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Absolutely saturated models
by

Philip Ehrlich (Providence, RI)

Abstract. Extensions of the theories of saturated models and models of 7 that are homogeneous
universal with respect to models of J are obtained in NBG for structures whose universes are
proper classes. The class concepts are referred to as absolutely saturated models and models of I~
that are absolutely homogeneous universal with respect to models of T, respectively. We illustrate
the theory by showing that J, H. Conway’s ordered field No is (up to isomorphism) the unique
absolutely saturated real-closed ordered field and the unique absolutely homogeneous universal
ordered field. ’

0. Introduction. A model & with universe 4 of a theory 7 in a language & is
said to be x-saturated iff for every subset X of A of cardinality < »x, the expansion

(&, d)aex realizes every type Z(v) of the expanded language Zu{c,: ae X} which

js consistent with the theory of (&, @)aex (cf. [2] for details). If x = |4], o/ is said
to be saturated. Closely related to the x-saturated models are the models of 7 that
are x%-universal with respect to 9 and x-homogeneous with respect to 7, that is,
the models of 7~ in & such that every model of 7 in & of power < x can be embedded
in them, and every isomorphism between substructures of them that are models
of 7 in & of power- < x can be extended to an automorphism. If & is such a model
and [4] = %, then & is said to be homogeneous universal with respect to T.

In ZFC, as is well-known, it is impossible (except in rare cases (cf. [2], pp. 98-99
and Ch. 7)) to prove the existence of models that are either saturated or homogeneous
universal with respect to . In general, the existence of such models is limited to
cases where we assume instances of the GCH. or the existence of inaccessible ‘car-
dinals. Tt has been known for some time, however, that in von Neumann-Bernays—
Godel set theory with Global Choice, henceforth NBG (cf. [13], Ch. 4), one can show
that On (the “cardinal” of all'proper classes) is inaccessible. It is therefore natural
to inquire if within this conservative extensidh of ZFC [6] one may obtain
extensions (or partial extensions) of the following classical results for x = On,
extensions which could, for example, certainly be obtained - in the stronger
Morse—XKelley set theory with Global Choice (cf. [13], Ch. 4) where, unlike in NBG,

- ruth is generally definable in class-structures and induction can be &pplied freely


Artur


40 P. Ehrlich

in such structures to assertions involving global truth. (See [15], [16], [20], [18], [1]
and, [11], p. 195.)

1. Morley-Vaught ([14]; [2], 5.1.5 and 5.1.13). If | Z| v w < v, then every complete
theory & in & having an infinite model has (up to isomorphism) a unique saturated
model in-each inaccessible power % >7y.

1I. Jénsson-Morley-Vaught ([7]; [8]; [14] and [9], p. 153). If | LU w <y, then
every Jénsson theory I in % has (up to isomorphism) a unique model that is homo-
geneous universal with respect to I~ in eqch inaccessible power x >y, whereby a Jénsson
theory we mean a first-order V3-theory having an infinite model as well as the
following properties: .

(i) Joint embedding. For any set-models %, #, of 7 in & there is a set-model o
of 7 in & and embeddings f;, fy such that f4: #py—f and fi: &, — .

(ii) Amalgamation. For any set-models of, #,, #, of 7" in Z and embeddings f;,
fi where fy: & > B, and f;: o — B, there is a set-model € of 7 in & and embed-
dings gy, g4 such that go: By, g1: B,—~% and gofo = g1 /f1-

In the pages that follow, while the status of a complete class analogue of I will
be left open, we will provide an affirmative answer for II, as well as an extension, of |
for the special case where 7 is model complete, (henceforth - is an MC-theory),
that is, where every monomorphism between models of 7 is elementary, or equi-
valently, whe;e every formula of & is J -equivalent to an existential formula of &Z.
Since every complete 7 can be conservatively expanded to a complete * of this
kind (as in [14], Theorem 3.2) we will obtain something like a class analogue of I.
Since the notions of x-saturation and x%-homogeneous universality grow stronger
as x increases, it seems appropriate to refer to the models of 7~ that will concern ‘us
as absolutely saturated and absolutely homogeneous universal with respect to 7,
respectively. To illustrate the class concepts, J. H. Conway’s ordered field No will
be identified (up to isomorphism) as the unique absolutely saturated real-closed
ordered field and the unique absolutely homogeneous universal ordered field. Since
the proofs of our results are extensions of familiar ideas we will only provide the
plans leaving the details to the reader.

1. Main results. Since the usual definition of a sequence does not work in NBG
when proper classes ate involved, we follow the standard practice of understanding
by a “structure” o where |4| = On and the R,, 1 €« < u< On, are finitary relations
on 4 of power < On (which may be operations or distinguished clements treated
as special relations) the class (Ax{0})UR where R = {J {R,x {a}: 1<a<pu}.
Let o be such a structure appropriate for %, where [#| <On, and suppose
oy, B <On, is a chain of substruétures of & (obtained using Global Choice) where
|4pl <On and Up<on; = . As the reader can readily verify, truth in & for
V3-sentences of & can be defined as follows. If ¢ = y or @ = Axy ... Ax,, where
and' i are open, @ is true in & iff ¢ is true in some p; and if ¢ = Vx;
o ¥, 3y .2 3y, where ¥ is open, then ¢ is true in s iff for each T -
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there is a &/, containing ay, ..., a, and Jyy .. Ay ¥ (@, .. a,) is true in &, where
¥ (ay ... &) indicates that each occurrence of x; in ) is taken to be g; for 1 <i<m.

Since the notion of an isomorphism between class-structures is meaningful
in NBG, it is therefore now clear that if || < On, the concept of 2 model that is
absolutely homogeneous universal with respect to an V3-theory is likewise mean-
ingful in NBG, where the new notion is obtained from the old one by letting % = On.
A similar remark also applies to the notion of an absolutely saturated model of
a MC-theory, where |.#| < On, since if 7 is an MC-theory and & is a model of 7,
the theory of (&, d),ex, Where X is a subset of A, is also an MC-theory.

TusoreM 1. If || < On, then every Jénsson theory I in & has (up to iso-
morphism) a unique model that is absolutely homogeneous universal with respect
to 7.

THEOREM 2. If |£| < On, then every complete MC-theory I in & having an
infinite model has (up to isomorphism) a unique absolutely saturated model. .

To prove Theorem 1 we require the following class analogues, for the spema'ﬂ
case of first-order theories, of Jénsson’s conditions V and VI, of [7] and his,
Lemma 2.5 of [7]. Let B be an ordinal.

(i) If & is the union of a chain &, B < On, of models of an V3-theory 7,
where || = On and |4, <On, then & is a model of 7.

(i) If o is a class-model of an V3-theory I where |#|Uw <% <On, and C
is a subset of 4 of power o <On, then if y is a cardinal such that %, ¢ <y<On,
there is a model # of & in £ of power y such that CcBcA. .

(iif) If s is a class-model of an V3 -theory, where || < On, then & is the union
of a chain «;, §<On, of set-models of 7 in Z.

The proof of (i) is trivial, (iif) follows from (ii), and (ii) is e:stablished by a weak-
ened version of Tarski’s proof of the downward Léwenheim—Skolem Theorem
(cf. [2], 3.1.6) in which while limiting oneself to the open ‘formul'as of % one other-
wise mimicks the proof stopping short of showing that the mduc,twel.y deﬁn.ed class B
is the universe of an elementary submodel of &7, something which will not in general
be the case unless 7~ is an MC-theory. Since 7 is an Y3 -theory, however, it 1s easy
to show that «#|B is a model of 7. Moreover, the inductive pr.oof that B 11as: POWer y
is permissible in NBG despite the presence in its. deﬁmt\or.l of assertions .hke
ol k xelay ... a,) and ‘o F obay ... a,]’, where ¢ is open, since .thf:s.e assertions
and the defining condition more generally can be expressed in tl?e primitive l.anguage
of NBG without class-quantifiers and the induction schema is provable in NBG
for such conditions (cf. [11], p. 198). .

Proof of Theorem 1. Let §* be the least cardinal > the (‘iardir}al B. Beginning
with a model of 7~ of power |#| U o and employing the .classw existence result of
Ténsson ([8], Theorem. A) one constructs a continuous f:ham Ay, | Zlve<f< 021;,
such that &+ is B +_homogeneous and B+ -universal with respect to I of power 2°,
and sets & equal to the union of the chain. One now completes the proof along
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classical lines (op. cit.) except that instead of referring to elements of the Jénnson

class one appeals to models of 7, and in place of conditions V and VI, and Lemma 2.5

one appeals to (i)-(iii), respectively.

The following supplementary result, whose proof also uses (i)—(iii), will prove
useful in Section 2. Like Theorem 1, it is a straightforward extension, for the special
case of first-order theories, of a result due to Jonsson. (See [7], Definitions 2.2 and 2.3,
{14], Corollary 2.4e, and the proofs of Theorems A and B in [8]).

COROLLARY 1. If I is a Jonsson theory, where | £| < On, then o is absolutely
homogeneous universal with respect to I iff o is a universally extending model of 7,
i.e., for every substructure # of o and extension € of B where B and € are models
of T in & of power < On, there is a substructure €' of of that is a model of 7" in &
and an isomorphism from € onto €' that is an extension of the identity map on %.

Proof of Theorem 2. Since the Elementary Chain Theorem continues to hold
for “long” chains of set-models in NBG (cf. [4], pp. 253-254), existence can be proved
classically (op. cit.). Uniqueness cannot be established classically, however, since to
do so would require working with. class-models having a proper class of distinguished

" elements (cf. [2], 5.1.11) and clearly such entities cannot be defined using the afore-
mentioned definition of truth. The following more cumbersome approach is available,
however. One first proves

Lemma 1. If | Z| < On and o is an absolutely saturated model of an MC-theory,
then sf is the union of a continuous elementary chain o, 5 | £V w<f<On, where of 4
is B*-saturated of power 2P,

To establish this one begins by showing

(iv) Suppose | Z|vw <a<On, o < [4| <2" and & is an elementary submodel
of an absolutely saturated model &/’ of an MC-theory. Then there exists an ele-
mentary substructure % of &’ that is an elementary extension of & of power 2* such
that for every X< 4 of power «, (%, a),.x realizes each type Z(v) of (+, a)yex.

To obtain an appiopriate # one proceeds as in the proof of 5.1.3 of [2] except
that the elements required for the extension come from A4'-4. That & is an ele-
mentary substructure of &/’ follows from the fact that 7 is an MC-theory. One
next proves ’

M If [Fluow<a<On, w<|B|<2" and & is an elementary substructure of
an absolutely saturated model &f of an MC-theory 7, there is an «*-saturated
clementary extension #' of # of power 2* that is an elementary substructure of &,

The proof of (v) proceeds like the proof of 5.1.4 of [2] except that instead of
appealing to 5.1.3 of [2] one appeals to (iv). That @' is an elementary substructure
follows as above,

It should be emphasized that the above proof proceeds by transfinite induction
along an inductively defined class where assertions of global truth play a prominent
role. We leave it to the reader to verify (using well-known facts about the definability
of the relevant set-theoretic and model-theoretic notions in terms of formulas of
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Levy’s Hierarchy (of. [12], [4], pp. 76-98, and [19])) that the induction is warranted
by the following principle due to Takahashi [18]: If @(x, X) is a formula of NBG
(in which class variables and special classes may occur), then the lezftst cla.ss. (or set)
X satisfying (x € X iff ¢ (x, X)) exists, if the variable X occurs only in posmve_ parts
of p in the form ye X or Ye X and NBG F ¢ (x, X) = 3xp, where i/ contains no
class-quantifiers and each set-quantifier has the form dAx[xey /\....], Vx[xey—..l,
x[xsyA..] or Vx[xsy-..]. Moreover, to prove X <P it suffices to prove
x &P under the assumption ¢(x, P) or the assumption x € X A ¢(x, XN P).

Now let «f be an absolutely saturated model of a complete MC-theory 7.
Since MC-theories are Y3-theories we can appeal to (ii) to obtain an elementary
submodel of & of power || U o. By invoking (v), in place of Lemma 5.1.4 9f 2},
appealing to (ii) after each such application to obtaifl an elementary extension o;‘
equal power containing the first remaining element in a well-ordenng. of 4, an
otherwise mimicking the classical existence proof of saturated mo'dels of inaccessible
powers (op. cit.), one proves Lemma 1. Moreover, by now invokmg'tms lemgm one
can decompose two absolutely saturated models o/ and &’ of J into continuous

' +
“ elementary chains 7, %, |#luw< B <On, where Ag+, Hy+ are B -saturated

models of 7~ of power 28, Since all models of &~ are elementary equivalent, one car;- .

prove uniqueness (and thereby complete the proof of Theorein 2) by meansd (;

a routine (local) back and forth argument using the fact that —s'aturated m;) 12 5

are B+ -universal and B*- homogeneous inthe (clementary) sense of Ke}sler ([21, 5,f . )d
Using similar techniques one can also extend the classic equivalence referre

to above to obtain: o .
COROLLARY 2. If T is a complete MC-~theory having an infinite model, where

| %] < On, then & is an absolutely saturated model of T iff o is an On-universal

and On-homogeneous model of 7, i.e., every elementary equivalent mo.de; can I;ei
elementary embedded in s, and either (i) given any two elementary. equzvahe‘nt s;lan
models of o of power <On and an isomorphism between t.hem, the l.lwm‘orp 1.]91m '
be extended to an automorphism of f, or (i) (which is e{]uzvalent to (i) Ezven tbe firs
condition) for all &€ <On, ged, be'd and ced, if (¥, a)<z = (A, bdy<ss
then there is a de A such that (o, @y, y<g = (&, by, d)y<e-

In virtue of our introductory remarks we also have: o

COROLLARY 3. If | €| < On, then every complete theory I .in L4 wit'h an mﬁ.mte
model has a conservative expansion 10 a theory 7 * that has (up to isomorphism) a unique
absolutely saturated model. ‘ o

2. Conway’s ordered field No. Let 7 be a com ‘lcte Mc‘-the.ory with 1:m mﬁ:llstz
model, where |&| < On. Since complete MC-theories with infinite models ztn'e e
Ténsson theories (cf. [17], 4.2.2 and [10], 3.5), it is easy to see that the four yﬁe o
models of 7~ whose existence and uniqueness is noted in Theorem? 1-2 and Coro amin d
1-2 coincide. Now suppose that 7" is also a theory in %, ' <J and e;;ery se -
model &', of 7 has an extension to a set-model & of T s such that eac m}ci?ls;
. morphism from &' into a model & of & has a unique extension to a monomMorpas
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from of into 4. Clearly, since 7~ is a Jénsson theory in % so is 7', Morcover, it
is not difficult to see that the absolutely homogeneous universal models of ' (and
hence the universally extending models of Z) coincide with those of . The fol-
lowing pairs of theories (7,7 ) are well-known to satisfy the above hypotheses.

7~ = real-closed ordered fields
non-trivial divisible ordered abelian groups

it

il

open densely ordered classes

= ordered fields

non-trivial ordered abelian groups
ordered classes

9
I

il

I

In [5] the author extended a result of Conway ([3], Theorem 28) by showing
that No. considered as an ordered field (resp. an ordered abelian group; resp. an
ordered class) is a universally extending ordered field (resp. ordered abelian group;
resp. ordered class). It therefore follows from the above that we now have six charac-
terizations of No considered as an ordered field, as an ordered group and as an
ordered class,

Addendum. Following the completion of this paper Professor H.J. Keisler
kindly informed the author that since for each n >0 satisfaction can be defined for
formulas which have at most # alternations of blocks of universal and existential
quantifiers, Theorem 2 can be extended to include complete theories ‘where for
some n> 0 every formula is J -equivalent to such a formula. More importantly,
he noted that by restricting the notion of an absolutely saturated model one may
obtain an even stronger result. Specifically, let |#| < On, A be a class and & 4)
be the language cbtained from % by adding a constant symbol ¢, for each ae A.
The syntax of £ (4) can be formalized in NBG in the usual way, with variables v,,
ne . There are formulas ATOMIC(Z, 4, x) and FORM(Z, 4, x) of NBG
saying that x is an atomic formula, or formula, of £(4) with at most one free
variable vo. Moreover, there is a formula HOLD(Z, 4, 4 , X, ¥) saying that . is
a class-structure appropriate for % with umiverse 4, ¥ ¢ 4, ATOMIC(Z, A4, x),
and x is satisfied by y in . Then a class-structure 4 = (4, R) for & is said to be
On-*saturated if and only if it satisfies the formula 3.S[) and 0] of NBG where the
formulas ¥ and 0 are as follows.

V: VxVYpViVuVne o
[if S(x,y) then [FORM@Z, 4, x) and yed]] and
[if ATOMIC(, 4, x) than [S(x, ) iff HOLD(Z, 4, 4, x,)]] and
[if x is #Au then [S(x, ) iff [S(t,3) and S@,»)]]] and
[if x is -¢ then [S(x, y) iff not S(z, »I] and
[if x is Vv, then [S(x, ) iff Vze 4 S(t(,le.), »)1]-
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0. For every set B < 4, and every set F of formulas of Z(B) with only v, free,
if V finite GEF3yed YxeG S(x,¥), then Ayed VxeF SCx, y)-

Note. {y may be paraphrased by saying that § is a class of pairs consisting of
formulas with v, free and elements of .# which satisfies Tarski’s inductive definition
of satisfaction. This idea goes back at least to Montague and Vaught’s “Natural
Models of Set Theory”, Fund. Math. 47 (1959), pp. 219-242. In general, it cannot
be proved that 35  holds for every class-structure 4. However, one may now
prove in NBG (without the detour of Lemma 1)

THEOREM 3. If | &| < On, then every complete T in & has (up to isomorphism)
a unigue On*-saturated model,

Sketch of proof. Form an elementary chain .4, of w,-saturated set models
of 7 where o ranges over On, and then prove that the union of the chain is
On*-gaturated by taking S to be the relation Jou (FORM(Z, A4,,x) and y e 4,
and y satisfies x in #,). Uniqueness is established by a back and forth argument.
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Finitely generated congruence distributive quasivarieties of algebras *
by

Wieslaw Dziobiak (Torun)

Abstract. We consider congruence distributive quasivarieties of algebras with a special emphasis.
on those which are finitely generated. There are two main results in the paper. The first states that
within a congruence distributive quasivariety of algebras every finitely subdirectly irreducible algebra
is finitely subdirectly irreducible in the absolute scnse. The second provides necessary and sufficient
conditions for a finitely generated and congruence distributive quasivaricty of algcbras of finite type
to be finitely axiomatizable. In particular, applying thesc results we partially answer a question
posed in Tumanov [9]. '

1. Introduction. A universal sentence whose matrix is of the form ry = 5o & ...
&1, = s,—r = sis called a quasiidentity. A class K of similar algebras is said to
be a quasivariety if K = ModZ for some set ¥ of quasiidentities. Equivalently
(see [8)), K is a quasivariety if K is closed under isomorphisms (7), subalgebras (S),
direct products (P) and ultraproducts (Py). If M is a class of simjlar algebras then,
by a result of [5], ISPPy(M) is the least quasivariety containing M. Sometimes we
shall write Q(M) instead of ISPPy(M). A quasivariety K is said to be finitely gene-
rated if K = Q(M) for some finite set M of finite algebras, and K is said to be
finitely axiomatizable if K = ModZ for some finite set X of quasiidentities. For
an algebra 4, by ConA we denote the lattice of congruence relations on 4. If K is
a quasivariety and 4 e K then we put Congd = {@ € Cond: 4/0 e K}. Since
the set Cony A is closed under arbitrary meets (in Con.4), it forms a complete lattice.
We say that a quasivariety K is congruence distributive if for every 4 € K the lattice
CongA is distributive. For varieties of algebras (= equational classes) this notion
was intensively studied in the literature and many interesting results for it have
been obtained. One of them, due to Baker [1], states that every finitely generated
and congruence distributive variety of algebras of finite type is finitely axiomatizable.
Our intention is to extend this result into quasivarieties. We prove (Theorem 4.5)
that a finitely generated and congruence distributive quasivariety K of algebras
of finite type is finitely axiomatizable iff ModZ LI is congruence distributive for
some set £ of identities and a finite set I' of quasiidentities such that K < MedZw I

* AMS subject classifications (1980). 08B10, 08ClS5.
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