icm

Supports of Borel measures *
by

Wilfried Seidel (Hamburg)

Abstract, For every countable ordinal @, we construct a regular Borel measure on a completely
regular space such that the operation of the restriction to the support can be iterated exactly a times.
We give a decomposition of Borel measures according to support-properties; it can be used to charac-
terize the T-additive part of a measure. There exists a support-concentrated Borel measure the support
of which cannot be the support of a r-additive measure. Let S(X) (SC(X)) be the collection of the
supports of all (support-concentrated) Borel measures on a space X. Every (completely regular)
space Y is a subspace of an appropriate (completely regular) X with ¥ € §(X). Thus S(X)\S(X)
may be nonempty. For locally compact X, the elements of S(X) can be characterized by a topological
condition which is due to Kelley. There are spaces X and closed subsets 4 ¢ Sc(X) such that the
property “A4 € S(X)” is independent of the, ordinary axioms of set theory. Relations between the
supports of finite and locally finite measures are investigated.

1. Notation and terminology. For an arbitrary set X and a subset 4 of X we

_denote by #(X) the power set of X and by A4° the complement of 4 in X.

Let X be a topological space and 4 € X. By 9(X), #(X), & (X), R(X) we
denote the collection of all open, closed, compact, Borel subsets of X, by A (4) the
closure (interior) of 4 and by %(4) the relative topology of 4. Compact, locally
compact and completely regular spaces are always assumed to be Hausdorff.

A locally finite measure ju on a topological space X is a non-negative, extended
real valued, countably additive set function on #(X) with the property, that every
x ¢ X has a neighbourhood U with u(U) < o0. If u(X) < 00, p will be called a Borel
measure on X. Let 0 be the measure which is identically zero everywhere on % (X)
and §, the Dirac measure for x € X. The support of a locally finite measure is
defined as the set '

suppy 1= () {Fe F(X): p(F) = 0}
= {xeX: p(G)>0 for every open peighbourhood G of x};

4 is said to be support-concentrated, if p(X\suppp) = 0.
A Borel measure u is said to be :
— (weakly) ©-additive if p(U G,) = sup,u(G,) for every increasing net (G,) in
«
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%(X) (with J G, = X);

@
~— purely o-additive if there is no 7-additive Borel measure v with 0 <v< u;
— regular if u(B) = sup{u(F): Fe F(X), F< B} for all Be Z(X);
— compact-regular if p(B) = sup{u(K): Ke A" (X), K< B} for all BeH(X)
(here we assume X to be Hausdorff).

Obviously, every t-additive Borel measure is support-concentrated.

A space X is. Borel measure-compact if every regular Borel measure on X is
t-additive, and (weakly) Borel measure-complete if every Borel measure on X is
(weakly) r-additive.

We define the restriction y, of a Borel measure 1 to A ¢ 2(X) as the measure
satisfying p (B) = u(Bn4) for all Be #(X); ;¥ = Hyuppp denotes the restriction
of u to its support.

For every ordinal number a, «+1 denotes its immediate successor. Ordinal
numbers arc always identified with the set of their predecessors; in particular,
a+1 = auw{x} holds for every ordinal. 2 denotes the first uncountable ordinal. Q
and Q+1, when consjdered as topological spaces, are endowed with the order to-
pology. ,

All examples of this paper are collected in Chapter 5.

2. Support-restriction and the decomposition of a measure in a support-concentrated
and a support-diffused part. At the outset of this chapter, we discuss the iteration of
support-restriction.

2.1. DERINITION. Let u be a Borel measure.
(a) ¢° is defined inductively for every ordinal o as follows:

%= p and p* = K0 suppue for a>0.

(b) g, := inf{a: « is an ordinal with p = ity
From Theorem 2.2 below it will follow that 0, is a well-defined ordinal, It is
in fact exactly the ordinal at which the iteration of support-restriction stops, since

on the one hand we have u¥ = p for every f =g, but uf > ! for every f <y < Qn+
Observe that p**! = (u*)° for every ordinal a.

2.2. THEOREM. (3) g, is @ countable ordinal for every Borel measure p.

(b) There is a completely regular space X such that Jor every countable ordinal o
there exists a regular Borel measure p on X with Ou = o

Theorem 2.2 answers Okada’s question [17, Problem 2.10], whether the equality
suppu = suppu’® holds for every regular Borel measure on a Hausdorff-space,
since in this case 2, would be smaller or equal to one. A simpler counterexample can
be obtained as follows: Let Z be the ordinal space 2 and A the Dieudonné measure
on Z. If we construct ¥ and v of Z and 1 as we will do in Lemma 2.3, then v is an
example of a regular Borel measure on a Hausdorff-space with suppv s suppy®.
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2.3. LemMA. (a) Starting with an arbitrary topological space Z, we construct
@
a space Y as follows: Let (Z,)1 <u< be a sequence of disjoint copies of Z, z¢ \J Z,
w © n=1i
and Y =\ Z,u{z}. Let 9(Y) be generated by \J (%(Z,)V{I\Z,)).
ne= ] n=1

Then Y is separable (completely regular, metrizable) if Z is separbble (corﬁpletely

regular, metrizable). R

(b) For a Borel measure ) on Z, we define a Borel measure v on' Y: For every

natural number n let A, be a measure on Y such that 2,(Z5) = O and such that the
0

restriction of A, to Z, is a copy of A. Define v to be the measure v := Y 27",. v is
n=1

a regular measure, if A is regular. If supp) = @ and A(Z)> 0, then suppv = {2}

and v({z}) = 0. .

Proof of Theorem 2.2. (a) Suppose u* s u**! for every _“EQ' Then
0 <@y i= P (X)—p** N (X) and p(X) = ¥ 4, = ©
xef

(b) (1) Consider the space Z = 2°\{x,} and the measure 1 on Z as discussed
in Example 5.2; A is a regular Borel measure on the completely. regular space Z
with suppA = @&, Construct ¥ and v of Z and A as done in Lemma 2.3, then v is
a regular Borel measure on the completely regular and separable space Y with
v(Y) =1, suppv = {z} and v({z}) = 0. , ,

(I) For every f € @ we define X := Y™ (endowed with the product topology),
then X, is separable. Let 4, be a countable dense subset of X, and 75be a normed
Borel measure on X, which is concentrated on 4, such that supp<, = X;. Furthj.zr—
more we set of 1= (a,)o5,<p Where g, = z for all y and X := X, (i.e. X' = Y.
X is a completely regular space. For every f e Q we now define Borel measures ¢,
and ¥, on X: g, := 1y, and Y is the canonical extension of thfﬁ product measure
v®t, on #B(X) (which exists, since 74 is a weighted sum of Dirac measures; the
extensions of the product measures below exist from the same reason); for ﬁ.>0
the measure ¢ is the canonical extension of 5,,®1; on &(X) agd Yy the c'anomca_
extension of J,s® ¥ ® T4 on B(X), For aedpiq the canonical extension x, of
S ®v®3S, on #(X) is a regular measure; since ¥y =ae§”‘rl,+1({a})-){,, the
measure i, is regular. Obviously, (i) and (ii) hold:

(i) suppgo = X and suppe, = (&'} x X; for f>0;

(ii) suppifo = {z} x Xy and suppy, = {01} x Xpyy for f>0.

(111) We are now able to construct the desired measure p:

For o & Q\{0}, there exist real numbers b;>0, f <u with ﬂ‘ém by < 0.

We then define p as u:= ﬂ; by Y+ @u.
o

it is a regular measure. In order to show the remaining properties, we set
B+1 :
vpi=" Y by, +0, for f<u, then suppyy = { X Xpay.
pEy<a
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It is easy to show by transfinite induction

s _ [9u for fza
K vy for f<a,

which yields p* = p**! and pf # p**! for f<a.

2.4, Remark. For metrizable spaces, we can give the following answer to
Okada’s question: The equality suppu = supp #° holds for every Borel measure on
a metrizable space X if X has a dense subset the cardinality of which is of measure
zero (a cardinal m is said to have measure zero if every finite measure defined for all
subsets of any set of power m and vanishing for one-point sets vanishes identically).
Conversely, assume that m does not have measure zero. Then there exists a metrizable
space X of power m and a Borel measure y on X with suppp s supp uS. Moreover
it is possible to construct a metrizable space X with the following properties:
The ordinary axioms of set theory together with the continuum hypothesis imply
that suppp = suppu® for every Borel measure 1 on X. On the other hand, if every
set of real numbers. is Lebesgue-measurable (which can be assumed under certain
axioms of set theory, see Solovay [21]), X admits a Borel measure v with
suppv # suppy’.

Proof. If X has a dense subset the cardinality of which is of measure zero then
every Borel measure is concentrated on a separable subset of X, hence t-additive
and support-concentrated (Marczewski and Sikorski [13, Theorem IIf]). On the
other hand, let m be a cardinal which is not of measure zero. Then there exists a set Z
of power m and a measure 1 on #(Z) with A(Z) = 1 and A({z}) = 0 for every ze Z.
On Z, endowed with the discrete topology, A is a Borel measure with empty support.
Z is metrizable. Construct ¥ and v of Z and A as done in Lemma 2.3, then Y is
a metrizable space of power m and v is a Borel measure on Y with suppv # suppy®.

If we set Z := R with the discrete topology and construct ¥ as above, then
ZFC+CH implies suppjt = suppy® for every Borel measure y on Y. If every set
of real numbers is Lebesgue-measurable, then there exists a measure 4 on Z with

A(Z) =1 and suppl = @. For the measure v constructed as above, we have

suppv # suppvS.

We now want to decompose a measure in two measures with extremely different
support-properties.

2.5. DEFINITION, (a) For every Borel measure Us deﬁne‘
C, = {v: v is a support-concentrated Borel measure with v <pu}.
(b) 4 Borel measure u is called support-diffused, if C, = {0}.

2.6. Remark. (a) Bvery Borel measure p with p(suppy) = 0 is support-
diffused. :

(b) If p is a support-diffused Borel measure, then there exists a Borel measure v
with suppv = suppu and v(suppv) = 0.
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(c) There exists a nontrivial support-diffused Borel measure on X iff X is not
Borel measure-complete.

"~ Proof. (a) is obvious. _

(b) Define v := figguppuye, then suppy Ssuppp and v(suppy) < v(supppy) = O.
Assume suppvgsuppp. Then. there exists a set G e 9(X) with Gnsuppy # @
and u(G\suppp) = 0, thus u(Gnsuppu)>0. For 4 := Gnsupppu, the measure
A= 4 is therefore a nondegenerate minorant of u. If ye A and ye Ue %(X),
Un G is a nonempty open set with Un Gnsuppp # @. Since p(G\supppy) = 0, we
have A(U) = n(UnGnsuppp) = u(UnG)>0, and therefore y esuppA. Since
(A% = 0, 4 is a nontrivial support-concentrated minorant of p, which is a con-
tradiction to p support-diffused.

(¢) If X is not Borel measure-complete, then theére exists a non t-additive Borel
measure ¢ on X and a set B e #(X) with ¢(B) > 0 such that every x € B has a neigh-
bourhood G with ¢(BNG) = 0 (Gardner [4, Theorem 5.3]). Then suppunB = I
holds for the measure u := gp, and therefore p is a nontrivial Borel measure with

“p(suppp) = 0. The assertion follows from part (a) of this remark.

2.7. THEOREM. Let u be a Borel measure on a space X.
(a) There exist Borel measures u° and u* on X having the following properties:
() p = p+u,
() p° = maxC, (especially u° support-concentrated),
(i) ! is support-diffused. :
(®) If it = py -+, where uy is support-concentrated and p, is a support-diffused
measure, then suppu, = suppu’.
‘ o

(4
(c) suppy < supp p° < suppp. ,
Proof. (a) With 4 = |J suppv, u° := p, and 4= pye we have p o= p+pf

veCyu

Obviously, p* is support-diffused, and in order to verify, that ue i.s support-con-
centrated; it remains to show that 4 <supppy. For Ge%(X) with Gnd # (%]
there exists a measure v e C, with Gnsuppv # &. Consequently p,(G) =v(Gn4)
= v(G) > 0 (the equality v(Gn 4) = v(G) holds, because v is support—concentrated);

(b) uy is support-concentrated, consequently pu; < ul, s = SUPPJy S supp p#
and pge < it;. We now assume, that B := suppu™\S # &. In this gase we Prove,
that uy is a nondegenerate support-concentrated measure. If the intersection .of
a Ge¥(X) with B is not empty, then GNS® is a nonempty open set with
(GN S Asuppp’ # B, hence p(GA S >0. But p° is support—concintrated, and
thus we obtain uy(G) = u(GNS*nsuppu?) = u(GN S Nsuppp’) = p (Gn.Sc")> 0.
It follows, that B < suppug. As suppups < B, we get suppuy = B; clearly ug(BY) = 0.
Since B # @, up is a nontrivial support-concentrated measure. But observe,‘ thgt
Uy < fise < Ua, Which is a contradiction to g, support-?llﬁ'used. .

(¢) To prove (c), we show, that the measure pp 18 support-concentrated for

T:= suppp. Clearly suppurST and pg(T%) = 0. Suppose, GnT # G for
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o

a Ge%(X), then G:= Gnsuppy is an open set with Gnsuppu @, thus

0< (@) = u(Grsuppp) < p(GAT) = uy(G). Thus TS suppyiy. |

2.8. COROLLARY. (2) The support of a support-diffused measure is nowhere dense.

(b) The sum of two support-diffused measures is support-diffused.

Proof. (a) immediately follows from Theorem 2.7 (c).

(b) Let py, u, be support-diffused Borel measures, define u i= u,-p, and
A = suppy’. Then u° = p,, as demonstrated in the proof of Theorem 2.7 (a),
Denote by fi;, i, and f the restrictions of uy, u; and u to the subspace 4 of X,
Then it is easy to see, that fi, is support-diffused for i = 1, 2, § is support-concei-
trated with suppfi = 4 and il = fi, +f,. It follows from Corollary 2.8 (a), that
suppi; is nowhere dense in #(4). On the other hand it holds that 4 = suppji
= supp fi; Usuppfi, (compare Lotz [12, Lemma 2.2]). Thus 4 is nowhere dense in
its relative topology; consequently 4 = @ and C, = {0}.

The decomposition pu = pu, +pu, given in part (b) of Theorem 2.7 needs not to
be unique, as Claim 1.in Example 5.2 shows. In the'next section we will show, that
the uniqueness of this decomposition is equivalent to the -additivity of x°.

For a measure u now consider the iteration of support-restriction as defined
in 2.1. The result is a decreasing ordinal-sequence {1*) of measures, which converges
pointwise to u°, as the following proposition shows:

2.9. PROPOSITION. Let pu be a Borel measure. Then 1 = p°+(u* holds Jor
every ordinal o, and (U vanishes iff o0,

Proof. It is enough to show by transfinite induction that p* = 4 (U holds
for every ordinal «. This equality obviously holds for « = 0; assume that it is true

for all f<a. Then with suppy’ = suppu®Usupp(u®)’ it follows that () suppu’
= suppuu () supp(u’)’ and e
. p<u

x . —

W= ”ﬁQ‘suppnﬁ = /-‘sunpwul’gwsupp(ﬂ"r’ = (Hsupp pe F Hisupp ueyeJsupp Beu 0 supp (0
- ‘ — d ¢y o d
= /"nuppu"+(/‘(suppu")°)ﬁr<\¢wuw (p)# = F‘suppu"’i'/"”gm(uunpw‘)l' = 1+ ()"

3. Relations to t-additivity. Support-concentration and v~additivity are closely
related. Pym [18] investigates the connections for certain functionals, and similar
results hold for Borel measures: Every t-additive measure is support-concentrated,
but the converse is not true, in-general (see Adamski [1, Example 1], and Lotz
[12, Example 2.7]). Deeper relations can be established using a construction given.
implicitly by Knowles [10, p. 146] and explicitly by Moran [15, Theorem. 2.1] for
Baire measures; for Borel measures cf. Gardner [4, Theorem 4.1 and Theorem. 5.3]:
Bvery non-(weakly) t-additive measure possesses a nontrivial minorant the support
of which is a null set (empty). Thus t-additivity of a measure can be described by
‘support-concentration (see Adamski [1, Proposition 1] and Lotz [12, Theorem, 2.5]),
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and every Borel measure on a space X is support-concentrated iff X is Borel measure-
complete. ‘

It is a well-known fact that every Borel measure u can be uniquely represented
as the sum of a t-additive measure u* and a purely o-additive measure p°. The re-
lation to the decomposition of u according to Theorem 2.7 is given by the following
theorem:

3.1, TuzoreM. Let u be a Borel measure and u° its t-additive part. Then
pt = inf{ug: po= pytpg with pg support-concentrated and p, support-diffused.

Proof. Define

M = {pg: po= py+p, with gy support-concentrated and y, support-diffused}

and ¢ = infM. For pyeM and p, i= p—p,, the measure 1 := inf{u,, u'} is
a minorant of uf, hence t-additive and thus support-concentrated. Since A<y,
holds and since p, is support-diffused, A is identical to zero everywhere on % (X).
It follows, that for an appropriate 4 € Z(X) we have (u%), = p° and p,(4) = 0;
hence yq 2= (1t1)4 = pa = ()4 = p'. Since iy was an arbitrary element of M, p*<eo
holds.

Now assume f° 5 ¢. Then g—u” is a nontrivial measure which is not z-additive,
and we can show that there exists a support-diffused Borel measure y with
0<y<o—i* (see the proof of Remark 2.6(c)).

Let pye M and Be&(X) be such that u,(B)—o(B)<x(B). By 2.7 uy—x
= v*4v" where V* is support-concentrated and v! support-diffused. p = v+
+ (0 g ). By 2.8(b) v & M and v (B) < u1,(B)—x(B) <¢(B), so ¢ is not inf M.
The contradiction., B

It follows, that the decomposition of p in a support-concentrated and a support-
diffused part is wnique iff p° is v-additive, ‘

1t is not possible to replace “inf” by “min” in Theorem 3.1; see Example‘.5.2,
Claim 2 and Example 5.3. Thus support-concentration and t-additivity are essentially
different properties (in the examples given by Adamski [1, Example 1] and Lotz
[12, Example 2.7] for non 7-additive, but support-concentrated measures, support-
concentration was due to a t-additive minorant).

Investigating the question raised by Okada (see Section 2), one m;;y l?ok for
topological conditions which assure that the equality suppp = suppu hélds for
every (regular) Borel measure . Let us call a space X “locally Borel measure-com-
plete” (“locally Borel measure-compact™), if every x € X possesses a Borel measure-
complete (Borel measure-compact) neighbourhood (considered as' a subspace).
We claim, that every (regular) purely o-additive Borel measure on a locally Bore%
measure-complete (locally Borel measure-compact) space has. .empty support
Let X be locally Borel measure-compact and u be a purely ¢-additive, regular Borel
measure on X. Assume that suppy # @ and choose a point x & suppy. Then thc?re
exists a Borel measure-compact neighbourhood U of x and a set Ge{fl(X) with
xeGc U, Since xesuppy, we have u(G)>0. The measure pg, considered as
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:a measure on U, is regular and thus t-additive, therefore ug is also a t-additive
measure if considered as a measure on X. But now we have found a nontrivial
t-additive minorant of p, in contradiction to u purely o-additive.

Consequently for every (regular) Borel measure u on a locally Borel measure-
«complete (locally Borel measure-compact) space the following properties hold:

@) #*+p” is a decomposition of p in a support-concentrated and a support-
diffused part, especially suppu = suppu® = suppi';

(ii) suppu = suppu’.

For a further discussion see Example 5.1 and Example 5.2, Claim. 3 and 4.

Most of the results of Chapter 2 and 3 remain true, if we consider measures
on a g-algebra which is generated by a basis of the underlying topology. The proofs
are more complicated, since supports need no longer be measurable. The advantage
of this approach is, that it covers also Baire measures on completely regular spaces

and products of Borel measures (which themselves need not to be Borel measures
on the product space). ’

4. Topological properties of supports. For a space X, we denote by S(X) the
set of the supports of all Borel measures on X, and by S,(X) the subset of S(X)
consisting of the supports of support-concentrated measures.

Since Borel measures are finite, the countable chain condition (cco) is necessary

for “Xe S(X)”. The relation to the existence of a locally finite measure with full
support is as follows:

4.1. PROPOSITION. Suppose that there is a locally finite measure 1 on aspace X
withsuppu = X. Then X € S(X) if and only if X satisfies the countable chain condition.

Proof. Suppose that X satisfies the countable chain condition. Denote by %
the set of all Ue 9(X) with 0 < u(U) < 0. There is 2 maximal subfamily % of %
consisting. of pairwise disjoint sets. % is countable say % = {U,: neN},
V= nf}v 27%(u(U,)) "y, is a finite measure with suppy = X,

A necessary condition for the existence of a locally finite measure x on a space X
with suppu = X is, that every xe X possesses an open neighbourhood U with
Ue S(U) (where U is endowed with its relative topology). In general, this condition

is not sufficient, as the ordinal space £ shows (Example 5.1). It is however sufficient
for paracompact spaces:

4.2, PROPOSITION. Let X be a paracompact space with the property that every

x € X possesses an open neighbourhood U with U e S(U). Then there is a locally finite
measure g on X with suppp = X, ’

Proof. Choose for every xe X an open neighbourhood U, with U, e S(U,).
(Uy: x € X) is then an open cover of X, and since X is paracompact, there exists
a locally finite open cover (B;: i eI) such that for every ie I there is a point x;
with B,c U,,. Every U,, admits a Borel measure v, with suppv, = U,,. Then
vi(B) >0 holds, and we define for every iel a Borel measure u; on X by
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utd) :=v{(AnB) (AeB(X)). Since (B:iel) is locally fimite, the measure
u = supp, is a locally finite measure on X with suppy = X.
leX

For a closed subset 4 of a space X, the property “4 e S,(X)” depends only on
the relative topology of A. For such a set 4 it holds true that every point ﬁnit.e subset
of ¥(A) is countable (see Gromig [7, Theorem 1.12]). A modification of thlS. state-
ment implies, that every Borel measure on a metacompact space possesses a Pl'ndelﬁf
support. This is proved essentially by Moran [16, Theorem 5.1} and expl.xcltly by
Okada [17, Theorem 3.1]. The latter discusses in detail those spaces on which every
measure has a Lindeldf support. As a consequence, a closed subset 4 of a metrizable
space X is an clement of S(X) iff it is separable. .

In contrast to “4 & S(X)", the property “4 e S(X)” is to a great extent inde-
pendent of the relative topology of 4:

4.3, THrOREM. Every topological space Y can be topologically embedded into
a space X such that ¥ e S(X). If Y is completely regular, the space X can also be
chosen to be completely regular.

Proof. Let ¥ be an arbitrary space and define X to be the disjoint u.nion of ¥ and
the ordinal space . Denote by % the family of the intersections with Q of open
neighbourhoods of the point Q in the space 2+1, and define

g(X) := 9(Qu{GUU: Ge9(Y) and Ue}.

Let p be the Dieudonné measure on €, considered in a canonical way as a measure
on X, Then suppy = Y, For completely regular Y, the space X cogstructed as ab?ve
is not Hausdorfl. In this case we proceed as follows: There exists a topological
embedding @: Y— ¥:= [0, 1]¥ for an appropriate ¥. The product measure

® vy, where v, is the Lebesgue measure on [0, 1] for every ¥ € ¥, can be extended
v “~ v, v ~
:; a r-additive Borel measure 1 on #(¥) (Marik [14]). Then suppid = ¥ Let v be

the Dieudonné measure on the ordinal space 241 and let ji be an extensio_n of )T®v
to # (), where ¥ is the topological product of ¥ and Q+ 1 (suchan ext~ens10n fmiti;
see Ressel [20, proof of Theorem. 1]). Then supp f = ?x{Q} and fi(suppf) = 1
holds, Define X as the subspace (¥x @) uU(P[Y]x{Q}) of Y.and u as the Bore
measure given by u(B) = fA(Bn[¥x Q) for Be B(X), then X is completely regx;liz:r
and suppu = #[¥]x {Q}. But &[Y]1x{Q} and Y are clearly homeomorphic.
4.4, COROLLARY. There is a completely regular space X with S(XNSLX) # 9.
Proof. Let ¥ be an uncountable, discrete space. According to Theorem 4.1115,
¥ can be embedded into a completely regular space X such that Ye §'(X). 0¥1_t e
other hand, Y'¢ S,(X), since Y does not satisfy the counta.blfa chain confhtlon.
Although there are locally compact spaces which admit support—dnﬁusc;i
measures, the equality S(X) = S/(X) holds for every locally con}pact space t:
as the next theorem will show (in fact, for every 4 € S(X ) thgre exists a con;pac
regular Borel measure y with suppp = 4). Thus we can give 2 topologlcalnc ar;(]:t
terization of the elements of S(X), using a condition which is due to Kelley [9]:
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4.5. DﬁFlNlTION. A family H of subsets of a set X is called a positive collection,
if there is a positive real number a such that for every finite sequence § = (4, ..., 4,)

k k
in H there exists a subsequence (4, ..., 4;) with - >a and ) 4, # 9.
n J=1

A topological space is said to satisfy the Kelley-condition, if the family of its
nonempty, open subsets is the union of a countable family of positive collections.

The Kelley-condition is for an arbitrary space X necessary and for compact X'
also sufficient for X e S(X), see Hebert and Lacey [8, Theorem 1.6] or Comfort
and Negrepontis [2, Lemma 6.2(2) and Theorem 6.4], Kelley’s condition implies
the countable chain condition, but a famous counterexample given by Gaifman [3]
shows that there is a compact space that satisfies the countable chain condition but
does not satisfy the Kelley-condition and thus is not the support of a Borel measure.
For completely regular X, the Kelley-condition is no longer sufficient for X e S(X).
More about this subject and other chain conditions can be found in the monograph
of Comfort and Negrepontis [2].

4.6. THEOREM. For any locally compact space X, we have S(X) = S (X)
={dcX: 4 is closed and 9(A) satisfies the Kelley-condition}.

Proof. (1) S(X) € §(X): Let 4 be an element of S(X) and v be a Borel measure
with suppv = 4. Denote by X the Alexandroff-compactification of X (=X, if X is
compact) and by ¥ the canonical extension of v to X. The restriction of # to the Baire
o-algebra’ defines a t-additive Baire measure on X , which can be extended to
a 7-additive and hence support-concentrated Borel measure [ on X (Mafik [14]).

Since the open Baire sets generate ¢ (%), supp fi = supp ¥ holds. The restric-

tion p of i to X is then a support-concentrated (in fact compact-regular) Borel
measure on X with suppu = A.

(2) For every- 4 € S(X), 4 € S(4) holds and therefore A satisfies the Kelley-
condition.

SS) Let A be a closed subset of X, 4 is locally compact. If 4 is not compact,
let 4:=4u{w} be its Alexandroff-compactification, If A satisfies the Kelley-
con~dition, 4 also does: ¥ = {Ge9(d): weG} is a positive collection and so
Y(AN\F} = (F(AN{B)UZ is a countable family of positive collections. Thus
there exists a Borel measure ¥ on 4 wit supp¥ = A. Denote by u the canonical

extension to 8 (X) of the restriction of ¥ to 4, then yis a support-concentrated Borel
measure with suppu = 4. ‘

In spaces with S(X)\NS,(X) # @ it is not possible to give a characterization
of S(X) without using support-diffused measures. Furthermore, Example 5.4 shows
that it is in some cases impossible to decide within the ordinary axioms of set theory,
whether a given set 4 ¢ S,(X) is an element of S (X) or not. For another conjecture
on supports which is undecidable in ZFC, see Gardner [5, Theorem 14.4],
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5, Examples.

5.1. The ordinal spaces Q and Q+1. & is locally Borel measure-complete, but
admits a non 7-additive Borel measure (the Dieudonné measure). ‘

041 is Borel measure compact, but not locally Borel measure complete.

For the space Q the following properties hold:

(i) For every o € Q there exists an open neighbourhood U such that Ue S(U).

(ii) There is no locally finite measure p on Q with supppu = Q.

Proof. (i) holds, because for every o e Q the set [0, ] is an open, countable
neighbourhood of a.

(i) Suppose there exists a locally finite measure u on Q with suppu = Q. Then
0 < u({a--1}) < o for every o € Q (since the set {a-+1} is always open), and there-
fore there exists a natural number n such that the set

C: {zx+1: ae, u({u+1)= %}

is infinite. The ordinal f, := sup{f e Q: f+1n C is finite} is a countable ord'{nal
(since C contains a countable subset) with the property, that for'every ordn.lal
9 < f, the interval (y, B,] contains infinitely many elements of C (s1.nce otherwa
Bo+2nC = (p+1nC)U((y, Boln C)U({Bo+2} N C) would be finite). But this
implies that u(U) = co for every open neighbourhood U of fo. ‘ .
5. Subspaces of 2% 2%(= {0,1}", endowed with the product topology, is
a separable Hausdorff-space; let 4 = {4,: ne N} be a countable dense' subset
and ¢ a Borel measure concentrated on 4 with ¢({a,}) > Ofor every ne N (for mstancg
¢= Y 27"8,). Then suppg = 2% There is a topological embedding A: Q+1-2

eN . .
(see I’:c Roy Peterson {11, Embedding Theorem 4]) with x; := h(Q) ¢ A. Since Q+1

is compact, H* := h[Q+1]is a closed subset of 2% and H := h[Q]is closed in 2"\{x,}.
Denote by A the image measure of the Dieudonné measu;c on Q+1 under the map-
ping A Then suppA = {x,}, and the restriction of 1 to 2 '\{Zco} isa reg{t}ﬂar measure
(since the Dieudonné measure on Q is regular and H is closed in 2°\{x,}) with
empty support.

CLAM 1, The decomposition of a measure in & support-concentrated and a support-
diffused part needs not be unique: For X := 2% and pi= g+ p=p+0 = g+().1
are two distinct decompositions of uin a support-concentrated and a support-diffuse
part. '

CLAIM 2. There exist regular and antiregular, purely o-additive, Support-con;
centrated measures with nonempty supports on completely regu.Iar spaces: X :=.2
can be considered as a topological group, so for every n € N thc}'e isa horneomot-i;zil}x'sm
Jui X=X with j,(xo) = a,. The measure y :="§v2 "j(A) is a purely o-additive

measure with supp g = X; since X is compact, [ is an antiregl.ﬂar measure. The
restriction. v of u to XA is a regular measure on X\4 with suppv = XNA.
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Cramv 3. X := AU H is locally Borel measure-complete, admits a non t-additive
measure and in addition a (t-additive) measure p with suppp = X.

CLam 4. For X = 2%{x,} the following properties hold:

(1) For every x € X there exists a support-diffused Borel measure 1 on X with
suppu = {x}, thus X cannot be locally Borel measure-complete.

(2) X admits a regular, non t-additive Borel measure, so X is not Borel measure-
compact.

(3) X = suppv for a purely o-additive measure v.

(@) X is locally compact, hence locally Borel measure-compact.

5.3. 4 Haousdorff-space X with the property, that X = suppu for an appro-
priate purely o-additive measure p on X, but that suppv # X for every t~additive
Borel measure v on X.

For the construction we continue Example 5.2; in particular, j, is defined as
in Claim 2.

Define H; := j,[H*] and H, i= j,[H], where we can assume that H,n 4 = @
for every n (since 4 is countable and H, is homeomorphic to the ordinal space Q,
we can replace H, by a subspace that is homeomorphic to H, and disjoint from A).
Furthermore, we can assume, that the sets H, are pairwise disjoint: Suppose that
m
U1 H;" is closed and a,,.,, ¢ H. Since 29 is
1=
a completely regular space, there exist disjoint open nexghbourhoods Uand v
of & and a,,,;. ¥ contains a subspace of HY. | which is homeomorplnc to H¥., and
disjoint from H.

Let 9(Y) be the relative topology of ¥ :=

HY, ..., H} are pairwise disjoint. f :=

U H, (¢, 2):={feQ: f>a}
for every ordinal « and U(%) = U Ju o hl(e, Q)] for evcry sequence (%), ey € Q.

The space X is then defined as Y, equxpped with the topology generated by
F(N)U{Uap: (@) €0}

On every H, there exists a copy 4, of the Dieudonné measure on €, which can
be cxtended in a natural way to a measure on X with A,(H;) = 0. Thus the measure

}: 2- "Z is a Borel measure on X with suppy = X.

On the other hand, let v be a ¢-additive measure on X. For every ne N, the
restriction of v to H, is a t-additive measure and thus concentrated on a countable
_subset. of H, (see Bhaskara-Rao etal. [19]). Thercfore there exists a sequence
(a,)e Q" with v(U,,) = Z V(oo Bl(cy, Q1) = 0; and since U, # @, we
have suppv # X.

5.4. 4 class of completely regular spaces Zy and of subsets, A of Zy with the
property that in some cases it is zmpo,sszble to decide within ZFC, whether 4 € S(Zy)
does or does not hold.

1. Define ¥ to be the set of real numbers with the rational sequence topology:

icm

> Supports of Borel measures 79

If Q denotes the set of rational and # the set of irrational numbers, then every
g€ Q is open. For each x &€ # we choose a sequence (x,),.y in Q converging to »
in the Buclidean topology and define the sets U,(x) := {x};2,u {x}, n € N, as a local
basis at x. ¥ is completely regular, Q is a countable dense subset and .# is an uncount-
able discrete subset of Y (see Steen—Seebach [22, Example 65]).

Let X be a locally compact, but not compact space. A space Zy and a subset
A e F (Zy) are then constructed as follows: Denote by ¥ = XU {w} the Alexandroff-
compactification of X, define Z := ¥xX (endowed with the product topology),
A= ¥x{w}, Bi=Qx{w} and Zy ;== Z\B. Zy is a completely regular space,.
A is a closed subset of Zy with A4 ¢ S(Zy), since 4 is uncountable and discrete.

Assume now (Gardner and Pfeffer [6]), that X is in addition a hereditarily meta-
lindeldf space that satisfies the countable chain condition locally, and that the cardin--
ality of each discrete subset of X is of measure zero. Let us abbreviate Martin’s axiom.
as MA and the continuum hypothesis as CH, then the following statements hold.

(a) MA+TICH=4 ¢ S(Zy). -

(b) Under CH there exists a space X, that satisfies aII the conditions above such:
that A e S(Zy,).

Proof of statement (a): Suppose 4 = suppu for a Borel measure ;4 on Zy.
(i) Then p(Q@x X)>0; Consider p as a measure on Z and denote by v the

image measure under the projection to Y. Now if u(Q x X) = 0, then v is a support-
concentrated measure with suppv =¥, which is impossible, since ¥ does not satlsfy
the countable chain condition.

(ii) Since Q is countable, there exists a point g € Q with u({g} x X)>0. {g}x X
is a copy of X, thus under MA + ~1CH the restriction g of u to {g} x X is compact~
regular (see Gardner and Pfeffer [6, Theorem 2.1]). Thus suppg # @, and it follows,.
that suppuN\d4 # @, which is a contradiction to 4 = suppu.

Proof of (b). Under CH, there exists a space X, with the desired properties.
and a Borel measure u on X, with u(X;) = 1 and p(K) = 0 for every compact set.
Kc X, (see Gardner and Pfeffer [6, Remark 2.13. (y)]). Since X, is locally compact,.
it follows that suppp = &, Let ¢ be a Borel measure on ¥, concentrated on Q,
with suppe = Y. The product measure ¢®p can be extended to a Borel measure ¥
on ¥x X,; let v be the image measure under the canonical injection j: ¥'x X —Zy,.

Since suppu = @, we have supp¥ = @ and thus suppv € 4. On the other hand,,
if U is an open neighbourhood of x € 4, then Un (¥ x X;) can be without loss
of generality written as U, x U, with U; € ¥(Y) and U, the complement of a compact
subset of X,. Then ¢(Uy)>0 and u(U,) = 1, hence v(U)>0. It follows that
suppy = 4, .
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Functions provably total in "X,
by

Z, Ratajezyk (Warszawa)

Abstract. The main theorem of the paper can be formulated as follows. Let n> 2. If, in the
proof of the totality of a recursive function f: N~N we use oply m different axioms of Zy-induction
without parameters and additionally only axioms of PA™, then f can be bounded (almost everywhere)
by a function Hp in Hardy's hierarchy, where f = w® ¥ for some ke w.

§ 1. Introduction. The aim of this paper is a generalization to the case otj Iz,
of the following theorem proved in [A-B], where I~ %, denotes the theory of Z,-induc-
tion without parameters. i

1.1, TugorEM [A-B]. If, in the proof of the totality of a recursive function
[+ N—Nin the theory I 2, we use only m different axioms of X,-induction, then f ca:z
be bounded by the 2m-th function in the Grzegorczyk hierarchy starting from 2.

Let F, denote the mth function in Grzegorczyk hierarchy. Thl.xs Fo(x) = 25,
F,. (%) = F¥"(x) for m e w. Let us remark that a slight modification of estima-
tion of growth in the proof of the theorem just quoted shows that f can be bounlded
by an iterate FY of the function F,, for some k & N. This estimation can be formalized
in the theory Id,+exp+Vx3yF,(x) = ». '

We say that a function f: N— N is provably total and of the class %, in a theory T
iff there exists o (x, y) € %, such that ¢ defines fin N and T+ Vx 3!y(p(x,' ¥). We
will speak shortly: fis total and X, in T. Functions which are total and Z; in T are
often called functions provably recursive in T.

Before we formulate our theorem, which generalizes Theorem 1.1, we need
some notation. By H,, for « < &, let us denote the Hardy’s function with index o
(see [W]); compare the definition of G, below. Ordinal numbers wfy, where 7 € o,

of

are defined by the following inductive conditions: w§ = o, why, = ©  for ne . If
f>g: N~ Nthen f<g means that An¥m = n f (m) < g (m); we say that g dominates f.
If ¢ is a formula of the language of arithmetic with one free variable then let Ind¢
denote the formula ¢(0) A Vx(p(x)—> ¢ (x+1)) > Vx@(x). The theory Ido+exp+
+Ind;+...+Ind g, will be denoted by I~ [@y, v, Pl

1.2. TueoreM. Let n>1 and let ¢4, ..., ¢, be Z,-formulas. If f: NN is
provably fotal and Xy in 17 [y, ..., 0] then there exists a ke w such that f is do-

§ — Fundamenta Mathematicae 133/1
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