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Functions provably total in "X,
by

Z, Ratajezyk (Warszawa)

Abstract. The main theorem of the paper can be formulated as follows. Let n> 2. If, in the
proof of the totality of a recursive function f: N~N we use oply m different axioms of Zy-induction
without parameters and additionally only axioms of PA™, then f can be bounded (almost everywhere)
by a function Hp in Hardy's hierarchy, where f = w® ¥ for some ke w.

§ 1. Introduction. The aim of this paper is a generalization to the case otj Iz,
of the following theorem proved in [A-B], where I~ %, denotes the theory of Z,-induc-
tion without parameters. i

1.1, TugorEM [A-B]. If, in the proof of the totality of a recursive function
[+ N—Nin the theory I 2, we use only m different axioms of X,-induction, then f ca:z
be bounded by the 2m-th function in the Grzegorczyk hierarchy starting from 2.

Let F, denote the mth function in Grzegorczyk hierarchy. Thl.xs Fo(x) = 25,
F,. (%) = F¥"(x) for m e w. Let us remark that a slight modification of estima-
tion of growth in the proof of the theorem just quoted shows that f can be bounlded
by an iterate FY of the function F,, for some k & N. This estimation can be formalized
in the theory Id,+exp+Vx3yF,(x) = ». '

We say that a function f: N— N is provably total and of the class %, in a theory T
iff there exists o (x, y) € %, such that ¢ defines fin N and T+ Vx 3!y(p(x,' ¥). We
will speak shortly: fis total and X, in T. Functions which are total and Z; in T are
often called functions provably recursive in T.

Before we formulate our theorem, which generalizes Theorem 1.1, we need
some notation. By H,, for « < &, let us denote the Hardy’s function with index o
(see [W]); compare the definition of G, below. Ordinal numbers wfy, where 7 € o,

of

are defined by the following inductive conditions: w§ = o, why, = ©  for ne . If
f>g: N~ Nthen f<g means that An¥m = n f (m) < g (m); we say that g dominates f.
If ¢ is a formula of the language of arithmetic with one free variable then let Ind¢
denote the formula ¢(0) A Vx(p(x)—> ¢ (x+1)) > Vx@(x). The theory Ido+exp+
+Ind;+...+Ind g, will be denoted by I~ [@y, v, Pl

1.2. TueoreM. Let n>1 and let ¢4, ..., ¢, be Z,-formulas. If f: NN is
provably fotal and Xy in 17 [y, ..., 0] then there exists a ke w such that f is do-

§ — Fundamenta Mathematicae 133/1


Artur


82 Z. Ratajczyk

minated by the Hardy's function H, with & = 0% " when n>1 and o = o"*2.k

when n = 1.

For n =1 we obtain Theorem 1.1. In fact, H,.<FZ, which implies that
Hymr2., < F2*. The proof of Theorem 1.2 and proofs of all the remaining theorems
are divided in to two parts: the semantical part, § 2, where we give a proof of the
main lemma, and the combinatorial part, § 3 (the last section).

The idea of the proof of Theorem 1.2 consists in a fusion of two notions: the
notion of K-closure from Adamowicz and Bigorajska [A-B] and the notion of
approximation, in the sense of Pudlak and Friedman, of functions by finite sets.
We use here the idea of approximations which was used in [R] (see also [K-R] for
the estimation of growth of functions provably total and X, in IZ,.

The method used in the proof of Theorem 2.1 can be applied without difficulties
to the estimation of functions provably total and X, in I [¢y, ..., @,], Where
Prs s P €2y, 2<r<n. Assume that r> 1. To make this result precise let us
notice that there exists a function H™** of class II, in N, which dominates all func-
tions of class X,.

Let ¢,_; denote an universal formula for I7,_, formulas in Id,+exp, 4, in
IA,+exp. A formula v, ., defining H™*! is the following:

Vi, x <a[(@y @, 1lu, x, ) Ay <bo,-1(4, x, y)) A
AVz<bIu, x<aVy <b(@,-1(u, x,y~>2<y)].

It is easy to observe that /.., is of class IT, in I%,. Since the theory IZ, is equi-
valent to strong Z,-collection (see [H-P]), IZ, is equivalent to the theory
I4y+exp+ Vadby,. (a, b) (for r=1).

In particular, H"** is provably total and II, in IZ,. Tt follows that for every
k & o the usual iterate (H"**)* is provably total and %, in IZ,. If r<n then, in
view of IZ, = I"%,, it follows that the functions (H"**)* are provably total and
L,y in I73,.

Before we formulate the next theorem, we must make it clear what we mean by
iteration in the sense of Hardy of any function G: N N (denoted in the sequel
by G,). We define G, by induction on a<ey: G, = id, Gy, y(n) = G,(G(n) and

G(n) = Guy(m(n) if « is limit; the symbol {o} () denotes the nth term of the standard
fundamental sequence converging to «. Let us mention that H, is the a-fold iterate
of the function G(x) = x-+1 let us also notice that this definition of iteration makes
sense for a partial function G: < w— .

Let H'(x) = 2", In view of Lemma 3.1, which says, in pafticular, that H* with
index w™-k is dominated by H with index w"*2-F, it follows that the next theorem
can be treated as a generalization of Theorem 1.2.

» @w be Z-formulas. If f1 N—-N
-s Qul then there exists a k € o such that f

1.3. THEOREM. Let 1<r<n and let ¢, ...
Is provably total and X, in IZ, _,+1~ [(pl, .
is dominated by H,, where a = ¥,

icm
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At the end of this paper we discuss the problem of formalization of the combi-
natorial estimates from 1.3 in theories of the form TAg+{¥xHj(x) | : x < f}.

§ 2. The semantical part. The main scheme of the proof of Theorem 1.3 is the
same as that of Theorem 1.2. The basic idea in these proofs is the same as for 1.1 in
[A-B]. The semantical part is presented in the form of separate lemmas, Lemma 2. 10
for 1.2 and Lemma 2.3 for the general situation. The rest of the proof consists in
combinatorial estimations.

To prevent the idea of the proofs from getting lost we first introduce a set

of notions which are necessary to formulate Lemma 2.10, and then we describe
changes — necessary for generalization.

At first we define the notion of a witness function; K-fold iteration of a witness
function corresponds to the notion of X-closure from [A-B]. Definition of a witness
function for  (which is a finite approximation of the Skolem function for ) depends
on a distinguished sequence of quantifiers at the beginning of . To exhibit a distin-
guished sequence of quantifiers, we write ¥ e.g. in the form VZAyy (%, 3); this
denotes that the quantifiers VX 37 constitute the sequence in question. The sequence X
can be empty. :

2.1. DERINITION (14, +exp). We say that a unary function fwitha finite domain
is a witness Sunction for the formula V%35 (x, ) iff

(1) Yaedm(f)a<f(a),

() Yaedm(fV%<ady <f(a)p(%, §), where the formula Hﬁ <f(@o &, )
is an abbreviation for Vb[f(a) = b—IA§ < b (X, )]; if the sequence X is empty
then the quanuﬁer Vi< a does not appear.

Next we extend the notion of a witness function to the case of formulas to which
distinguished -formulas logically equivalent to them and having a distinguished
sequence of quantifiers are mapped. -

2.2. DEFINITION. Let us assume that ¥X,37, ¢, is the distinguished forniula
logically equivalent to ¥, and that V%,37, ¢, is the distinguished formula mapped
to ;. Then the distinguished formula mapped to W, v\, is defined us

\EAZIENA 35”2((/’1(551; V0V 0u(%2, J7'2))
where X3, j, are new variables substituted for ¥, and for y,.
2.3. FAcT (Id,+exp). f is a witness function for \ry v Vr, iff for each a € dm(f)

{a,f (@)} is a witness function for ¥, or is a witness function for .
The symbol Indste always denotes the formula:

Vx((p(x) —p(x+ 1)) .

2.4. DerNiTION. The distinguished formula logically ' equivalent to
IndstIPo(x, P) is

VxVy3yle(x, 9)—»ox+1, 5,1,

where J; are new variables substituted for y
[i3d
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The nextimportant notion is that of approximation to functions in the sense of
Friedman and Pudlak. We say that a finite set S = & is an approximation to
f: sN-Niff

Vae S\{maxS}¥Yx<a— 2(f(x) <a" vf(x)

where a® = min(S\{x: x<a}); in the orlgmal formulatjon [S] the quantifier Vx
is bounded by a. The above definition can be formulated on the ground of
T4, +exp.
Let  := A7 @(X. ), where ¢ € 4,.
2.5. DEFINITION ([4,+exp). We say that a finite set S % @ is an approximation
to r iff
Yae S\{maxS}V%

The relation of this notion to that of approximation to a function is made precise
by the following:

2.6. LEMMA, Let g, .., Yoy be Zi-formulas. Then for a certain 1€ N, which
depends only of the number of unbounded quantifiers in\y , ..., V.., the theory I4,+exp
proves: for every a there exists an f with a finite domain such that every approximation S
to f satisfying S <[l, al is also a common approximation t0 g, ..., Wy—q-

Proof. Let us assume that ;= 3¥,0(%,7,) for i =0,..,m—1, where

maxs),

<lgaf@5 <a*o (%, 5) 37 <maxSe (%, 7)] .

¢, € 4y. Let k; = length(%;) and 1=t (%;> denote a polynomial code of the sequence ;.
We take loeN such that JTd,-exp F <%) <(max(2, )N for i=0,..,m—1.
Now we work in IA,+exp. We take ¢ and define .
g(i,x) = minavis Z¢i((x)o, vy (=15 yi)

where (x); is the decoding function and if 713z < a R(z) then min R(z) = a, Next
we define s

F () = g(x—mlx/m], [x/m]) .

Let us put / = 2 . It is easy to check that for every y >, m(lg,»)° <y—2.
Assume that S'< [/, 4] is an approximation to f and 0 <i<m. We show that § is
an approximation to y,.

Let ye S\{maxS}. Take a sequence x,<lg,y. Hence <{x;><(lg,»)°. Let
x = m{xy+i. Hence x<m(lg,y)°<y—2 and thus f(x)=g(i, <x>)<y* or
g (i, <x;7) > max:S, and this means that 35, < y* ¢ (%,, §)) or 137, < max S¢ (%,, J)
since maxS<a. M

2mtiIpts

We now state a lemma which will allow us to better understand the notion of
approximation. This lemma will be used only in §3 as the main tool of combi-
natorial estimations. To make it precise we define H%(a) = a* for a e S\{max5},
and dmH® = S\{maxS}. Let o < &;. We say that a set S is a-large iff HS (mins) |,
where the index o refers to the a-fold iteration, in the sense of Hardy, of the partial
function H°.
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2.7. LemmA [R]. Let o< ey If S is wlarge then for every function f there
exists an a-large set Sy = S\{maxS}, which is an approximation to f. . .

Another (shorter) proof of this lemma appears in [K~R]. One can show that the
proof of 4.6 from [K-R], which implies our 2.7, is formalizable i in IZ,. One can use
the observation that

IZ F¥n, b “{B < w,: 3S(S <2, b] A Hj (minS) ¢)} is finite” .

Therefore, transfinite induction which was used in the proof can be replaced by
usual (finite) 4o-induction on the set of all < w} such that

3S(S s [2, b] A Hj (min$) |).

We use this observation in the discussion of the problem of formalization of com-
binatorial estimations at the end of the paper.

" Now we generalize the notion of approximation to the case of class X, and we
prove a lemma, which throws some light on the role played by approximations in the
construction of models.

If S is an approximation to a X;-formula y: 3y ¢ (X, ¥) where ¢ € 4,, thcn we

"denote the formula 35 < maxS¢ (%, ) by ¢°. It will be called an approximation

Jormula to . For convenience we assume that every S 5 @ is an approximation to
every ¢ €4, and that ¢ := ¢.

If € IT, then ~y wxll denote the formula of class Z, obtained from ¥ by
changing all unbounded universal quantlﬁers to existential quantifiers (and con-
versely) and by substituting the negatlon sign before the maximal subformu]a of
class 4,.

If |S| = n then 1,5 will denote the sth element of S, counting from the end.

2.8. DErINITION. We proceed by mductlon on n>1. Assume that the notion:
S is an approximation to ¢ and the formula ¢® have been defined for ¢ € %,. We
say (in I4,+exp) that S is an approximation to a ¢ € IT,, iff S is an appxommanon
to ~p. We put ¢° 1= "1(~0)"

Let o eZX,,4, @ = 3PP (X, ), where ¥ € II,. We say (in 14, +exp) that S is
an approximation to. ¢ iff |S|Zn+1 and

(1) S is an approximation to ¢,

) S\N{I,S, ..., [,S} is an approximation to AFY (X, 7).

We put ¢° =35 <l4 S V*(%, 3).

If M¥ PA" then X¥ will denote the class of all E -formulas with parameters
from M. If Ic, M and ¢ X}, we define: Ik @[a]<> N F ¢[a]. Starting from the
relation Ik @[a] for p € 2% we define Ik @[a) for ¢ € Z¥ by Tarski’s inductive
conditions for the model 1. "

2.9, LEMMA. Assume that Mk Id,+exp, (%) € X, and Mk “S is an approxi-
mation to ¢” AVae S\{maxS}2'<a*. It follows that for every cut 1<,M such
that InS is unbounded in I we have Tk @[d]< ME ¢°[a) for all ael.

Proof. Let us fix M F Id,+exp. We prove the lemima by induction on ne N.
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. For Z¢-formulas the lemma is obviously true. Assume that the lemma is true for
X ~-formulas. Let ¢ (x) € Z¥ and assume that M F “S'is an approximation to ¢”. Let
(%) :=3§py(X, §), where @, e IT}_;. Let Ic,M such that Sn/I is cofinal in I.

By Definition 2.8, S is also an approximation to ¢,. Hence, by the inductive
assumption and by the fact: ¢f := ~1(~,)°, we have

0] .- Va,bel IFqya,ble Mkg3d,bn].
Take @ € 1 and assume that Ik 37p.[@, ¥]. Then
A <1,S IF @old,b],

whence by (x) and the definition of § we have M F ¢°[a].

Now assume, contrary to the claim, that 36 < 1,8 Mk ¢°[a, b]. Since S 7 is
unbounded in 7, there exists o € S~ 7 such that 4 < ay. Let @ = g . Then < lg,a
and aeS\{,S,..,,S}. Since S\{/\S,..,1,_S} is an approximation to
37 ¢5(X, 7) in M, then M =35 <a* ¢3[a, 7]; it follows that Abe T Mk ol[a, b),
because of a* = ag * eI. By (x) we infer that Tk 37 ¢pla, 7). M

2.10. MAN LemMA. Let 1.2 1 and let @,(x, 9), .., ou(x, P) € Iy, 0 (x, Y) € X,
I I"[A5¢,, ...; 35, t Vx3ye(x, y) then there exists a k€ N such that for every
J< (1, m]ithe theory Idy+exp proves:

Jor all x,, f, S, if' S is an approximation to ¢y, ..., @, and x, < dmf, f+ <8~ 8,
Vacdmf a <f(a) and Va'e S\{maxS} 2°<a*, then:

[ is a witness function to anyrp,. Jor jeJ—

f* is a wimness function to W Indst37¢5(x, ) vIye(x,, »).
Jeltming

We will'in fact prove a result more general than Lemma-2,10. But we first show
how Theorem 1.3 can be reduced to a relativized version of Theorem 1.2 and then we
formuilate -and prove a generalization being a relativized version of 2.10.

Let.the symbol Ly, U {G} denote the language Ly, extended by the unary func-
tion constant G. We say that ¢ is of the class 4,(G) iff all quantifiers in ¢ are bounded
in the usual way or'by terms G*(x): k e N. We can speak of %,(G) and IT,(G) formulas.

2.11. DerFiNtTioN. We say that the formula (x, y) is conditionally absolute
(shortly c-absolute) iff for every Mk Id,+exp and I=,M the fact Yxel dye
€l Mk y(x,y) implies that  is absolute with respect to I and M.

We will show that formulas v, are absolute; but first we formulate:

2.12. THEOREM (a relativized version of 1.2). Let f (x, y) be c- absolute and assume
that s defines in' N a total function G such that ¥aG(a) =2°, Let n> 1. Assume that
‘Pl(x)’ v (Dm(x) €Z, (G) and {p(x: y) EZI(G)

C TR s 0nl+VX, p(G(x) = y <> i (%, Y) F VaTyo(x, y) then there exists
k € N .such -that the function

fla) = nr;in(N, G)E ¢(a, b)

is dominated by the function G, with o = 2™,
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A proof of this theorem is given in § 3. Now we only show how Theorem 1.3
can be reduced to 2.2.

To begin with, let r = 1. The formula v, of'the class 4, defining the exponcnnal
function. H! is obviously c-absolute. Hence, Theorem 2.2 for r = 1 and ¥ = ,
immediately yields the case r = 1 of Theorem 1.3.

Let r>2. We first show that ¢, is c-absolute. Assume that M F Id,+exp,
Ic,M and Yael3bel MFE\(a,b). By definition of , in §1 it follows that

Vu, xeI(ME3ye,-(u, x, ) Ay e IME ¢,_5(u, x, ).
Since ¢,.., is universal for II,_,-formulas, then for each ¢(x,y) €Z,_;, we have

VaeI(MF3yp(a,p)—AbeIMF ¢la, b)).

‘Hence I<j, M. Since the formula i, can be written in the 4o(Z,-,)-form, it

is absolute in the usual sense which finishes the proof.
Using 2.2 we now deduce the remaining cases of 1.3. Let 2<r<n and
@y r O € Zy. Let fbe a function provably total and X, in IZ, s +17 [@y, ..., @ul;
i.e. we have ¢(x, y) € Z, defining f such that IZ,_; +1"[@y, ..., 0n} F Yx3yo(x, ).
Since, as was observed in § 1, IX,_, = Id,+exp+Vadby,(a, b), then IZ,_,
is included in

IAg+exp+¥x, (G(x) = y < Y (x, ) 5
denote this theory by T,. Let the theory

I7[@15 s Oul+ VX, Y(G(X) = y < (x, y))

be denoted by T. Hence T, =T and T+ VxIyo(x, y).

Now we show that, in the theory T, formulas of the class X, are equivalent
to %, _,+1(G)-formulas. To see this, it is enough to show that %,_, < 4,(G) in Ty,
which in particular implies that the formula ¢ is Z,(G) in T. We show by induction
on p, 1<p<r—1, that EFQA,,(G) in T,. Let us take x(%) := 3, (%, §) € Xy,
where x4 € IT,. and assume that ¥ is 4¢(G) in To. By the definition of v, it follows
that (%) <> 37 < G(max(x, x))xl(x 7) in Ty.

Let us choose formulas ¢}, ..., ¢ € Z,-74+1(G) such that To b ¢, < ¢; for
i= 1, and a formula ¢'eZX,;(G) such that Tt o< ¢'. Hence
T=1I" [¢1,. oy L]+ Vx, Y(G(x) =y < Y, (x, ) and T+ VxIye'(x,y). Thus by
2.2 there exists k & o such that the function f (a) = mm(N G) k ¢'(a, b) is dominated

by G, with o= ¥ ¥ where G = {(a,b): NF 1//,(a b)} = H'. This finishes the

nyr 3
proof of 1,2, on account of 2.12. W
Now we can formulate a relativized form of Lemma 2.10. To this end, observe
that the notion of a witness function can be referred without changes to formulas
of the language Lp,(G). Without difficulties we can also relativize the notions of
approximation and an approximation formula o°.
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2.13 (a relativized form of the Main Lemma). Assume that y(x, y) € Lp, is
c-absolute. Let n>1 and let ' ‘

(Pl(xs.}_’)""; (pm(xLV)EHn—l(G)ﬁ (P(x, y)EAO(G)‘

I35y, 0, A7 @]+ V2, 9(Gx) = y = Y (x, »)) F YxAyo(x, y) then there

exists ke N such that for every J <1, m] the theory
o +exp+Vx, 3(G(x) = y < Y (x, »)
proves:

Jor all x,, S, f, if S is an approximation to @y, ..., ¢, and %, < dm f, f: S S8,
Vaedmfa<f(a) andVae S\{maxS} 2°, G(a) < a*, then the following implication
holds: X
if fis a witness function to )

Vx3A505: for jeJ
then f* is a witness function to
W IndstIFelte, §) vye(x, ¥) .
Jell,mINJ

Proof. It is enough to show that for every fixed J < [1, m] our claim is true.
Let us fix J < [1, m]. Assume, to the contrary, that a suitable k & N does not exist.
Hence, by compactness, there exists a model

(M, G) F Iy +exp+Vx, y(G(x) = y <Y (x, y))
and elements @, S, fe M such that a, < mins, f: <S—8,
VaeS\{maxS}2° G(a)<a™,

“and Yaedmf a<f(a) and (M, G)E “f is an approximation to Q15 ey O, and
. (l) (M, G) k “fis a witness function to Vx35¢] forjeJ” and Vk e ® (M, Gk
“f* is not a_witness function to W  Indst 3565 vAye(a, .
. Jelt, mIN\J
' It. also follows by compactness that we can have a model (M, G) satisfying (1)
in which, for some ko> w, (M, G) k “f* is not a witness function to

W Indst 3505 v: S
Jell,mNg ¥o3 vAye(as, y)” .

Hence by 2.3 there exists a € § such that f*(a) | and for each je [i, mNg

. (2) (M, G) k “{(a, f*(a))} is not a witness function to Indst3g 5" A « (a,/*(a))}
Is not a witness function to Ay ¢(ap, ¥)”. ‘

. Let I = {be M: 3ke 0 b<fXa)}. Theset { fHa): ke o} is unbounded in J afid
1rﬁ?1)ded in S. Hence SN[ is unbounded in I, Since /***(a) > ( F4D)* = G(f4a)),
Zf y , \Ialze see that I is closed under G and exponentiation, It follows by c-absoluteness
‘o that O -

) @G k14, +€Xp+-V5c,y(G(x) =y < y(x, ).
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Since § is an approximation to ¢y, ..., ¢, in M, we infer by an obvious:
relativized version of 2.9 that ‘ :

4 (I,Gr D) E Bl <> (M, )k ¢[B] for all bel and for i=1,..,m.

Now we show that (7, G) k Vx37¢,(x, ) for jeJ and that

(I,0) F 1ndstAgp, for je[l,mINJ and (I,G)FVyie(a,y).
This is enough to obtajn a contradiction, because then o
I DEI AV, ., 3P0,] and I, Gk TVxIye(x, )

and this, in view of (3), coptradicts our initial assumption,
Let jeJ. Take cel Hence there exists ke N such that c¢<f*a). By (1)
M E37< f*(a) ¢j(c, §), whence it follows by (4) that 3d < f**(a)(I, G) F p/(c, ).
Thus ’
(I, ® EVx37,(x, 7).

Let je[l, m\J. We show that (I, G) F "Indst3j¢,. By (2) we know that
{(a, f*(a))} is not a witness function for Indst35 ¢ in (M, G), According to Defini-
tion 2.4 this means that : v

(M, G) k 3x37 < alof(x, ) AVF <f*a) Tej(x+1,5,)].

Let us denote suitable x, ¥ by ¢, d. Then ¢, d € 1, since a € I. In particular we have:
(M, G) E ¢(c, d) and so (I, G) F ¢,(c, d). Moreover, Vd, e I(M, G) k ¢e+1,dy),
since T<f*(a), and thus (I, G)F V¥ Tlplc+1,d,), ie. (I, G)F Tlndstdye;.

Finally, because {(¢, f*°(@))} is not a witness function for 3y¢(ay, ¥) in (M, G).
and a €1, it follows that (1, G) F Vy ¢ (ag, y). This finishes the proof. M

§ 3. The combinatorial part. We have shown in the previous section that the proof”
of Theorem, 1.3 on functions provably total and X, can be reduced to the proof of"
Theorem 2.12, which is a relativized version of Theorem. 1.2 on functions provably:
total and Z,. o

All syntactical information which we need to prove Theorem 2.12 is contained
in Lemma 2.13. What we have to do now is of character of purely combinatorial
considerations. ‘

At first we derive Theorem 1.2 (which is not just a special case of 2.12) using:
Theorem, 1.3. Theorem 1.3 for r = 1 gives us an estimation of the rapidity of growth
of functions which are provably total and Zy in finite fragments of the theory 173, by
means of the hierarchy H basing on the function H*(x) = 2% Obviously it is enough
to show that H can be bounded by a function from the usual Hardy hierarchy in
such a way that we obtain the estimate from Theorem 1.2.

The following lemma says that this is possible:

3.1. LemMA. (8) H' with the index w™k is dominated by H with the index:
wm-d- 2, ka
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. (b) For m,n>1 the function H' with the index w%"* is dominated by H with
the index @@ ®+D),

Proof. (a) Let > f mean that the smallest exponent in the Cantor representa-
tion of o is greater or equal to the biggest exponent for f. We assume that 0> «.
The following property is fundamental for the hierarchy G,: for every G: N—N,
if a> B, then G4y = G, o Gy. The proof is by induction on B and Is basing on the
following property: if > § and f e Lim then {o+ f}(x) = a+{8}(x) (cf. Lemma 3
[W1). Hence, for every function G we have Gym., = (G,m)*; consequently, for the
proof of assertion (a) it is enough to show that Hl. is dominated by Hyms+a. We
show by induction on &< e, a more general sublemma:

For x>0 and « <&, Hu(%) € H v a(). ) .

It is easy to check that 2 < H,.(x) for x> 0. Hence the sublemma is true
for « = 0. We consider the inductive step «—a-+1. Let x> 0. Since {w’*'}(x)
= o’ x for each B < g, then

Hios(s) = (HY0) < (Hoesa) () = Hma().

Assume now that .the sublemma is true for ordinals <, where o € Lim. Let
x> 0. Since {0} (x) = o™ fora e Lim, then Hau(x) = Hiwiom(%) < Hytrom+2(%),
Before going further let us mention a fact implicitly contained in [L-W], which can
be found in an explicit form in [K-S], see Th. 2.4.

' Let f=>,7 mean that there exists a finite sequence f, ..., f; such that f, = B,
Be=1y and Biyy = {B}(n) or Bipy = B;—1 when B¢ Lim for i=0,.., k-1
Then fact is the following: :

For every n > x and for every f < &, f=>,{B}(x). In view of this fact we easily
infer that for n > x, Hywme(n) < Hye(n) (cf. Lemma 2(ii) [W]). Reasoning as in
in the proof of the nonlimit step we show that for each n > x,

H a0 +2(n) < Hyur2(n) .
Substitution # = x finishes :the proof of point (a).

(b) To finish the proof of assertion (b) it is enough to show that for all m, n3> 1,
x 22 we have :

oM k.
™ (ke 1 (O g )+ 2
™ E D o " .

According to the fact quoted above, the conjunction f=>,9 and y<x implies
B=>xy; and since f=>y implies =, ", it is enough to show that for all m, n3> 1

@ D, @k,
We leave to the reader a verification of this fact.

The application of Lemma 2.13 to the proof of Theorem 2.12 requires an answer
to the question how large the set S ought to be, in order that for a fixed sequence
of formulas ¢y, ..., ¢, it should be possible to find a common u-large approxima-
tion §; €S5. An answer to this question is contained in Lemma 3.3.
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3.2. Remark. We conclude immediately from Lemmas 2.6, 2.7 that for every
SEQUENCE @y, .., @y Of Z;-formulas there exists a natural number 7, ,, which
depends on the number p of quantifiersin ¢, ..., ¢,,and on m, such that (IZ, proves
that) for every o < g, and for every w”-large set S with minS>1, ,, there exists
an o-large set §; = S\{maxS} which is a common approximation to the formulas

s oo O
o The provability in 12, follows from provability of 2.7 in IZ;. A similar con-
clusion is true for II,-formulas in view of the definition of an approximation.

3.3. LemMMA. For every sequence ¢y, ..., ¢, &Z,(I1), where k> 1 there exists
an l e w such that (even IX, proves that) for every o < ¢, and for every wi-large set S
with minS = I there exists an o-large set Sy = S which is a common approximation to
D120 Py

Proof. We can assume that every formula among @y, .., @, has exactly k
maximal blocks of uniform and unbounded quantifiers, shortly, k blocks of u.q.
" Let @11 s uy denote formulas which we obtain from ¢y, ..., Pn by deleting
the initial k— i blocks of u.q. respectively. Hence ¢y, ..., @i € 2,08 @145 0cs P € 114
Let p; denote the number of quantifiers appearing in the jth blocks in formulas
@1 oy O Take 13 108%(L,, my oes Ly, ) Where I ,, is the number from 3.2.

We show by induction on i = 1, ..., k that for every i there exists S, S5 which
is an approximation to @y, ..., @ such that SN{Z Sy, oo, ficy S;} is wi-p-large.

The initial step is true by 3.2. Assume that our inductive hypothesis is true for
i<k, Take S, as in the inductive assumption. Then for every j = 1, ..., m we place
the full first block of u.q. from ¢;, ;i before the formula cpi‘,. Let us denote the
resulting formulas by %, q+1; s @, 141 . ‘

Let S/ 1S SN{ Sty ooy li=1 81, [iSi} be an wf_i4qy-large set which is a com- -
Mon approximation t0 @, 4 1s > @i, 1413 it eXists by 3.2. By Definition 2.8 of an
approximation the set Sy = Siv1U {1 S, ., 1S} is an approximation to for-
mUlas @y, y41s s P, 141, Which proves the inductive step. o

For i = k our inductive thesis assert the existence of a set S, = S which is a com-
mon approximation t0 @y, ..., @, such that SNy S, ..., IS} is a-large. Ob-
viously S is also «-large, and this finishes the proof.

Now we can pass to the announced proof of Theorem 2.12. there are given
formulas 37 p(x, ), » IF@ulx, §) € IT,-,(G) and a c-absolute formula ¥ (x, )‘J)
which defines in N & function G such that YaG(a) >2° (in the simplest case ¥ is
a Ag-formula defining the exponential function).

Assume that .

I"[ai"(l’n sy 37¢m]+vx,Y[G(x) = yﬁlﬂ(x, y)] F any(p(x, y) .

Let ke o be the appropriate number from Lemma 3.3. Denote by lo'z} number
greater than the number ! for @y, > ¢ from 3.3, such that the condition 'c> Iy
implies 2m*Yme < 2° — this inequality will be uged in the proof of Claim 1.
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Let
h(x) = min(N, OEo(x,).

We show that for every a > Iy, h(d) <Gy(a), where f = "¢ 1. We shall woik
in the model (N, G). Let us emphasize that our reasoning does not change if we
replace the model (N, G) by a model (M, G) for

IAy+exp+V¥x(G(x) = y =P (x, ) +VxG,,‘(x) v,

in which (for n> 1) the hypothesis of Lemma 3.3 is true. We use this observation
in a further refinement of Theorem 1.3.

Now take an a € N such that @ 2 [, and let b = G(a). Assume, contrary to the
assertion of our theorem, that

Yy<b (N, B Eo(a,y).
Let
S, = {G"a: ne NA G'a) < b} .
It is easy to check that H,f“(a) =
Vece So\{maxsS;} G(c) <ct
By Lemma 3.3 there exists a o™ (k+1)-large set S < S, which i is an approxi-
mation to ¢, ..., ¢,. Obviously

Vee S\{maxS}G(c) < c*

Gyla). Hence the set So is pB-large and

By the choice of k the claim of Lemma 2.13 concerning provability in

IAo+exp+Vx,y(G(X) =y=y(x,)
is satisfied in (N, G). :

In the sequel we will repeteadly refer 10 this conclusion Wlth x=aq and the
set S as above. In these references we recall 2.13.

We will need some counterpart of the Grzegorczyk hierarchy for functions from S
to S. Let F§ = HS. Then we define F5 T 1 ()= (F(x) for x € S. We have the equality
Fj = H;. Since the set S.is @™ (k+1)-large, it follows that (FS)** {(minS) ¢ .

The fast iteration which appears in the definition of the Gr7cgoruyk hierarchy
is strictly connected with passing from a witness function for Indstdy (/)i to the witness
function for Vx37 ¢f. Indeed, if g is a witness function for Indst(@7¢) and ¢ 50, 0)
then obviously ¢°(z) is the witness function for Vx37¢f. Without logs of generality
we may assume that ¢7(0, 0). Indeed; let y,(x, 7) denote the natural normal form
for the formula x = 0v@(x+1,¥). Then I~ [Ely(p,] = I"[Eyy,] and 5, 0).

Since F3 is a witness function for ‘v’xEl Fof:ie] = @, then by 2.3 (F)* is
a witness. function for

W Indst(Ely(m) v':'ly(p(a, ».
tel1,m]

By our assumption (T13y < bp(a, y)), the last component of the alternative can be
omitted.
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Cra 1. For every j =1, ..., m the function FJ F5 is a witness function for

W A\ Vxdyel, where Pj[l m] denotes the set of all j element subsets of
JaPi[1,m] iet

[1, m].
Let us leave 2 proof of this rather intuitive Claim 1 to a later stage. First we
show how the contradiction claimed above follows from Claim 1.

By Claim 1 for j = m we infer that F5 o F3 is a common witness function for
formulas Vx35¢f, i=1,..,m By 2.13 (FScF5* is a witness function for
dy¢(a, ¥). To obtain a contradiction it is enough to show that (F3 o F5){(minS) {.
Since Fjo FS<F5oFy and (FOXo)<Fd) for ek then (FS o F3)mins)
< (FSY**1(minS) | and the contradiction follows.

In the proof of Claim 1 we use the following:

CLam 2, If f: = S— S is a witness function for W Indst(ay o andVeedmf
c<f(c), then f™(c) is a witness function for W VxA5 ¢S,
ieJ

For the proof of Claim 2slet take a ¢ & .S such that f™(c) |. By the definition
of a witness function for alternative (cf. Def. 2.2), there exists for every d<mc
an ieJ such that {(f*(c), /***(c))} is a witness function for Indst (Ap¢}). It follows
by the pigeonhole principle that there exists an i, € J for which we have ¢ elements
as above — denote them by d, <d, <...<d,.,. Hence

g = {(c,.S(), (S, L)) s (F*(0). S}

is a witneés function for Ihdst(ﬂyq)i,,) And thus g°(c) is a. witness funcmon for
Vx3y i,
Since g°(¢) = f™°(c), Claim 2 is proved

We now prove Claim 1. Since (F3)*is a witness function for W Indst3y o}
ie[i,m]

then (F3)™(c) is a witness function for W Vx3§¢e}. By the choice of /, we have
ie[1,m]

2° > kme for c € S. Since FS(c) = 2%, our witness function is < (F3)(c) < FS o F3(0),
which proves that F5o F5 is the function for j= 1 with. properties as claimed,

Now we perform. the inductive step. We prove it under the assumption that
g = Ff o F§ is the function for a j as in Claim 1, where 1 <j<m. Take ¢ € S such

that F§, o F§(e) y. Let golc) = ])kmc+l By the choice of I, 2g0(c) < F5(c)

and hence g#©(c) < (F})**)(c) . By the inductive assumption, for every d<go(c)
there ex1sts a JePy[1, m] such that {(g%c), ¢*" "(¢))} is a witness function for
M Vx35 el By the pxgeonhole principle we find a J, € P;[1, m] and we find a func-

iet
tion f,: S5~ 8 such that ¢ e dmf,, f"(c) <g%(c) and f; is a witness function
for AN VoAyel. Let J' = [1, mNJ.
ieJo
By 2.13 f¥i is a witness function for W Indst3y ¢f. Hence by Claim 2 the func-
ielJ’
tion fi™(c) is a w1i.ness f‘unctwn for W Vx37¢f. In particular, there is j, € J' such

iel’
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§ . - . S,
that for each x < ¢ there éxists a § <f™(c) with ¢f(x,3). Since £1"(c) < (F5)"€)(c),

it follows that the function {(c, F}11 0 F3(c))} is a witness function féri /)(\“ }Vxﬂf of.
eJoulio

This finishes the proof of Claim 1 and the proof of Theorem 2.12. M

We have remarked in the proof of Theorem 2.12 that the above proof can be
carried over in Ido+exp+Vx, y(G(x) = y < Y (x, p))+ VxGy(x)} if the assertion
of 3.3 is (in the case n> 1) provable in this theory. In fact, this is true because the
assertion of Lemma 3.3 is provable in 12 and as a II;-sentence is also provable in
the formal theory of the Grzegorczyk hierarchy: Id,+exp+{VxH .(x)}: pe o}
which for n>1, is a subtheory of the theory Jd,-+exp-+ VxG,(x).

The sentence Va > I h(a) < Gy4(a), which we have proved, can be reformulated
as follows:

Yx2LIy<Gx)o(x, ).

Hence the claim of Theorem 2.12 can be strengthened to the following form:
there exist &, /e « such that for § = 0@ ;*

Iy +exp+Vix, y(G(x) = y < Y (x, »))+VxGy(x) F
, Vx213y<Gyx)elx, y).

Hence we obtain the following theorein, in the same way as we have obtained 1.3
from 2.12:

3.4. THEOREM. Let 1<r<n and let ¢y, ..., o, €Z,. Then for every formula
¢ € Il,_, the following implication is true: : :
IE,_ I [py, ., @) F VXY o(x, ) then there exist k, le o such that for
B = ik :
15, +VxHj(x) ¥ F Vx> 13y < Hi(x)o(x, ) .

Note added in proof. If the basic theory of I-[gy, ..., @m], i.e. Idg-+exp is replaced by IZ,.,
then the appropriate reformulation of Theorem 3.4 can also be proved. The proof rcquires some
minor changes of the proof of 1.2. In Lcmma 2.13 we change the basic theory and we add the
assumption that S is an approximation for a formula universal for Ly (G)-formulas,

Similar results have been obtained indepcndently by Richard Kaye in his thesis, University of
Manchester 1987. He uses an almost purely model-theoretic method. The method of this paper is
different, it relies on strict separation of model theory and combinatorics, which provides some
special information.
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