the only triangle in H containing
J(a) is {j(a), j(by), j{co)}. These remarks hold as well for k, of course, and since
J(@) = i() = k(a), we see that {j(bo), j(co)} = {k(Bo), k(co)} XF j(bo) = kbo)
and j(cp) = k(cp), then we must have j(a,) = k(a,) because j(a,) is the only
neighbor of j(c,) besides j(a) and j(b,) which lies on a cycle (and similarly for k).

But this would contradict the assumption that j # k. Therefore j(b,) = k(c,),

and j(c,) = k(by). By (c), k(a,) must equal j(a) or j(c,), since these are the only
neighbors of j(b,) which lie on cycles. But by injectivity, k(a,) # k(@) = j(a) and
k(ay) # k(bo) = j(co). Thus the uniqueness is proved when the domains are both G,.

Virtually the same argument works when the domains of j and k are Fy. If
the domain of j is G, and the domain of k is G,, then we get a contradiction since
k[G,] contains no triangles. B

Notice that this lemma holds when G has vertices other than a provided, say,
that a does not lie on a cycle in G. So we can iterate the construction, and define
graphs F, and G, by simultaneous recursion. To get F,~, from G, we add vertices
{tgng s Byng» Cnp} With the obvious 4 edges. Similarly, we construct Fy~; from. G,.
We obtain G, from F using & as above. An easy induction shows that g, lies on
cycle in G, but it does lie on a cycle of both G~y and G,~;. We can also state and
prove a lemma which is to Lemma 5 what Lemma 2 is to Lemma 1. And now the
proof of Theorem 4 follows the same way Theorem 3 followed from Lemma 2. B

It is also possible to prove our negative results by diagonalization, the way
de Bruiin (in [4]) proves the nonexistence of universal graphs in the class of locally
finite graphs. As an example of a proof of this type, we have the following result
which is due essentially to de Bruijn.
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THEOREM 6. There is no universal locally finite graph under homomorphisms.

Proof. Let X be a countable graph, and enumerate X as {x,: ne o}. Define
function f,: X > o by f,(x)=|{yeX: dy(x,y)<n}|. Let f be given by
S () = filx,)+1. Let G, be the one point graph {a}, and for n> 1, let G, = K.
Form Gy by joining each vertex of each G, to each vertex of G,y Suppose h: Gy — X
is a homomorphism. Since / cannot identify points in a complete subgraph, we have
for all » that f,(h(a)) = f (). But if n* is such that h(a) = x,., then f,.(x,.) = (n*)
= fu(x,)+1. This contradiction shows that. X is not universal. B

3. Sufficient conditions for universal graphs. In this section, we present a set of
sufficient conditions for a class of relational structures to have a countable universal
structure under isomorphic embeddings. Our work is a related to classical results
of model theory (cf., e.g., [2]), but there is a difference. Our condition (VI) is meant
to be an alternative to the following standard condition: If X is a finite subset of
the universe |4| of 4, and if 4 € %, then there is is a finite B e € such that X< |B|,
and Bc 4 (B is a substructure of 4). This more familiar condition does not hold
for any of the classes which we will consider.

Let % be a class of relational structures of the same similarity type with the
following properties: .

. (D) € contains at least one but only countably many finite structures (up to
isomorphism). .

(ID) € is closed under isomorphic images.

(II) If 4, Be % are finite, then there is some finite Ce % such that both 4
and B are isomorphic to substructures of C. ‘ .

(IV) If fi: A— B, and f,: A—B,, are isomorphic embeddings among finite
elements of %, then there is some finite C € % and isomorphicembeddings g,: B, —C
and g,: B, — C such that g, o f; = g, o f;.

(V) % is closed under unions of chains.

(VI) Let 4, Be %, and suppose that A4 is finite. Let S |4l n|B|, and suppose
that the reducts 4|S and B|S are the same. Let x € B—S. Then then there is a finite
Ce @ such that 4u{x} |C| and Cl(Su{x}) = B[(Su{x)).

LemMa 7. Every class € with properties (D-(VI) above has a countable universal
structure.

Proof. A consequence of (I), (I), (IV), and (V) is the existence of a countable

structure 7 with the following injectivity property: Whenever i: 4— 7 and j: 4~ B

are isomorphic embeddings among elements of %, there is an isomorphic embedding
k: B—1I such that koj = j:
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I is constructed by amalgamating the finite structures in € successively using (1V).
We may assume therefore that I has a finite substructure which belongs to . Hence
by (III) and injectivity, we see that J embeds every finite structure in %.

Let I be injective, and let X be a countable element of €. We want to see that X
maps isomorphically into I, so we may assume that | X[ |I| = @. Fix an enumera-

- tion without repetitions {x;: ie w} of the elements of X. We construct a chain

Iycl, c..I,<... of substructures J which belong to ¢. We will also find points
{i,: ne w} such that {i,: m<n} <1, and the map x,ti, will be an isomorphic
embedding. '

Let I, be an arbitrary finite substructure of I. Given I, and {i,,: m <n}, we
apply (VI) to obtain I,,; and i,. Take 4 = I,, B = X with i, replacing x,, for
m<n, §= {i,: m<n}, and x = x,. Then we get some finite C e % extending A
and containing x, such that C{(Su{x,}) & X|({x,: m<n}) via the obvious map.
Now the inclusion maps of 4 into 7 and C are isomorphic embeddings, and by injec-
tivity we get a map k: C— I which is the identity on 4. Let I, = k[C], and let
i, = k(x,). Then X|{x,: m<n} = I|{i,: m<n} via the map x,,+4i,. B

Now we will apply this result to deduce the existence of a countable graph
which isometrically embeds all countable graphs. Consider the class of distanced
graphs. The structures are of the form

G=<V,R, Dy, ..., Dy, 0. :
where all of the relation symbols are binary, and subject to the axioms that R is
a symmetric irreflexive relation on ¥, and that D,(x, y) iff there is a path in V" of
length »n from x to y but there is no path of shorter length. (So D, is always inter-
preted as = and D, is always interpreted as R; we have included them to save on
notation.) Every graph extends to a distanced graph in a unique way. An isometric
embedding f: G— G’ of graphs is a map between the respective vertex sets ¥ and V*
such that dg(x, ) = dg{ f1x),f(»)) for all x, y e V. Every isomorphic embedding
of distanced graphs is an isometric embedding of the underlying graphs, and con-
versely. But an isomorphic embedding of graphs is usually not an isometric em-~
bedding.

LimMmA 8. The class of distanced graphs has properties (D-(VD).

Proof. We will only outline the proofs here. The only two properties that need
checking are (IV) and (V). (Property III follows from the fact that both 4 and B
are isometrically embedded in the disjoint union of 4 and B. It also follows from
applying (IV) in the case that 4 is the one-point graph, By = 4, and B, = B)

For the amalgamation property (IV), take disjoint copies of B; and B, and
identify f;(a) and f,(a) for a € A. The maps g, and g, are the natural ones. For (VI),:
take C to be 4 together with x and some new elements. The new elements are chains
from. x to those y e S which lie in the same connected component of B as x. The
length of each chain is the distance in B from x to y. The chains in C are disjoint,
and the only edge relations among the new elements are those on the chains. The
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verifications that both of these constructions work is by induction using the triangle
inequality (cf. [3] or the proofs of Theorems 10 and 11 below). B

Let U be a countable universal distanced graph. Then U embeds isometrically
every countable graph X since X can be expanded to a distanced graph.

We will apply Lemma 7 to construct other universal graphs under isometric

embeddings. As in the last result, we will not work with graphs themselves but in -

some class of structures for an expanded signature.
Consider first the class of k-colored distanced graphs. These are structures
of the form <G, Cy, C,, ..., C;> such that G is a distanced graph, and Cj, ..., C,
are one place relations on V. The axioms we take are the axioms for distanced graphs
together with the axioms
V) [Ci (@) v ... v G )]

Vo, W) [R(v, W)= T[(C1(0) A CL(W) V ..o v (Ci(0) A )] .

THEOREM 9. There is a universal k-colorable graph under isometric embeddings.

Proof. Again we begin by checking properties (IV) and (VI), for the class of
k-colored distanced graphs. The verifications are refinements of the constructions
in Lemma 8. (IV) follows from the proof of the amalgamation property for distanced
graphs. That is, consider k-colored distanced graphs 4, fy, and f,, and forget the
colors. Let C, g4, and g, arise from the amalgamation of the distanced graph reducts.
We need to turn C'into a colored graph, and for this, set Cig1(x)) iff Cy(x) in B,
and Ci{g,(x)) iff C(x) in B,. This assignment of colors is consistent on PR AVAR
Since the colors on edges of C are images of colors on edges of either B, or B,,
C is a k-colored distanced graph. And now g, and g, preserve color, and
gi°f1 =gsefo

For (VI), we again need to refine the argument from the case of distanced graphs
by showing how to assign colors to the points on the new chains. For y e S, fix
a minimal path in B from x to y. Color the corresponding path in Cthe same way.

Now that we know that there is a universal k-colored. distanced graph I, it
follows that the forgetting the colors, I is a universal k-colorable graph for isometric
embeddings. That is, let X be k-colorable. Turn X into a k-colored distanced
graph and then embed it in I, B

4. Universal graphs of finite diameter under jsometric embeddings, Consider
next the class of N-zethered graphs. These are structures of the form {G, t) such
that G is a distanced graph, and e V' is a distinguished constant. The axioms we
take are the axioms for distanced graphs together with the axiom

(V) [Do(v, £) v ... v Dy(v, 1)] .
Thus every N-tethered giaph is a distanced graph with a distinguished vertex ¢
such that every vertex v is at most N units from ?.

THEOREM 10. For all N, there is a universal graph of diameter 2N under isometric
embeddings. :
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Proof. We claim first that the class of N-tethered graphs has properties (I)~(VI)
above. As with distanced graphs, the only two. properties which need checking
are (IV) and (VI). We use the notation of (IV) and (VI), and the constructions of
Lemma 8. For (IV), note that in C, the amalgamation of the underlying distanced
graphs, each vertex is at most N units from g, o f,(f) = g, o f,(¢). So C expands to
an N-tethered graph. .

For (VI), suppose that as N-tethered graphs, A|S = B|S. Then as distanced
graphs 4|(Su{}) = B|(SuU{t}). We may assume that x # 1. Let C, arise from (VL)
applied to the underlying distanced graphs. Thus C, contains x, and as distanced
graphs Col(Sw {¢t, x}) = B|(Su{t, x}). The problem is that C, may not be tethered
to ¢, We therefore add independent chains from ¢ of length N to each point of C,— A4
to get a graph C. We need to see that as distanced graphs C|(Su{z, x})
= Col(Su{?, x}). Clearly de(x, t) = dey(x, 1), and we show in fact t}lat A is iso-
metrically embedded in C. Suppose this were false, and let m be least such that
de(u, v) = m<d,(u, v) for some u, v € 4. Fix a path p in Cfrom u to v witnessing this.
Now p is not a path in C,, and therefore it must contain ¢. By minimality of m,
we may assume that either » or v is ¢, Suppose that v = t. Also, p must contain
a point of Cy—4, so dg(u,t)>N. But since A is N-tethered, d,(u,v)<N. So
dgu, v) < dc(u, v), and this is a contradiction.

We conclude that as distanced graphs C|(4u{x}) = Cyl(4u {x}); a fortiori
Cl(Su{t, x}) = Co|(Su{t, x}). So as N-tethered graphs, C|(Su {x}) = Bl(Sw{x}).

So we conclude on the basis of Lemma 7 that there is a universal N-tethered
graph U. We will consider U as merely a graph by forgetting the distance relations,
and in order to see that U is universal for graphs of diameter 2N, we need only show
that every graph X of diameter 2 is isometrically embedded in a graph ¥ which can
be expanded to an N-tethered graph. Let X have diameter at most 2N. Form an
N-tethered graph Y from X by adding a new point ¢ and independent chains of
length N from ¢ to each vertex x of X. ¥ is tethered to f, and since the only paths .
between vertices of X using the edgzes of ¥ which are not edges of X have length at
least 2N, X is isometrically embedded in Y. @ .

Consider last the class of N-multitethered graphs. There are structures of the
form (G, T, Ey, Ey, ..., Ey> such that G is a distanced graph, and T, E,, ..., Ey
are one place relations on G. The axioms we take are the axioms for distanced graphs
together with the axioms

(Vx, NITE) A T(¥) A x # y—=R(x, )]
(Vo) ADIT(E) A [Dy(®, 1) V ..o v Dy(o, )]]
(Vx) [Eo(x) < T(x)]
(V) {E) - [@DITE) A Dlx, DIAGHITE A Doy, 01} (21

Every N-multitethered graph is a distanced graph with a set T’ of verticfes such that
the induced subgraph determined by T is complete, and every vertex v is at most N

3 — Pundamenta Mathematicae 133/1
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units from some element of T. So the diameter of an N-multitethered graph is at
most 2N + 1. In addition, each N-multitethered graph comes with relations Ey, ..., Ey
with the property that E;(x) iff the shortest distance from x to any member of T'is f.
Thus 4 < B as N-multitethered graphs iff 4 is an isometric subgraph of B, T4 T®,
and for all xe 4,

min{d(x, £): te T*} = min{dy(x, t): teT"}.

TueOREM 11. For all N, thete is a universal graph of diameter 2N+1 under
isometric embeddings.

Proof. We follow the proof of the last theorem. Again the only two properties
of the N-multitethered graphs which need checking are (IV) and (VI). For (IV),
let Cy, gy, and g, arise from amalgamating the underlying distanced graphs. Let
D, = g,[B]], so D, and D, are distanced subgraphs of C,. As sets of vertices,
Co = Dyu D,. We will identify 4 with its image under g, o fo = g4 ° f1; 50 as sets
of vertices Dy n Dy = A. Every path in C, from an element of D, — D, to an element
of D, contains an element of 4, and vice-versa. Let 4, D, and D, be multitethered
to T4, TP and T™, respectively. The amalgamation insures that the restrictions
of T and TP to 4 are exactly T4, We will define an N-multitethered graph C
containing D, and D, as N-multitethered subgraphs. The vertices. of C are those
of Cy. C has the edges of C, with additional edges {x,y} for xeTP-1P,
yeT? TP Now set T'= T”°U TP To complete the definition of C, we specify
the relations E; according to the axioms above.

We now check that C has all of the right properties. Clearly the subgraph
of C induced by T is complete, and each point of C is at most N units from some
element of T. C, is not an isometric subgraph of C, but we claim, that D, and Dl
are still isometric subgraphs of C. Before we show this, however, we will prove that
for all xe D,,

min {dp,(x, £): te TP} = min{do(x, 1): teT}.

(The same proof establishes the analogous property for D, of course.)

In defining C from: C,, the only new edges were between elements of T. So it
is sufficient to show that for all x € D,,

min{dp,(x, #): 1T} = min{dg,(x, 1): teT}.

Suppose towards a contradiction that for some x, the first minimum is greater than
the second. No such x can belong to 4, since if x € 4, the facts that 4 < D, and
A < D, as N-multitethered graphs would imply the above equality. Fix such a point x
which minimizes the second minimum. Let £* e T realize the second minimum, for x,.
and let p be a path in C, of minimal length between x and #*. Then t* ¢ D, ~ D,
and so p contains some y e 4 after x. Also, )

min{dp(y, 1): 1€ T} = min{de,(y, 1): te T} = de(», t%).
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Let t** € D, realize the first minimum. Thus
dpy(%, 1*¥) K dp(x, ¥) +dp(y, 1¥*) = dey(x, ) +dc(y, 1%) = dey(%, 1%)

and this is a contradiction.

Now we will prove that Dy and D, are isometric subgraphs of C. For if not,
let m be least such that there are x, y & (without loss of generality) Do such that
dg(x, y) = m <dp,(x,y). Fixa minimal path p in C between x and y. By minimali.ty,
y is the first point on p after x that lies in Dq. Since p is not a path of Cy, it contains
two vertices joined by a new edge,.say a, and a; (a0 € TP TP, g, e T™ ~T™).
So p may be written as X, ..., @y, 4. By the last paragraph, there is some a, € T

~ such that dp,(x, a2) < dg,(x, a;). Since a, and a, are neighbors in Dy, dp,(x, do)

< dglx, ag). This once again is a contradiction.

Turning to (VI), let C, arise from (VI) applied to the underlying distanced graphs.
Thus C, contains a point x such that as distanced graphs Col(Su{x}) = Bl(Su {x}).
Let T be the multitether of 4, and let * ¢ C; be a new pomt. Form.C from C, by
adding t* as a new vertex. Also add (1) independent chains of length N fr.om t*
to each point of Co— A4, and (2) edges from ¢* to the elements of 7. To finish jchc
definition of C, interpret the E; relations in the natural way. Now C is N-multite-
thered to Tu {t*}. We need to see that 4 is isometrically embedded in C. Suppose
that m is least so that for some x,y e d, dclx,¥) = m<d,(x,y). Fix a path p
in C of length m. There are three cases here, depending on p. It p hf.xs two subpaths
of type (1), then its length is at least 1+ N+N+1 = 2N+2 which is clearly a con-
tradiction, If it has two new edges of type (2), then it has a subpath of the form
1y, t*, t, for some ty, t, € T. But then ¢, and f, are neighbors. So-we contradict the
minimality of the length of p. The most interesting case is when subpaths of both
new types occur in p. Suppose that {t, 1*} is an edge of type (2) on p and that
t*, Z4, ..., Zy is a subpath of p of type (1). By minimality we may suppose that x = t.
Now zy ¢ 4, so m, the length of p, is therefore at least N+2. But x = _t l?elongs .to T,
50 d(x, ¥) < N+1, and thistoo isa contradiction. This proves that 4 is isometrically
embedded in C. It remains to check that for all x € 4, the distance (in C) from x
to t* is not less than the distance from x to any element of T. This is true because
all of the paths of C which are not paths of 4 either contain some element of T or
are at least NV units long. . .

To conclude the proof, we need only see that every graph X of dlametq 2N+1
is isometrically embedded in a graph which can be expand.ed to an N-multitethered
graph. Form an N-multitethered graph ¥ from X by adding a set T'= {t,: xe X}
of distinct new vertices. Add edges from £, to f, for x # y. For each xe X, add
a new chain from x to #.. The only new paths in Y between elements of X have
length at least 2N+ 1, and between each pair in ¥ there is a path of that length. So ¥
is multitethered to T, and X is isometrically embedded in Y. Interpret the rela-
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tions E; in the natural way. B
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We conclude with a short discussion of the homogeneity properties of the
universal graphs conmstructed in this section. Recall that a structure 4 is homo-
geheous if every isomorphism of finite substructures extends to an automorphism
of A. The universal k-colored distanced graph constructed in Theorem 11 is ho-
mogeneous as a k-colored distanced graph. (This and all of our homogeneity results
are established by back-and-forth arguments.) If one forgets the colors, then the
reduct is not homogeneous as a distanced graph. )

The universal graph U,y of diameter 2N constructed in Theorem 10 is not
homogeneous as a distanced graph. (It is homogeneous as an N-tethered graph.)
The vertex ¢ is the only point whose distance from-each v € U is at most N. However,
if one considers the subgraph Ujy induced by {ve U: dy(v, t) = N}, then the
injectivity of U,y implies that Usy is isometrically embedded in U,y. And the
proof of Theorem 10 shows that every graph of diameter 2V is isometrically embedded
in Uzy. So Usy is a universal graph of diameter 2N (although it is not N-tethered.)
Another injectivity argument shows that U,y is homogeneous as a distanced graph.
Similar remarks apply to the universal graph of diameter 2N--1. (Incidentally,
when N =1, Ujy is exactly Rado’s graph. Also, Ujy may be described in the
following way: Let U be the universal homogeneous distanced graph, and let x be
an arbitrary point of U. Then Uy is the subgraph of ¥ induced by the points whose
distance from x is exactly N.)

All of our universal graphs have the property that any finite set of vertices is
contained in a finite isometric subgraph. Using this fact and a back-and-forth argu-
ment, one can show that the homogeneous universal graphs in the various categories
are unique.

The table summarizes the results concerning universal graphs which we cited
or proved.

Class of morphisms
Class of
countable graphs . homomorphic isometric
. homomorphisms embeddings embeddings
all graphs 4 Vv V4
diameter D v \/ 4
k-colorable V4 4/ 4/
planar - Vs x X
degree 4 V4 x x
locally finite X X X

Existence (1/ ) and nonexistence. (X ) of universal graphs,
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