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AP} X B(y, Pps1(») = U and every map 9I'**— B(y, p(y)) can be extended to
a map I'"*>B(y,p,(), ye¥, i=0,..,n Put V= UY {} xB(, po())
ye

and Fy(x) = B(f(x),pi(f(x))), xe X, i=0,..,n+1,and use Theorem (L.1).
The next fact is a substitute of uniform local contractibility for LC" spaces.
(3.2) THEOREM. Let Y be a metrizable LC" space. Then for every nbhdUc¥x Y

of the diagonal there is a nbhd V < U of the diagonal such that, whenever X is metri-

zable, A closed in X, dim(X-4)<n, f,g: X—Y are continuous, f1A = g|Ad and

(f ), 9(x) eV for every xe X, then f~g 1el A by a homotopy {h} such that

(f), h(x)) € U for every xe X and tel. ‘

Proof. Let V be taken from thé previous theorem. Define F: X xI-—Y and

G: AxTUuXx{0,1}=»Y by F(x,2)=f(x), G(a,1)=f(a), G(x,0) =s(x),

G(x,1)=g(x), xe X, ae A, te I From 3.1 it follows that G can be extended to

a homotopy h: XxI-Y.
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When a sabset of E” locally lies on a sphere
by

L. D. Loveland (Logan, UT)

Abstract. Let X be a continuum in E", and let G be a collection of pairwise congruent double
cones whose cone angles measure 20 and whose interiors miss X. If each point of X is the vertex
of aconein G, n = 2, and 20 > 60°, then X lies on a 1-sphere because it must be an arc or a simple
closed curve. Conditions on 26 and X sufficient to insure that X locally lies on a 2-sphere ate also
given for the case n = 3.

Consider a subset X of Euclidean n-space E” such that X is touched from its
complement at each of its points by an element of some geometric farmily of solids.
What conditions on the touching objects are sufficient to imply that X locally lies
on an (n—1)-sphere? For example, for n = 3 X will locally lic on a 2-sphere if it
can be touched by congruent double tangent balls [L,]; that is, if there exists § > 0O
such that for each p € X there exist two 3-balls B and B’, each with radius J, such
that {p} = BnB and XnInt(BuB’) = @. In this paper related theorems are
proven where the double balls are replaced by double cones. For » = 2 the double
cones become double triangles and a complete analysis is given. The more difficult
problems’ in E® are only partially resolved.

Generalizations of the congruent double tangent ball result [L,] mentioned
above could take several directions. However, the weaker hypothesis that there be
just congruent single touching balls will not allow the conclusion that X locally lies
on g 2-sphere. An example is given in [L,]. Clear also is the fact that the uniform radii
(pairwise congruence) of the double balls is essential to the theorem. Thus it appears
that in a generalization one should retain the dual nature of the touching objects
while changing their geometry. This leads one to consider double cones in place of
the double tangent balls. The needed uniform size on the touching balls could be
captured by requiring that the double cones be pairwise congruent. However a ball
has the property that given a point where it touches X there is a unique ball of a given
size tangent to the first and not intersecting its interior. This property is partially
captured in a double cone by insisting that its two nappes have coincident axes.
These considerations lead to the definitions below for double cones in E”".

A single cone in E" (n> 1) is obtained by coning over a standard (n—1)-ball B -
from a point v where the line (axis) through v and the center o of B is orthogonal to
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the hyperplane containing B. A double cone in E" is the union of two single cones
with the same vertex v about which it'is symmetric. The cone height 2h is twice the
distance between v and o, and the cone angle 20 is twice the angle between the axis
and a lateral edge (a line from v through a point of Bd B). In an abuse of notation 28 is
most often used instead for the degree measure of this angle and sometimes for its
radian measure. The context makes it clear. A cone is degenerate if 20 = 0°. In E?

) 1
a double cone with cone angle 2 |:Tan"1 -] can also be described as a set isometric
a i

to {(x, 7, 2)| (ax)*+(ay)*—2z*<0,a>0,and —h < z < k}. Here 2k is the cone height.
In"E? a double cone is the union of two congruent solid triangles intersecting only
at a vertex and symmetric about this vertex. The two nappes of a double cone C
in E" are the closures of the two components of C— {v} where v is the vertex of C.

A subset X of E" is touched by congruent double cones if there exist a positive
number 2k, a nonnegative number 26, and a family F of pairwise congruent double
cones of height 24 and cone angle 26 such that, for each p of X, there is acone C,
in F whose vertex is p such that XnInt C,, = @. A continuum is a compact, connected
metric space containing more than one point.

Even with all the restrictions imposed on the double cones to capture what might
be viewed as the essential properties of the double tangent balls, it is easy to see that
they fail to produce an analogue to Theorem 3.1 of {L,]. An easy example is to take
20 = 0 and note that every subset of E" can be touched by congruent double cones
that degenerate to straight line segments. Other examples of continua in E* and E?
that do not locally lie on codimension one spheres yet are touched by congruent
double cones with 20 > 0° are given in Sections 2 and 3. To make the cones more
like a ball, one increases the cone angle. The extreme case where 26 = 0° was men-
tioned above. In the opposite direction, the limiting case where 26 = 180°, the double
cones converge to objects containing double cubes I" sharing a face. Any object
touched by these “cones” would locally lie on an (n—1)-sphere. Thus the problem
of determining when X locally lies on an (n—1)-sphere becomes one focusing on
the size of the cone angle 20.

The critical cone angle for a continuum X in E? is proven to be 60°; in fact,
a continuum touched by double cones (triangles) with 20 > 60° must either be an
arc or a simple closed curve (see Section 2). The critical cone angle for continua in E3
remains to be found, but partial results are given in Section 3.

A subset X of E" is said to locally lie on an (n—1)-sphere at a point pe X if
there exist a neighborhood N of p in E" and an (n—1)-sphere £ such that Nn X
lies in 2. If this condition holds for each p in X, then X is said to locally lie on an
(n—1)-sphere. To show that X locally lies on an (n~1)-sphere it suffices to show
that X locally lies in the interior of an (n—1)-cell because open (n—1)-cells must
locally lie on (n—1)-spheres. For n = 2 this is easy to see, and for z = 3 it follows

" from Theorem 5.of [B,]. That the result also holds for n > 3 was communicated to
me by Ric Ancel. Ancel’s theorem, which generalizes Theorem 5B.10 of [D], was
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proved using [AC] for n> 4 and [A] for n = 4. Since this paper focuses mostly on
n =2 and n = 3 there is no need to detail Ancel’'s proof here.

The fact that open (n—1)-cells locally lie on (r—1)-spheres provides a con-
venient way to identify the two sides of (n—1)-cells. If J is an (n—1)-manifold in E"
and C is a double cone touching J at a point p € J, then C is said to pierce J at p if
there exist an (n—1)-cell D'in J and an (n—1)-sphere X containing D such that
pelIntD and the axis of C pierces X at p.

A collection F of cones is said to be closed if F contains the limiting set of each
convergent séquence of cones in F. If F is a collection of congruent cones, each
touching a compact set in E*, then each sequence from F contains a convergent sub-
sequence [HY, Theorem 2-102], and, because the cones in F are congruent, the
limiting set of the convergent subsequence is also congruent to each element in F.
If, in addition, F is closed, then this limiting cone will itself belong to F.

The history of double ball and double cone embeddings goes back to Bing [B,]
and Fort [F] who asked questions about the tameness of 2-spheres in E* when
they were touched by balls and cones. Griffith [G], Bothe [B,], Loveland [L,], [L4],
Cannon [C], Daverman and Loveland [DL,], [DL,], Loveland and Wright [LW],
and Burgess and Loveland [BL), for example, all gave conditions in terms of touching
balls or cones (single or double, sometimes pairwise congruent) under which an
(n—1)-sphere X in E" (usually #n = 3) would be flat. Summaries of some of this
history can be found in [Ls]. This paper does not depend on any in the references
because its examples and proofs are quite elementary and because the flatness of
the continuum X is not of concern except briefly in Section 4.

1. Sets in E” touched by cones. Let X be a compact subset of E" that can be
touched by a nondegenerate double cone at each of its points, and let W be the set
of all points of X where X does not locally lie on an (z—1)-sphere in E". From
Theorem 1.2 it follows that W cannot contain an (n— 1)-cell. Notice that the double
cones in the hypothesis of Theorem 1.2 are not required to be pairwise congruent
nor is there a common height or cone angle, but each double cone has a cone angle
with positive measure. Lemma 1.1 is used in the proof of Theorem 1.2 and is referred
to several times in the sequel.

LemMA 1.1. If F is a closed collection of nondegenerate, congruent double cones,
X is a subset of E" that contains an (n—1)-cell J, and X can be touched by cones in F
at each point of J, then J is pierced by a cone in F at each point of IntJ.

Proof. Let P be the set of all points p in J such that J is pierced at p by some
cone in F, The strategy is to prove that P is dense in IntJ, because then the conclusion
follows from the hypothesis that Fis a closed collection of congruent double cones.
By way of contradiction, suppose there &xists an (n—1)-cell Dy in IntJ such that
D,AP =@. To deal with the definition of a cone piercing Dy, let X be an
(n—1)-sphere and D, an (n—1)-cell in D, such that D; = 2. For n = 3 the existence
of £ and D, follows Theorem 5 of [B,], and Ancel has generalized Bing’s theorem.
to n> 3 (see the comments in the introduction). Choose an (n—1)-cell D such that
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Dy cIntD,, and, for notational convenience, uniformly decrease the height of all
cones in F to length less than d(X—IntD,, D,;) without changing cone angles or
cone axes. Let this collection of shortened, congruent cones be F’, let p € Int.D,,
and let C, be a cone in F' touching J at p. Since D3NP = @, C, does not pierce D,
at p, which, because of the height of C,, means ZnIntC, = @. Let I = {pe D,
there exists a cone C, in F' touching J at p such that IntC, = IntZ}, and let
E = D;—1I. Since D;nP = &, it follows that for each p € E there exists a cone
.C, € F' such that IntC, < ExtZ. Because F, and hence F, is closed and the cones
are congruent, it is clear that I is closed. Therefore E is an open subset of D.

Suppose E # @, and let D, be an (n—1)-cell in D3N E. Let x e Int.D,, and
choose a point g of IntZ such that

d(g, x)<d(q, Z—ImD,) .

Then the ball B, centered at g with radius d{g, x) intersects X only in Int D,. Shrink
the radius of B, to obtain a ball B centered at ¢ such that IntB < IntX and BdB
contains a point y of D,. Since y € E there exists a cone C, in F’ touching J at y
such that Int Cy = ExtZ. Then the axis of C, is tangent to B at y. However the cone C,
is nondegenerate, and (IntC,)nIntB = &. This contradiction shows that E = @.

Since E = @, I = D, This time choose a point ¢ in ExtX and a ball B with
center at g such that IntB = ExtX and there is a point y in (BdB) n(Int D;), as in
the previous paragraph. There must exist a nondegenerate cone C, in F” touching D,
at y such that Int C, « IntZ while B touches X from ExtZX, so the same contradiction
tesults. This means D; niust intersect P, so P is dense in IntJ.

THEOREM 1.2. If the compact subset X of E" can be touched at each of its points
by a nondegenerate double cone, then the set W of points at which X fails to locally
lie on an (n—1)-sphere contains no (n—1)-cell.

Proof. Suppose the closed set W contains an (n— 1)-cell D, and, for each integer
i>1, let W; be the sct of all points x of .D such that there exists a double cone C,
touching X at x with cone angle n/i radians and height 1/i. The uniform size of these
cones insures that each W, is closed. Because the hypothesized cones are nondege-
nerate W is the union of the compact sets W,. A Baire category theorem yields the
existence of an (n—1)-cell Uin D and an integer N such that U < Wy. Let F be the
collection of all double cones of height 1/N and cone angle n/N that touch X at
a point of U, let S be a unit sphere at the origin, and let Q be a countable set of
points {ry, r,, ...} which is dense in S. Each r; is thought of as a direction or line
through the origin. Because F is a closed collection of cones over the compact set U,
the set of cone axes of cones in F can be thought of as a compact subset of S. Adjust
each cone in the family F to form a new family F’ of congruent double .cones
touching X at each point of U so that each cone in F’ has its axis paralle] to some
direction r;. In accomplishing this adjustment the cone angles might have to be
upiformly reduced in size to some constant radian measure less than n/N, but, by
adding limiting sets of convergent sequences of cones in F’ to F' if necessary, the
collection F’ can be constructed to also be a closed collection.

icm°®

When a subset of E" locally lies on a sphere 105

Let D; be the set of all points of U for which there is a touching cone in F’
-]

with axis in the direction r;. Again U = {] D; and each D, is closed, so a Baire
1

theorem yields an (n—1)-cell U’ lying in U and an integer M such that U’ = D,,.
This means X can be touched at each point of U’ by a cone from a pairwise congruent,
closed family F”’ of nondegenerate double cones whose axes are parallel. From
Lemma 1.1 it may be assumed that each cone in F” intersects both sides of U,
so that the union of the cones of F" clearly contains an open n-cell ¥ which inter-
sects U’. Because the interiors of the cones in "' do not intersect X, ¥~ X must
lie in the (n—1)-cell U’. However, because U’ e W, this contradicts the fact that X
cannot locally lie on an (n—1)-sphere at any point of U".

The hypothesis that there be double touching cones rather than just single cones
is essential in Theorem 1.2. It is easy. to construct an example of a continuum X

~in E? that can be touched by single cones such that X contains an arc of points.-

where X does not locally lie on a 1-sphere.

2. Continua in E* touched by comes. A friod T is a set homeomorphic to
[(=1,0), (1, 01U [(0, 0), (0, )] in the xy-coordinate plane. Its vertex v is the image
of the origin, and the closures of the images of the three components of T'—{p}
are called its Jegs. The most obvious examples of continua that can be touched with
congruent double cones but do not locally lie on a 1-manifold are certain embeddings
of the triod in E2. .

ExampLE 2.1. Let T be the troid in E* with vertex v at (0, 0) whose legs are
the three straight line segments [v, (0, D], [v, (—+/3/2, —1/2], and [v, (/3/2, — 1/2)].
Each pair of legs forms an angle of 120°. It is easy to see that 7 can be touched by
congruent double cones having cone angles as large as 60°,

Example 2.1 is the best possible example in the sense thapany continuum touch-
ed by congruent double cones with cone angles larger than 60° must be a 1-mani-
fold, as stated in Theorem 2.4. This section is devoted to proving this result and some
other theorems about the nature of the non-manifold set in a continuum having
double touching cones.

LemMA 2.2. If a continuum X in E? is touched by congruent nondegenerate
double cones, then X is locally connected.

Proof. A continuum that is not locally connected must contain a continuum
of convergence [W, p. 209] which can be shown to contradict the hypothesis.

LemmA 2.3. If T is a triod in E* having vertex vy, h>0, 0> 0, G is the set of all
double cones of height 2h and'cone angle 20 whose interiors fail to intersect T, and for
each point x of T there exists a cone in G with vertex x, then G contains three cones
with vertex v, whose interiors are pairwise disjoint.

Proof. Let D be a round disk centered a v, with radius k. By reducing the
radius of D or shortening the legs Ly, L,, and L; of T one may assume T< D and
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that D—T is the union of three pairwise disjoint open disks Dy,, D;s, and D,y
where the two subscripts refer to the subscripts of the two legs L; and L; of T lying
in BdD;;.

Let {v;} be a sequence of points of L, converging to v, such that, for each i,
there exists a conme in G touching T at v; and intersecting both sides of L, (see
Lemma 1.1). Passing to subsequences if necessary, assume there is a sequence {C;}
of cones of G converging to a cone Cj such that v, is the vertex of Cj and v, is the
vertex of C; for i = 1, 2, ... For each i the nappes of C; fail to intersect D,,, so the
same is true for Cj. In a simjlar manner, using legs L, and L,, one obtains cones Cj
and Cj in G with vertices at v, such that C; and C; fail to intersect D, 5 and Dy,
respectively. From this it is not difficult to see that the interiors of the cones Cy, C;
and Cj are disjoint.

THEOREM 2.4. If X is a continuum in E*, h> 0, G is the collection of all double
cones of height 2k and cone angle greater than 60° whose interiors fail to intersect X,
and each point of X is the vertex of a cone in G, then X is either an arc or a simple
closed curve.

Proof. By Lemma 2.2, X is locally connected. This means X is either an arc,
a simple closed curve, or X contains a triod [M]. Suppose X contains a triod T’
with vertex v, and conclude from Lemma 2.3 that there exist three cones of G with
disjoint interiors, all with vertex v. The cones of G are double cones and each nappe
has an angle greater than 60°. But six times 60° is 360°, the most allowed at v.

Theorem 2.4 identifies the critical cone angle as 60° for continua in E2. It pro-
vides a nice model to attempt duplicating in higher dimensional Euclidean spaces.
‘Those wishing to see partial analogues in E® should skip to Section 3.

Suppose X is a continuum in EZ that can be touched by congruent double cones
of height 24 and cone angle 26. If 20 > 60°, the set W of points where X fails to locally
lie on a 1-sphere is enipty (Theorem 2.4). If 20 = 0°, W could be 2-dimensional as
when X is a 2-cell. These are the two extremes. What is the nature of W when
0 <20 < 60°? Theorem 1.2 shows W canhot contain a 1-cell as long as the touching
double cones are nondegenerate. The next example shows that W can be an infinite
set in the case where X is touched by double cones with the same height and with
positive cone angles.

ExampLE 2.5. In Figure 1 a continuum X is pictured that contains an infinite
sequence {p;} of nonmanifold points, yet X can be touched by nondegenerate double
cones of uniform height. The continuum X is the union of chords of circle S from
Pi-y 10.p;, together with the point p to which {p,} converges, and infinitely many
straight line segments S;, one at each p,, sticking toward Ext.S. Some of the touching
double cones are pictured. Notice that, as in the proof of Lemma 2.3, there must
exist for each  a cone C; that locally separates S; from the two chords meeting at p;.
This sequence {C;} of cones can be chosen to converge to a line segment tangent to §
at p. The cone C; is constructed with small '‘enough cone angle to allow Si-y to
exist in its complement.
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Fig. 1

Of course if the cone angles are bounded away from O this is the same as having
all the cone angles positive and pairwise congruent. With this condition on 26 and
with uniform height, Theorem 2.7 says that W must be finite.

LEMMA 2.6. Let T be a triod in E* and G be a set of double cones satisfying all the
hypotheses of Lemma 2.3. If L, R, and F are the legs of T, then there exists a cone C
in G with vertex v, such that the cone axis of C separates F—{vo} from LuR—{vo}
in B

Proof. The proof of Lemma 2.3 applies here as well.

THEOREM 2.7. If6>0,h>0, and X is a continuum in E* that is touched by
congruent double cones of height 2h and cone angle 20, then X contains a finite set W
such that X locally lies on a 1-sphere at each point of X—W.

Proof. Let G be the collection of all double cones of height 24 and cone angle 28
whose interiors miss X and whose vertices lie in X, and let W be the set of all points
of X where X fails to locally lie on a 1-sphere. Suppose W is infinite, and let p be
a limit point of the compact set W. Let V be an open set containing p such that
diam ¥V < h and ¥ X is arcwise connected (see Lemma 2.2 and [W, 31.2)), let {p;}
be a sequence of points in ¥ W converging to p, and let 4 be an arc in ¥nX
with one endpoint p. The next paragraph shows that 4 may be chosen to contain
infinitely many p,.

For each i let C, be a double cone in G having p, as its vertex. By taking sub-
sequences if necessary it may be assumed that {C;} converges to a cone C in G ha-
ving p as its vertex [HY, p. 102]. By again taking subsequences if necessary and
possibly renaming it may be assumed that all the points p; lie in the same component
of E*— {axis of C}. Now choose 4 in ¥'n X with endpoints p and p;. Uniformly shrink
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the cone angles slightly so that {C;} still converges 10 C, CnX = {p}, and
CinX = {pj}. Since diamV <h, C;nX = {p;}, Cn X = {p}, and {C;} converges
to C there must exist infinitely many integers & such that C, separates p, from p in V.
For each such k, p, must belong to 4 since C,n X = {p,}. For the remainder of the
proof assume the sequence {p;} has been renamed so that 4 contains every p,.

Since p; € Wand V' X is locally arcwise connected, there must exist, for each 7, -

atriod T, in ¥'n X with vertex ¢; and with legs L, R;, and F; such'that L, UR; < 4,
F;n4 = {g;}, and T, lies in a 1/i-neighborhood of p,. From Lemma. 2.6 there exists
for each i, a.cone C(Fy) in G with vertex g, such that the cone axis Z ; of C(F)) sepa-
rates F;—{g;} from L,uR;—{g;} in V. By passing to subsequences if necessary, it

may be assumed that {C(F))} converges to a cone C(F) which must also lie in G. *

Of course C(F) has p as its vertex, and the lines {Z,} converge to the cone axis of
C(F). Since p does not belong to any Z;, there is an integer m such that Z,, separates p
from ¢,. Since Z,, also separates L, U R,,—{q,,} from F,,—{g,,} in E2and L,,U R, = 4,
it follows that A does not cross Z,, at q,,. But Z,n4 = {g,,} and the arc 4 contains
points p and g4 on opposite sides of Z, This contradiction shows W cannot be
infinite.

Used often in the proof of Theorem 2.7, the uniform height requirement on the
double cones is essential. It is easy to construct an example of a graph X satisfying
all the other hypotheses of Theorem 2.7 but having infinitely many points in W.

Notice that Theorem 1.2 applies to show that W contains no 1-cell even when

- no uniform size condition is imposed on the cones except that the cones do not
degenerate to straight line segments.

3. Continua in E* that are touched by cones. Consider a continwum X in E3
that is touched by congruent double cones with cone angle 26, and let W denote the
set of all pojnts of X at which X does not locally lie on a 2-sphere. If 6 = 0° W can
contain a 3-cell. In the other limiting case where 26 = 180° one may interpret the
“touching cones” to be two 3-dimensional half spaces sharing a plane in their bound-
aries. Whatever the interpretation X would have congruent touching ball pairs
so that W would be empty [L,, Theorem 3.1]. If 26 >0, Theorem 1.2 states that W
confains no 2-cell. An example where 20 >0 and W contains a 1-cell is easily
constructed.

ExamMpPLE 3.1 A 3-page book B is a set homeomorphic to the product of an
interval I with. a triod T. If 7 has legs Ly, Ly, and L, then the three pages of B are
the 2-cells L; x I, The desired example is a 3-page book X whose pages arc planar
and form dihedral angles of measure 120°. Then X is easily seen to be touched by
congruent double cones whose cone angles measure 60°. From Theorem 3.3 it follows
that X cannot be touched by such cones with larger angles.

Taken.with the lower dimensional result of Theorem 2.6, Example 3.1 suggests
that a continuum in. E* should also locally lie on a 2-sphere if it can be touched by
congruentdouble cones with cone angles satisfying 26 > 60°. Perhaps a counter
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example can be produced by constructing an unusual topological embedding of the
umbrella space in the next example, but none has been found.

ExampLE 3.2. Let M be the union of the two . straight line segments
[(0,0,0), (0,0, )] and [(0,0,0), (0,./3/2, ~1/2)] in E® Rotate M about the
z-axis to obtain the umbrella X. The verification that X is touched by congruent
double cones with 20 = 60° is left to the reader. It is also true that no such cones
touch X if 26 > 60°.

THEOREM 3.3. If X is a finite polyhedron in E® with no local cut points, and X
i8 touched by congruent double cones with 20 > 60°, then X locally lies on a 2-sphere.

Proof. The touching cone hypothesis rules out 3-simplices lying in X. It also
implies that X contains no 3-page book, for suppose X contains three 2-simplices
a4, 05, and o3 and a.1-simplex ¢ such that o-,ﬁ‘aj =cgforis#j Fori=1,2and3,
let o} be the reflection of o, in ¢, and let P; be the plane containing ¢;U o}. One of
these three planes, say Py, is distinct from the other two. An argument is now given
to show P, # P;. Let {p,} be a sequence of distinct points of ¢ converging to
a point p in Into, and let C, be a double cone as described in the hypothesis so that p,
is the vertex of C, for each n. By taking subsequences of {p,} if necessary, one may
assume {C,} converges to a double cone C* with vertex p. Let B be a ball centered
at p such that o;U o} separates B for each i, and note that C, lies in the closure S of
the ¢4-side of ¢, U o3 in B for each n. This means C* must also lie in S, and it shows
that P, and P; form a dihedral angle with positive measure so that P, # Pj.

The argument above produced a cone C! at p where C* was between the
planes P, and P,. Similar arguments using sequences in o, and o3 produce double
cones C? and C? between P, and P; and between P; and P,, respectively. In fact
each of the six components of B—{P; UP,UP;} contains a nappe of one of the
double cones C*, C?, and C?, and each such nappe is a cone whose angle measures
more than 60°.

Consider now two planes P and Q intersecting in a line L, and a single cone K
with vertex at p e L and cone angle 20 such that IntX does not intersect PuU Q.
Fix K, but squeeze P and Q closer together by rotating them about L until they
both contain a lateral edge of C. The claim is that the dihedral angle B made by
Pu Q is greater than or equal to 20 and that 8 = 26 only if the axis of C is ortho-
gonal to L. One sees this clearly by thinking of rotating the cone axis from its ortho-
gonal position toward the line L. As the cone moves it must spread the planes apart
because it remains tangent to each plane.

Thus each of the six dihedral angles between the planar boundaries of the indi-
vidual components of B—{J{P,, P,, P;} must be equal to or larger than 26. Since
20> 60° this is impossible, and it follows that X contains no 3-page book.

Let p be an arbitrary point of X. If p lies in the interior of a 2-simplex, the
conclusion follows. If p lies in the interior of & 1-simplex o, then, because X contains
no 3-page book, o lies in the boundary of at most two 2-simplices and again the
conclusion follows. The last case is where p is a vertex of X, and the only interesting


Artur


110 L.D. Loveland

situation is when p is not an isolated point of X. Let L(p) denote the link of p in X.
The fact that p does not locally separate X implies that L(p) is connected. Because X
contains no 3-page book, L(p) contains no triod. Then from [M] it follows that the
locally connected, compact set L(p) is either an arc, a simple closed curve, or a poini.
In any case it is clear that X locally lies on a 2-sphere at p because the cone from p
to L(p) contains a neighborhood of p in X.

THEOREM 3.4. If X is a finite polyhedron with a triangulation T consisting of

closed 2-simplices, no two simplices of T intersect at a point, and X is touched by con-
gruent double cones with 20 > 60°, then each component of X is either a 2-cell or
a tetrahedron.

Proof. Let M be a component of X. Theorem 3.3 applies to show that M is
a compact 2-manifold. From the hypothesis that no two 2-simplices intersect at
a point it is easy to see that M is the union of one, two, three, or four 2-simplices
in 7, that M is a 2-cell if it contains three or fewer 2-simplices, and that A/ is a tetra-
hedron if it contains four.

THEOREM 3.5. If a subset X of E* is touched by congruent double cones with
cone angles 20, 20> 90°, and D is an open 2-cell lying in X, then no point of D is
a limit point of X—D.

Proof. Suppose p is a point of D that is a limit point of X— D, and let X be
a 2-sphere containing a disk .D’ such that p e IntD’ = D. If D is locally polyhedral
at p the sphere X is easily obtainéd, but, in any case, ¥ can be obtained from
Theorem 5 of [B]. The sphere X is used to identify the two sides of D near p. Let
U =IntZ, and let G be the collection of all double cones congruent to the hypo-
thesized ones whose interiors miss X, From Lemma 1.1 G contains a double cone C
with nappes C; and C, such that p is the vertex of C, aneighborhood of p in C, lies
U, and a neighborhood of p in C, lies in ExtS; that is, C pierces D at p.

Since p is a limit point of X— D, there must exist a sequence {g,} of points
of X—D converging to p. For convenience assume ¢; belongs to U for each i, For
each 7 there exists a cone C; in G with vertex g, and, by passing to subsequences
if necessary, the sequence {C;} may be assumed to converge to a cone C’ at p. Because
each C; locally lies in U at g; and because p € Int D’ = X%, it follows that, near
its vertex p, C” lies in the closure of U. Then IntC and IntC’ are disjoint, which
yields a contradiction because X cannot have two disjoint double cones at p, each
with a cone angle larger than 90°,

The following are among the questions left unanswered.

QUESTION '3.6. Does a subset X of E* locally lie-on a 2-sphere if it is touched
by congruent double cones with 26> 60°?

QuesTioN 3.7. Can Theorem 3.5 be strengthened by replacing 90° by'a smaller
number?

icm

When a subset of E" locally lies on a sphere 111

QuesTioN 3.8. Is it possible for a continuum X in E* to contain either a topo--
logical 3-page book or a topological umbrella space and to be touched by congruent
double cones whose angles measure more than 60°?

4. Sets locally lying on flat spheres. Since questions about touchings sets with
cones and balls originally focused on obtaining conditions under which the set
would be locally flat it seems appropriate to conclude this paper with a brief section
on this subject. The paper has dealt with cone conditions sufficient to make X
locally lic on an (n—1)-sphere. Of course every 1-sphere in E* is flat, but for n> 2
this is not the case. The Fox-Artin wild arc [FA] can be embedded in the 3-page
book of Example 3.1 (see [L,]) to provide an example of a subset X of a 2-sphere
in E? that is touched by double congruent cones with 20 = 60° yet does not locally
lie on a flat 2-sphere. Theorem 2.1 of [L,] says that a subset X of a 2-sphere in E*
must locally lie on a flat 2-sphere except at a finite number of points if X is touched
by congruent single cones with 26 > 2tan™!3.

In Theorem 3.5 X is seen to locally lie on a 2-sphere at a point p of X if X is
touched by congruent double cones with 26 > 90° and if some 2-cell D lies in X
and has p in the interior. Under these hypotheses it follows from Lemma 1.1 and [C]
that D locally lies on a flat 2-sphere at each of its interjor points. This means that
Int D can be pushed a little to dne side to obtain another disk D’ such that Du D’
is a 2-sphere. This establishes the following generalization of Theorem 3.5.

THEOREM 4.1. If D is a2-cell'in a subset X of E®, and X is touched by congruent
double cones with 26 > 90°, then D lies on a 2-sphere that is locally flat modulo Bd D.
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The existence of universal invariant measures on large sets
by

Piotr Zakrzewski (Warszawa)

Abstract. We consider countably additive, nonnegative, extended real-valued measures which
vanish on singletons. ‘Such a measure is universal on a set X iff it is defined on all subsets of X.
We prove, in particular, that there exists a universal ¢-finite measure on X which is invariant with
respect to a given group G of bijections of X iff there exists a universal o-finite measure on X such
that for every subgroup H of G of cardinality e, the set of all points of X with uncountable H-orbits
has measure zero.

0. Terminology. Our set-theoretic notation and terminology are standard.
Ordinals are identified with the sets of their predecessors and cardinals are defined
as initial ordinals. If 4 is a set, then P(4) denotes the family of all subsets of 4,
and | A| is the cardinality of 4. If f: X - Yis a function and 4 < X, then f [4] denotes
the image of 4.

All measures considered in this paper are assumed to be:

— nonnegative extended real-valued;

— countably additive;

— vanishing on singletons;

— assuming at least one positive finite value.

A measure is called universal on a set X iff it is defined on P(X). We adopt the
convention that the phrase “measure on X” always means “universal measure
on X7,

Let %, A be infinite cardinals. A measure p on X is called:

— x-additive iff every union of less than % sets of measure O has measure 0;

— finite iff p(X)<-+co;

— J-finite iff every set of positive measure is the union of less than A pairwise
disjoint subsets of positive finite measure.

Notice that if % > A and p is »-additive, then it is A-finite iff X is the union of
less than A sets of positive finite measure. Following traditional terminology, we
write. “o-finite” instead of “w,-finite”.

By an ideal on a set X we mean here a family 7 < P(X) which contains all single-
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