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Finitely generated congruence distributive quasivarieties of algebras *
by

Wieslaw Dziobiak (Torun)

Abstract. We consider congruence distributive quasivarieties of algebras with a special emphasis.
on those which are finitely generated. There are two main results in the paper. The first states that
within a congruence distributive quasivariety of algebras every finitely subdirectly irreducible algebra
is finitely subdirectly irreducible in the absolute scnse. The second provides necessary and sufficient
conditions for a finitely generated and congruence distributive quasivaricty of algcbras of finite type
to be finitely axiomatizable. In particular, applying thesc results we partially answer a question
posed in Tumanov [9]. '

1. Introduction. A universal sentence whose matrix is of the form ry = 5o & ...
&1, = s,—r = sis called a quasiidentity. A class K of similar algebras is said to
be a quasivariety if K = ModZ for some set ¥ of quasiidentities. Equivalently
(see [8)), K is a quasivariety if K is closed under isomorphisms (7), subalgebras (S),
direct products (P) and ultraproducts (Py). If M is a class of simjlar algebras then,
by a result of [5], ISPPy(M) is the least quasivariety containing M. Sometimes we
shall write Q(M) instead of ISPPy(M). A quasivariety K is said to be finitely gene-
rated if K = Q(M) for some finite set M of finite algebras, and K is said to be
finitely axiomatizable if K = ModZ for some finite set X of quasiidentities. For
an algebra 4, by ConA we denote the lattice of congruence relations on 4. If K is
a quasivariety and 4 e K then we put Congd = {@ € Cond: 4/0 e K}. Since
the set Cony A is closed under arbitrary meets (in Con.4), it forms a complete lattice.
We say that a quasivariety K is congruence distributive if for every 4 € K the lattice
CongA is distributive. For varieties of algebras (= equational classes) this notion
was intensively studied in the literature and many interesting results for it have
been obtained. One of them, due to Baker [1], states that every finitely generated
and congruence distributive variety of algebras of finite type is finitely axiomatizable.
Our intention is to extend this result into quasivarieties. We prove (Theorem 4.5)
that a finitely generated and congruence distributive quasivariety K of algebras
of finite type is finitely axiomatizable iff ModZ LI is congruence distributive for
some set £ of identities and a finite set I' of quasiidentities such that K < MedZw I
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Applying this result we partially answer a question posed in Tumanov [9], and as
corollary we derive a result of Blok and Pigozzi [2].

Another poimnt focusing our attention is the problem of establishing properties
shared by congruence distributive quasivarieties. We prove (Theorem 2.3) that in
a congruence distributive quasivariety every finitely subdirectly irreducible algebra
is finitely subdirectly irreducible in the absolute sense. This result allows us to
characterize (Corollary 2.4 and Proposition 2 5) congruence distributive quasivarieties
"in wide classes of algebras. We also prove (Proposition 2.1) that a quasivariety X is
congruence distributive iff for every finite n the lattice CongFy(n) is distributive,
where Fg(n) denotes the free algebra in K with n free generators. Moreover, we
point out that in general no finite bound on the number of free generators in free
algebras of K cannot be made in order to make K congruence distributive. The last
observation is in the contrast with a result of Jonsson [7] stating that a variety K is
congruence distributive iff CongFx(3) is distributive.

2. Congrueence distributivity. Let us note the following

ProrosITION 2.1. For a guasivariety K of algebras the following conditions are
equivalent:

(1) K is congruence distributive;
(ii) CongFylw) is distributive;

(iii) For each finite n, ConygFx(n) is distributive.

Proof. That (i) implies (ii) is obvious. As for each finite » the lattice Cong Fg(n)
is isomorphic to an interval in CongFy(w), (ii) implies (iii). Assuming (iif) we get
that CongA is distributive for every finitely generated 4 of K. So, by Lemma 2.2
of [4] describing the least element @(H) in Cong4 containing H, where H< A x 4,
it follows that Cong 4 is distributive for all 4 of K. Thus K is congruence distributive,
proving that (iii) implies (i).

If K is a variety then due to a result of Jonsson [7] we know that K is congruence
distributive iff the lattice CongFy(3) is distributive. The analogous result for quasi-
varieties is not true. This follows from the following example.

30

Fig. 1

Let P,, n> 3, denote the poset depictured in Figure 1; the partial order of P,
is ascending as one moves upwards on the figure. Let H(P,) denote the Heyting
algebra of all increasing subsets of P,, and let K = Q(H(P,)). We claim that the
lattice CongFg(n) is distributive while K is not congruence distributive. Since H. P

icm

Finitely generated congruence 49

is subdirectly irreducible in K and H(P,) is not subdirectly irreducible in the absolute
sense, then by Theorem 2.3 below we obtain that K is not congruence distributive.
On the other hand, as H(R,), where R, is the subposet of P, with universe {x: @, < x},
belongs to K and every n-generated subdirectly irreducible algebra of ¥ (K) is em-
beddable into H(R)), it follows that every congruence relation on Fx(n) is an element
of CongFy(n). Thus the lattices ConFg(n) and CongFy(n) coincide. Hence, by

" congruence distributivity of V(K), the lattice CongFy(n) is distributive.

The above example also shows that in general no finite bound on the number
of free generators in free algebras of a quasivariety K cannot be made in order to
make K congruence distributive. Although in the case when K is finitely generated
a certain finite bound is possible. It depends on the cardinalities of generators of K.
More precisely, if K = Q(M) where M is a finite set of finite algebras and
m = max{|4|: Ae M} then one can show that K is congruence distributive iff
the lattice CongFy(3 +m) is distributive. Thus for a given finite set M of finite algebras
of finite type the problem whether the quasivariety Q(M) is congruence distributive
is decidable, These results and others concerning congruence distributivity of quasi-
varieties will be published elsewhere jointly with Janusz Czelakowski.

Let K be a quasivariety and 4 € K. An element © of Cong is said to be finitely
meet irreducible in CongA if for all @y, @, € Congd, @ = @yN O, implies & = B,
or @ = @,. If the identity relation on A4, denoted w,, is finitely meet irreducible
in Congd then A is said to be finitely subdirectly irreducible in K. By Kpsy we denote
the class of all finitely subdirectly irreducible members of K. We say that A4 is finitely
subdirectly irreducible in the absolute sense if @, is finitely meet irreducible in Con 4.

LEMMA 2.2. For a quasivariety K of algebras the following conditions are equi-
valent:

(i) K is congruence distributive;
(ii) For every A€K, O, 0, Cond and e CongA: if  is finitely meet
irreducible in Congd and @y A O, <Y then @y <y or O <.

Proof. (i)=(ii): First, we show that (i) implies (2). For every A€ K,
65, ®, e Cond and ¥ e Congd: if Y is finitely meet irreducible in Congd,
{69, @,} " Congd # & and @y A O <Y then @ <Y or O, <. Suppose other-
wise. Then on a certain algebra 4 of K there exist congruence relations Q,, O,
and  for which (a) fails. Let us assume that @, € Cong.4; in the case @ € Cong.4
we proceed similarly. Let B = {(a, b) € Ax 4: (a, b) € ©,}. Evidently, B is a sub-
algebra of Ax 4 and hence B e K. We shall show that CongB is not distributive
which would finish the proof that (i) implies (a). To this effect it suffices to find
three elements «, § and y of CongB such that @ A f <y, y is finitely meet irreducible
in ConyB and neither « < y nor f <y. Let 7y, m,: B— A denote the projections of B
onto A. As n7 4(@,) = n3 {(Oy), we have 17 {Oo) A 3 (@) <7y H(@) A 72 2(84)
=17 1(O0) A 77 (8)) = 75 (O A ©) < (by o A O3 <Y) <7y (). Thus

1. 77 Y(@0) A 13 Mwa) S 77 ' (WY)-
1 — Fundamenta Mathematicae 133/1
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Since @£y and m(B) = 4, we have
2. 7y 1(90)?{”;1(11’)

By ©,£V, O\ # @. Let (a, b) e ©,\y. Then (a, b) = (b, b)(r3 "(w,)) because
(a, b), (b, b) € B. Evidently, (a, b) # (b, b)(n7 *(¥)). Thus we also have

3. 73w )& ).

“As B and 4/@, belong to K and Bz Y(0,) & 4/6,, we get that 7y (@) is an

element of CongB. Similarly, n; !(w,) and =7 () belong to CongB. Moreover,
n; 1() is finitely meet irreducible in CongB. Thus, by (1), (2) and (3), as &, f and y
“we can take n; Y(Oy), 7, N(w,) and 7y (), respectively.

Repeating the arguments used above it is easy now to show that (a) yields (ii).
Thus (i) implies (ii). ’

(i)=>(i): Let A€ Kand @,, O, @, € CongA. Assume Oy A @1+, Op A O, <Y
“where 1 is a finitely meet irreducible element of Cong A and + x denotes the lattice
join formed in Cong4. By (ii), @¢ A (O14+5@;) <. Therefore, as in Congd every

element is the meet of finitely meet irreducibles over it, we conclude that
Oy A(O1+5O)<O)A O +5O5 A O,. The converse inequality is immediate.
Thus K is congruence distributive, proving that (ii) implies (i).
THEOREM 2.3. Within a congruence distributive quasivariety of algebras every
" finitely subdirectly irreducible member is finitely subdirectly irreducible in the absolute
sense.

Proof. Let K be congruence distributive and 4 € Kyg;. By Lemma 2.2, for any
6. ©,eCond with o, = @, A @, we have w, = @, or w, = @;. Thus 4 is
finitely subdirectly irreducible in the absolute sense.

The condi.ion expressed in the above theorem is not sufficient. A counterexample

is the quasivariety of all semilattices. However, in some cases it becomes also sufficient.
Namely, we have

COROLLARY 2.4. Suppose K is a congruence distributive quasivariety of algebras
and L is a quasivariety contained in K. Then L is congruence distributive iff every
finitely subdirectly irreducible algebra in L is finitely subdirectly irreducible in the
absolute sense.,

Proof. The “only if” part follows from Theorem 2.3. To prove the “if” part
let e L, @y, @, e Cond and let ¥ e Cony, 4 be finitely meet irreducible in Cony, 4
with @, A @, <. Evidently, € Cong4 and, as Ay is finitely subdirectly irredu-
cible in the absolute sense,  is finitely meet irreducible in CongA. Therefore, by
congruence distributivity of K and Lemma 2.2, @, < or 0, <1/, So, by Lemma 2.2,
L is congruence distributive.

Let K be a finitely generated and congruence distributive variety of algebras
with Kpgy being a universal class. Such a variety can be found among Heyting
algebras, Nelson algebras, interior algebras (or more generally, modal algebfas),
distributive double p-algebras, double Heyting algebras, Ockham lattices, Sugihara
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algebras and among many other classes of algebras. Let L be a quasivariety con-
tained in K. By Corollary 2.4, we can state that L is congruence distributive iff L is
generated by a subset of Kpsy. Indeed, by Corollary 2.4, the “if” part needs only
a verification. Let L = Q(M) where M is a subset of Kyg;. By Jénsson Lemma
(see [7, Corollary 3.2], or Lemma 3.1 below), we can assume that M is a finite set
of finite algebras. Hence L = ISP(M). So, as Kgs, is universal, every member of
Lps; is finitely subdirectly irreducible in the absolute sense. Thus, by Corollary 2.4,
L is congruence distributive. With the help of this observation ‘we can produce many
examples of congruence distributive quasivarieties which are not varieties. However,
in a wide class of algebras congruence distributive quasivarieties are just varieties.
For instance, we have -

PROPOSITION 2.5. Suppose K is a locally finite and semi-simple congruence
distributive variety, and let L be a quasivariety contained in K. Then L is congruence
distributive iff L is a variety.

Proof. The “if” part is obvious. Assume-that L is congruence distributive.
Let AeL and @ € ConA. We need to show that 4/@ belongs to L. As L is locally
finite, we can assume that 4 is finite. Moreover, as L is closed under subdirect pro-
ducts, ‘we can also assume that @ is finitely meet irreducible in Con 4. By Theorem 2.3,
there - exist finitely meet irreducible elements @y,:.., ®,-, of Cond with
ws= A\ (@;: i<n) and 4/6,eL for all i <n. Hence /\ (@;: i <n)< @ which, by
congruence distributivity of K, yields ®,< O for some i< n. So, by semi-simplicity
of K, we get @, = @. Thus 4/0 e L, proving that L is a variety.

From Proposition 2.5 it follows that among finitely generated quasivaricties
of modular lattices every congruence distributive quasivariety is a variety, This is

" not true for non-modular lattices. Applying Corollary 2.4 one can verify that the

quasivariety Q(L) generated by the lattice L of Figure 2 is congruence distributive.
On the other hand, as L/O(a, b) ¢ Q(L), Q(L) does not coincide with ¥'(L).

3. Two lattice aspects. We begin with the following

Lemma 3.1 (cf. Jénsson [7]). Suppose K is.a congruence distributive quasivariety
of-algebras and M < K. Then HSP(M)n Kgsy = HSPy(M).

Proof. Let 4 € HSP(M) Kggr. Then A4 is-a homomorphic image, say, via f,
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of some subalgebra B of [[ (C;: ieI) where C;e M for all i€l For a subset §
of I define a congruence relation &g on B by x = y(0) iff {ie I: x(i) = y(i)}=2S.
Let X = {F: Fis a filter over I and @y < Ker ffor all Se F}. As {I} ¢ X, X is non-
empty. Since the poset (X, <) is inductive, it has maximal elements. Choose one
of them and denote it by U. We may assume that |4| 3> 2 since otherwise we immedia-~
tely have A € HSPy(M). From this assumption it follows that U # 2. Similarly as
in Jonsson [7, Corollary 3.2] one can show that U is an ultrafilter over 1. Thus
B/\/ (O5: S € U) e ISPy(M) which, by \/ (85: § € U) < Ker f, yields 4 € HSPy(M).

Let V(M) denote the least variety containing M. From the above lemma we
obtain .

PrOPOSITION 3.2. Let M be a finite set of finite algebras, and let Q(M) be
congruence distributive. Then the interval [Q (M), V(M)), in the subquasivariety lattice
of V(M), contains only finitely many congruence distributive quasivarieties.

Proof. Let K e [Q(M), V(M)] be congruence distributive. Then, by Lemma 3.1,
Kpst = V(M) Kpgy < HS(M). The rest follows from the fact that every quasi-
variety is generated by its finitely subdirectly irreducible members.

The following example shows that the interval [Q(M), V(M)] may contain
exactly one congruence distributive quasivariety.

Let 4 = ({0, 1, 2}, o, +) be of type (2, 2) with the operations o and -+ satisfying
x0ye{0,1} for all x, y, xoy = liff x=y,and 1+x = 0+1 = 1 for all x, and
x+y = 0 otherwise. Let B bc a subalgebra cf 4 generated by 0, and let C
abbreviate 4/6@(0, 1). Notice that 4 and B arc the only up to isomorphism
nontrivial members of Q(A)psy. Therefore Q(M)pss F Vxyzw[((x o ) +(z o w)
= xox)<(x = y or z = w)]. Hence, by Theorem 2.3 of [4], Q(A4) is congruence
distributive, We show that Q(4) is unique in the interval [Q(4), V(4)]. Let
Q(4)c=s K= V(4) be congruence distributive. By Lemma 3.1, Kpgy S HS(4)
= I({4, B, C, trivial algebra}). When C¢K, K< Q(4) and hence K = Q(4).
Suppose C e K. Notice that every operation of C takes always the same fixed value
for all its arguments. The same is true for any direct power C" of C. Therefore
Con C" coincides with the partition lattice on the universe of C”. As every element
in ConC" is the meet of coatoms over it and for every coatom @ in C" we have
C"@ = C, it follows that ConC" coincides with CongC". Thus K cannot satisfy
any nontrivial congruence lattice identity, in particular, K is not congruence distri-
butive, a contradiction. Thus C ¢ K, showing that K = Q(4).

It is worth noticing that V(M) does not satisfy any nontrivial congruence
lattice identity though the quasivariety Q(4) is congruence distributive.

ProrosiTiON 3.3, Every finitely generated and congruence distributive quasi-
variety K of algebras contains only finitely many congruence distributive quasivarie-
ties and they all form a distributive sublattice in the subquasivariety lattice of K.

Proof. Let K = Q(M) where M is a finite set of finite algebras. By Corollary 2.4
and Lemma 3.1, Lgs; & HS(M) for every congruence distributive quasivariety. L
contained in K. Hence K contains only finitely many congruence distributive quasi-
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varieties, and all of them are finitely generated. As every finitely generated quasi-
variety of algebras contains no infinite finitely subdirectly irreducible member, to
complete the proof it suffices to show that for all finite 4 € K and congrugnce distri-
butive quasivarieties L, MK, Ae(L+M)p; implies 4 € LgsyUMpgsy, and
Ae(LnM)gsy implies 4 eLgsynMpsy. The first implication is obvious since
L+M = ISP(LuM). To prove the second, let us assume that A4 e (LnM)ps; and
A¢Lpsy or A¢ Mpg. As every member of LpsyUMys; is finitely subdirectly
irreducible in the absolute sense, 4 € Lrsy U Mpg; and A e LM imply A €Lgsin
AMipgr. So, we may assume that A ¢ Lysy and 4 ¢ Mpgy. Then, by Lemma 2.2,
MY = MY where M5 and MY denote the sets of all minimal finitely meet irreducible
elements of Cong 4 and Cony A4, respectively. Hence A ¢ (LN M)gsr, a contradic-
tion.

4. Finite axiomatizability. The proof of our main result of this section will refer
to the following theorem, the proof of which can be easily found by a suitable modi-
fication of the proof of Theorem 4.1 from Blok and Pigozzi [3].

TeeEOREM 4.1 (cf. Blok and Pigozzi [3, Theorem 4.1)). Let K be a congruence
distributive quasivariety of algebras of finite type, and let K = Modld(K)u I' for
some finite set T' of quasiidentities. If Kgsy is finitely axiomatizable then so is K.

In the above theorem Id(K) denotes the set of all identities valid in K.

Lemva 4.2. Let M be a locally finite quasivariety of algebras of finite type.
Then for a quasivariety K contained in M the following conditions are equivalent:

(i) K is not finitely axiomatizable relative 1o M;

(ii) There exists an infinite sequence Ay, Ay, Ay, ... of finite algebras of M

satisfying:

M) |4yl <|di4ql Sor all i

@ A ¢K foralli; .
©) Every proper subalgebra of every A, belongs io K .

Proof. Denote by I', the set of all at most n-variable quasiidentities valid in K,
and by Mody I, the class of all members of M. validating I. Evidently,
(8) K = () (Mody I',: n< o) and (b) Mody I'iy S Mody T, for all n. As the type
of M is finite, by (i) we also have (¢) K # Mody I, for all n. Now, using (a), (b), (c)
and local finiteness of M one can easily find an infinite sequence of finite algeb‘ras
of M satisfying (1), (2) and (3) of (if). Thus (i) implies (ii). To prove the remaining
part assume (ii) and suppose that (i) fails, Then K = Mody, I for some finite set I’
of quasiidentities. Let n = max{|varo|: ¢ € I'} where var¢g denotes the set of all
individual variables occurring in ¢. By (2) and (3) of (i), every 4, is n- generated.
Hence, as M is locally finite, the sequence [4,], I < @, must be bounded which con-
tradicts (1) of (ii). o

For a quasivariety K of algebras and a finite 4 € K, let M% denote the set of all
minimal finitely meet irreducible elements of CongA. We have
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. LemMa 4.3. Let K and L be congruence distributive quasivarieties, and let L= K,
Then for a finite algebra Ac K, AeL iff A/© €L for every @ € M3,

Proof. =: Let 4eL. By Theorem 2.3, there exists a sequence @, ..., 0,..,
of finitely meet irreducible elements of Con 4 with A (0,: i<n) = w, and 4/0,eL
for all i< n. Let @& M5. Then A (@;: i<n)< @ and, by Lemma 2.2, @, < 6 for
some k<n. But @, is a finitely meet irreducible element of Congd4. Hence, by
minimality of @, O, = @. Thus 4/@ e L for all ® € M4. <: This part is obvious
since A\ (0: @e M}) = w,.

For an algebra 4 and congruence relations O, Y on 4, let 4(O, ) denote the
set {([a]©, [a]¥): e A}. Evidently, A(@, ) forms a subalgebra of 4/@ x ANy
and, moreover, the map a+([a]@, [4]y) establishes an isomorphism between A
and A(@, y) whenever @ A Y = w,.

LBMM.A 4.4. Let A be a finite algebra belonging to a congruence distributive
quasivariety K, © bé an element of MY, {by, ..., by- 1} be a fixed selector of
{[a1@: ac 4}, (c, d) be a fixed element of Y\ where i abbreviates

A@eMi: o+ 0),

and let B be a subalgebra of AN generated by the set {[bJr: i<k} u{[cly}. Then
the following conditions are fulfilled:
() The. set {([a]¥, [a)@): ac A and [a]ly & B} forms a subalgebra C of
(i) If Biis a proper subalgebra of A\ then C is a proper subalgebra of A\, ©);
(iii) Clmz *(w40)1 C = 40
(i) ”;1(6%/9)1 Ce M§ _
where iy is the projection of Ay x A/@ onto A]®.
s Proof. (i): This condition is obvious.

(ii): Assume ‘ghat'B is a proper subalgebra of 4/y. Then [a]y € 4/y\B for
some ae-A. Obviously, ([a]y, [4]®) ¢ C and ([aly, [a]@) e A(), ©). Thus C is
a proper subalgebra of A(¥, @). : :

(iii): In view (i)' it suffices to prove that Imn, {C = 4/@. Evidently,
Imn, {C=4/@. Let [a]O e 4/6. Then [a]@ = [b]@ for some i<k. Since
6]y e B, ((6,]¥, [a]0) = ([b]Y, [5]]®) e C. Hence, as ny({b 1V, [a]®) = [4]0,
we obtain 4/@-<Imm, 41C. Thus Imzn, 1 C = .4/0.

(iv): By (i) just proved, C belongs to K because A/\y and 4/@ are members
of K. Moreover, as @ is finitely meet irreducible in Cong 4 and Cfn; *(c44e) 1 C2t 4/6
(see (iiD)), it follows that 73 *(e 4e) 1 Cis a finitely meet irreducible element of Cong C.
We claim’ 27! (0 44) 1 Ckn; *(w456) 1 C where m, is the projection of Aj x 4/@
onto A/, As [clf e B and [cly = [d]y, the pairs ([c]y, [c] @) and ([d)y, [d]©)
belong to C.' Evidently, ([c]y, [c]®) = ([d]V, [d]@)(n] Yw4w) 1 C) and, by
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(c,d) ¢ 0, ([c]V, [c]0) # ([}, [d]O)(n; *(w46) 1 C). Thus

7 () 1C £ nz Hwye) 1C,
proving the claim.

Let Z be a finitely meet irreducible element of Cong C with X < 7; *(w4) 1C. -
Since 77 (waw) 1C AT (046) 1C = g, w7 (ww) 1CAT; (w40) 1C<S Z
which, by Lemma 2.2 and the above claim, yields n;'(wye) 1C< 2. Thus
5 =n; wye) 1C, completing the proof that m3 *(w,e) 1C belongs to M.

We are ready now to prove the following

* TeEOREM 4.5. For a finitely generated and congruence distributive quasivariety K
of algebras of finite type the following conditions are equivalent:’ :
(i) K is finitely axiomatizable,
(i) Mod Id(K)u I' is congruence distributive for some finite set I' of quasiiden-
tities valid in K; ‘
(iii) Mod U I' is congruence distributive for some set X of identities and some
Sinite set I' of quasiidentities such that K < ModZu I '

Proof. That (i) implies (ii) and (ii) implies (ili) is obvious. To prove that (i
implies (i), let K = Q(M) where M is a finite set of finite algebras. Let
m = max{|4]: Ae M} and M = Q({deMod Zu I |4]<m}). First, applying
Theorem 4.1 we show that M is finitely axiomatizable. Let Be Mps;. Then
BeIS({AeMod ZuT: |4| <m})and hence | B| < m. Therefore B e (ModZ U I)psy-
Thus Mpys;S(Mod ZU Iggy which, by = Theorem 2.3 and Corollary 2.4,
yields that M is congruence distributive. Let Be ModId(M)ul'gg;. Then
Be HSP({deModZuT" |A| <m})n(Mod £U I)psy and hence, by Lemma 3.1,
[Bl<n. So, ModId(M)uI'sM. Evidently, M <=Mod 1d(M)u I Thus
M = ModId(M)u T. As M is finitely generated, the class Mg, is finitely
axiomatizable. Hence, by Theorem 4.1, M- is finitely axiomatizable. So, to
complete the proof it suffices to show that K is finitely axiomatizable relative
to M. Suppose otherwise. Then, by Lemma 4.2, there exists an infinite se-
quence Ay, Ay, 4,, ... of finite algebras of M with properties (1), (2) and (3) of
Lemma 4.2. By (2) and Lemma 4.3, for each. i< o there exists ©; e MY such that
A0, ¢ K. As each A,/©, belongs to Mysy and -Mgs; contains only finitely many
non-isomorphic members, we conclude that there exist only finitely many non-
isomorphic algebras among 4,/@/'s. This allows us to assume that all 4,/0/s are
isomorphic. Let v, abbreviate A (0 M M: o # @,). Since each 4, is isomorphic
to a subdirect product of A/, and 4,/@;, then by (1) we can assume that our se-
quence also satisfies (4) |4, <|Ai /14y for all i< o. Let k = 144/@,| and
let 5 be a smallest natural number such that every (k+1)-generated algebra of M
is of cardinality <s. By (4), s+1< |4,/ for some n. Let {bo, ..., by} be a fixed
selector of {[a]@,: a € 4,}; recall that all 4,/@ s are isomorphic. Since Y,\&, # I,
we can choose an element, say, (c, d), of Y,\@,. Let B, be a subalgebra of 4,/r,
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generated by the set {[b]y,: i<k}u{[cly,}, and let C, denote the subalgebra
of A(Y,, ®,) constructed as in Lemma 4.4. Since |B,|<s, |B,| <|4,/,| which
means that B, is a proper subalgebra of 4,/if,,. Hence, by Lemma 4.4 (ii), C, is a proper
subalgebra of 4,(¥,, @,) which in turn, by (3) and 4, = 4,(/,, 0,), implies C, € K.

On the other hand, the fact 4,/0, ¢ K and Lemmas 4.4(iii), 4.4(iv) and 4.3 yield
C, ¢ K, a contradiction. .

Remark. In the second part of the above proof we have focused on showing
that K is finitely axiomatizable relative to M. Of course, if the interval [K, M] in
the subquasivariety lattice of M were finite then we could at once conclude the
proof. However, in general it is not true as indicates the following example. Let
K = Q(H(P))and'M = V(H(P)) where H(P) is the Heyting algebra of all increasing
subsets of the poset P of Figure 3. By Corollary 2.4, K is congruence distributive.

Applying a method used in [6] one can show that the interval [K, M ] contains un-
countable many quasivarieties.

Fg. 3

Directly from Theorem 4.5 we obtain

COROLLARY 4.6. Suppose K is a finitely generated congruence distributive quasi-
variety of algebras of finite type and V(K) is also congruence distributive. Then K is
[finitely axiomatizable.

In [9], V. L. Tumanov asked whether for a finite (inodular) lattice 4 the following
conditions are equivalent: :

(i) Q(4) is finitely axiomatizable

(i) Q(4) is a variety. ‘
An answer to this question can be provided by the lattice L of Figure 2. Indeed,
Q(L) is congruence distributive and does not coincide with V(L) (see Section 2)
and, by Corollary 4.6, Q(L) is finitely axiomatizable. In view of Proposition 2.5

the modular case of Tumanov’s question cannot be answered by the methods of
the paper. '

As another corollary we have

COROLLARY 4.7 (seg Blok .and Pigozzi [2]). Let K be a congruence distributive
variety of algebras of finite type with Kgs; being a universal class. Then every finite
set of finite members of Kgs; generates a finitely axiomatizable quasivariety.

Proof. By Corollary 2.4, Q(M) is congruence distributive. Hence, by Theo-
rem 4.5, Q(M) is finitely axiomatizable.
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Concluding we want to mention that condition (ii) of Theorem 4.5 is too restric-
tive in applications. This is explained by the example succeeding Proposition 3.2.
Condition (iii) of Theorem 4.5 seems to be more promising. Of course, the algebra 4
from the above mentioned example generates a finitely axiomatizable quasivariety.
This follows from Corollary 3.5 of [4] and can be also proved by realizing condi-
tion (iii) of Theorem 4.5. .

Acknowledgment. The author wishes to thank Janusz Czelakowski for discussions.
on the subject of congruence distributive quasivarieties.

Added in proof. Professor Don Pigozzi in his rccent paper Finite basis theorems for relatively
congruence-distributive quasivaricties (Tizns. Amer. Math, Soc. 310 (2) (1988), 499-533) h’as Pm‘f(:d
by extending some ideas of [3] and [4] that every finitely generated anq cox.xgtucnce distributive
quasivaricty of algebras of finite type is finitcly axiomatizable. This rcsult is cv1.dcnt1y stronger thank-
that esteblished in our Corollary 4.6. It also implies that each of the conditions of Theorem 4.5
is true.
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