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General theorems of Mazur—-Orlicz type
by
JOHANN BOOS (Hagen) and TOIVO LEBSER (Tartu)

Abstract. Generalizing the main results in the papers of the first author [14] and the
authors [15], we prove a theorem of Mazur-Orlicz type which has new and known consistency
theorems as corollaries, e.g. the bounded consistency theorem of Mazur—Oriicz ([317, [32] and
[16]) and its generalizations by A. Jakimovski and A. Livne [24] and J. Tzimbalario [457.

1. Introduction. The main result of this paper says that the implication
Y AWy < F=> ¥~ W, = W holds for every separable FK-space F, for every
FK-space E containing ¢ and for every sequence space Y having suitable
factor sequences. (Here, ¢ denotes the space of all finite sequences and W is
the set of all weakly sectionally convergent elements of E)

This theorem of Mazur—Orlicz type was proved by the first author [14]
under the additional assumption that Y is an FK-AB-space and by both
authors [15] under this assumption and in the special case that E is a
summability domain. The present theorem also generalizes theorems of
Mazur—Orlicz type due to G. Bennett and N. J. Kalton ([5] and [7]) and A.
K. Snyder [42]. As immediate corollaries we obtain consistency theorems
which contain eg. the well-known bounded consistency theorem of Mazur—
Orlicz ([31], [32] and [16]) and its generalizations due to A. Jakimovski and
A. Livne [24] and I. Tzimbalario [45].

2. Notation and preliminaries. Though we need almost the same notation
and preliminaries as in [14] we write them down again to make this paper
seif-contained in notation.

As usual, o, m, £, fo, ¢ g and ¢ denote the vector spaces of all
complex (or real) sequences x = (x) = (XeJeen. of all bounded sequences, of
all almost convergent sequences, of all sequences almost converging to zero,
of all convergent sequences, of all nuil sequences and of all finite sequences,
respectively. '

For fixed p, 1 S p< o, let

= {x:(xk)lk)ilmc}p <o}, L=,

and for fixed p={w), 0 < 1 (keN), let
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#: (x = (x| (/) €M} (p-bounded sequences),

3
[

Coy'= {x = () | (xe/ i) €0}

I

= e = () | (e ) €1}

If p=(p) and 0 <p, (keN), then the following notation will be used:

1(p) = lx = (x| (™ €},
colp)=Ix = (xk)i(lxdph) ECy!
m(p):= [x = ()| (Ix™) em},
ces(p):= {x = (x)|sup(n” g | x))™ < o0},

Furthermore, we consider the sequence spaces

bv =[x = (o) Il = [l + 2 = Xeead < 0},
k .
§:= {x = (x) | limsup|x/** = 0}
k

= co((1/K)

d:= {x = (x| sup |x/** < o0}
k

(entire sequences),

(analytical sequences),

d:= {x=(x)|limsuplx/'® < 1/r}l (0 <r < ),
k

M= {x = (x)|limsup|x/"* < Ifr} (0 <r <),
k .

D= fx = (x) | sup X, ldme i < 00}
L

(absolute-D-bounded sequences)

for a matrix D ={d). o
Let e:={1,1,..) and &:=(0,...,0,1,0,..), where “1” is in the kth
position. For fixed x = (x,)ew and neN, the n-th section of x is

n

A=y %8 =(xy, ..
k=5

ST O

For a sequence space E we put
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Efi= [yew|VxeE: } y,xexists) (B-dual of E),
%
M{E):= {yew|VxcE: (x,y,)€E}

(factor sequences from E into E),
If m <« M{E) then E is solid.

A locally convex sequence space is called a K-space if the coordinate
functional x = (x;) —x; is continuous for each jeN, A K-space E which is
also a Fréchet space is called an FK-space; if in addition the topology is
normable, then E is called a BK-space. If (E, F) is a dual pair then o (E, F)
denotes the weak topology. For a sequence space E and F := Ef we consider
the natural bilinear form. Furthermore, E' denotes the topological dual of a
locally convex space E.

For a fixed K-space E with ¢ = E we consider distinguished subsets
of E:

Lp:={x€E|{x!"|neN} is bounded in E}
(sectionally bounded sequences),

Fy:= {x€E|} x f(e") exists for each feE'}
k

(sequences with functionally convergent sections),
W= {xeE|{x" > x (o(E, E)}
(sequences with weakly convergent sections),

Sp:={xeE[x™ »x in E}

(sectionally convergent sequences).

Obvicusly ¢ — Sz = W, < Fy < L for every K-space E with ¢ < E. An FK-
AB-space (BK-AB-space) and an FK-AK-space (BK-AK-space) is an FK-
space (BK-space) E satisfying E = Ly and E = §;, reSpectwely An FK-space
E containing ¢ @ <e) is called conull if ecW,.

Let B = (b} = (budusen be a matrix. We put
mp = {x€w|Bx:= (Y buX,),e exists and Bxem},
- :
cp:= {xew|Bx exists and Bx ec}

((convergence) domain of B),

limg x : = lim Bx foreach xecy.

Obviously ¢ < ¢ if and only if each column of B is convergent. In this case
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b, : = lim, b, denotes the limit of the kth column of-B. Two matrices A4 and
B are called consistent on M, M < ¢, meg, if limy x = limg x for cach xeM.
Furthermore, we use the following notation:

Ip:= {xecy|Y by xyexists}  (inset),
k
Ayt Iy =€, x = Ag(x) :=Hmpx—Y by,
k

A= (xely] Ap(x) =0},

It is well known that ¢, is an FK-space, and we write Ly, F and Wj instead

of L, F., and W, respectively. The inclusions

qpc:W’HmAg"ﬁLB C:FB=IBHLB CLB

were proved by Wilansky [487 in the case of ¢ < ¢, and they are also true in
the peneral case @ © cp ([49]).A sequence space E will be called pseudo-conull
if every convergence domain containing E is conull.

I E is a vector space and M is a subset of E, then conv M denotes the

convex hull of M in E and M* =M denctes the closure of M relative to a

topology © on E. .
In the following an index sequence is a sequence (k) in N with k,

<k,r, (vEN).

3. Miain results and coroflaries. Generalizing the main result in [14] we
prove a very general theorem of Mazur-Orlicz type which contains also
Snyder’s theorem of Mazur-Orlicz type [42]. The main part of the proof of
this theorem which is very technical will be given in the next section. In the
second part of this section we consider general consistency theorems. They
generalize the consistency theorems of the authors [15] and contain the well-
known bounded consistency theorem of Mazur-Orlicz ([31], [32] and [i6])
‘and its generalizations by Jakimovski and Livne [24] and by Tzimbalario
(45].. _

First of all we define a special class €* of “factor sequences” and the
“cliding humps property” of sequence spaces.

Dermation 1 (see [14]). Let y = (y) ew; then, by definition, ye@®* if
(V% — Y+ 1) ECos tkeN),

and if there exists two index sequences (k) and (k¥) with the following
properties: '

yz0

k¥ <k; <kfy

o
Vi = 1

(ieN),
]f k2y—l <k4‘§,k§” (#EN),
if ky, <k <k3uiq (LEN),
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W<y, if k5, <k<n<k, (ueh),
YaS¥ M KE <k<n<hky. (neN).

Derinvimion 2 (see [42]). Let V be a sequence space containing o.
Assume that for each index sequence (p,) and for each sequence () in w
satisfying v =0 for k¢[p;, p;.,] and () bounded in by, there exists a
subsequence (g;) of (p;} such that the pointwise sum 3, ¥ is an element of V.
Then V will be said to have the gliding humps property.

Tueorem 1. Let Y be a sequence space containing ¢ such that & = M(Y)
or such that M(Y) has the gliding humps property. Then

YW, coF = YnW; < W
Jor every FK-space E containing ¢ and each separable FK-space F.

This result is a part of the following theorem which was proved by A.
K. Snyder ([42], Theorem 9) with very restrictive assumptions on ¥ and E,

Turorem 2. Consider the following conditions on a sequence space Y
contuining :
(i) & = M(Y) or M(Y) has the gliding humps property.
(i) For all conull FK-spaces E, Wy nM(Y) is pseudo-conull.
(i) For all FK-spaces E containing o and summability domains
cg, WY < W whenever Wy nY =y,
- (iii*) For ail FK-spaces E comaining ¢ and separable FK-spaces
F, WenY < W whenever WynY cF,
(iv) For all FK-spaces E containing o, (Wg nYY is o{(Wen Y)Y,
Wi M Y)-sequentially complete.
Then (D=>(ii), ()=(iii), (iii) <> ({li*) <={iv), and with the additional assumption
that Y contains an FK-AK-space, (ii)=-(iii}.

The proof of the implication (i)=-(iii) will be given in the next section,
and in the case x:= ¢ it will be the proof of (i}=(ii). The equivalence of (i),
(ili*) and (iv) is a well-known result of G. Bennett and N. J. Kalton ([6],
Theorem 5). If ¥ contains an FK-AK-space, then the proof of (ii)=(iii) is
quite similar to the proof of Lemma 6 in [42]

In the first remark we demonstrate that the condition “®&* < M (Y)Y and
“M(Y) has the gliding humps property” is fulfilled by the elements of a large
class of sequence spaces ¥ containing ¢. In the second we make some
remarks on the bibliography.

Remark 1, {a) By definition, every solid sequence space Y satisfies the
condition & <M (Y); eg. this is true if Yequals w, ¢, m, ¢;, I? (0 <p < o0)
OF My, Cou, b (1= (1), 0 < gy (keN)) or mip), co(p), I(ph, ces(p) (p.=(py)
with p, >0 (keN)) or &,d or IT,,d, (r >0 or |D| (for a matrix D). We
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observe that F (0 <p <1),d and d, are not FK-AB-spaces, which is an
essential assumption on Y in Theorem 1 of [14].

(b) Let {Y|iel} be a family of sequence spaces ¥, fulfilling & < M (¥)
for each iel. Then

@ cM(NY), € = M(% %)
iel i
where Y ier Y denotes the linear span of the sequence spaces ¥; (iel). Note
that N, % and Y ier Yi are not necessarily FK-spaces if ¥ is an FK«space for
each iel.

(c) The sequence space f, is not solid, but & « M(f,) because every
ye @ satisfies (v, — o1 1) €¢o < fo ([19], Theorem 5); also M (fy) has the
gliding humps property (see [42], Theorem 7).

(d) The sequence space Y:=1, mc, (1= () with py = k™2, and C,
denotes the Cesaro matrix of order 1) has the W-hump property (see [45],
Theorem 3.4) and therefore the gliding humps property (see [457, Theorem
3.3), bur €* is not a subset of M(Y).

Proof of (d). To prove & ¢ M(Y) we construct an index sequence ()
such that x = (x;) with .

Jk if my, <k <y .
X —{-—-\/]; if ngyp <k <Mavts (v=0,1,..),
0 otherwise

fulfils xel, nmg, but yx¢l, nme for each ye® with

1
(% Ve = {

0 if mayes

k<nmgpiq
Sk <ngys

if ny, <

(v=0,1,..).

We start with ny:=2 and x, :=x,:=
the following steps (v =0, 1, ...):
(i) Choose n,,,, > n,, such that

0, and we inductively construct (,) in

g1 Biy+1
NI T AN IS
k=1 k=p,
ngy=1 ngy+1m1
(Raye 1 =D Y X+ ) '\/E)S]-:
. k=1 k=ng,

.and put

R (Jh i ngy Sk <ngyr,
n = R+, X= . ' '
L ft‘v.-i.-l dvhi i T k_ . 0 if Myy+ 1 S-k<n4v+2.
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(i) Choose ny,43 > Hgy4, such that

Myt 1 A4yt 3
-1
n4v+3( Z Xy = Z \/-I:) < -
k=1 k=ngys 2
ngy+z-1 mgy 431
(n4v+3_1) ( z Xy — Z \/E) = —
k=1 k=rgyt2
and put
—k if n, Sk<n
Moy o= Hgyra +v+1,  x0= f Lo s
_ 0 if ngyys Sk <ngpay.

Evidently x€l, nmc,. Also, it is a routine calculation to verify yx¢l, N,
for each ye(E* fulfilling ().

Remark 2. (a} In the case of an FK-space E with ¢, < E and in the
case Y:=m and Y:= f;, Theorem 1 was proved by Bennett and Kalton
([5], Theorem 16, and [7], Theorem 9, respectively). The assumption ¢y = E
is a decisive factor for the proofs of Bennett and Kalton.

(b) Theorem 2 was proved by Snyder ([42], Theorem 8), but with
restrictive assumptions on Y and E, He considered only the second part in
(1) and sequence spaces ¥ and E such that there exists a semiconservative
BK-AK-space with the following properties: ¢ is dense in K&,
KoY cM(Kg) and K, cE,

(c) The authors {[15], Satz 1) proved Theorem 1 in the case of FK-AB-
spaces Y fulfilling € < M(Y) and in the case ¢ = E:=c,, where 4 is a
matrix and & is a special class of sequences with & = E*. (We remark  that
the usual sequence spaces Y satisfy & < M(Y) if € < M(Y).)

(d) More generally than the authors in [15], the first author [14] proved
Theorem 1 for FK-spaces E containing ¢ and for FK-AB-spaces Y satisfying
G = M(Y).

Undoubtedly, the significance of the theorems lies in the consistency
theorems following as corollaries from these results and generalizing the
consistency theorems in [15]. First of all, we formulate Theorem 1 in the
case of matrix domains and, as an immediate corollary, a limit formula and. a
consistency theorem,

CororLary 1. Let Y be a sequence space containing ¢ such that
€* < M(Y) or such that M(Y) has the gliding humps property, and let A and
B be matrices with ¢ <« Y "W, <cg. Then:

(@) Yn W, c W, especially limyx =) byx, (xe ¥ Wy).

{b) The consistency of A and B on ¢ implies the consistency on Y W,,

More useful and of a common type is
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CoroLLaRY 2. Let Y be a sequence space containing ¢ such that
&* < M(Y) or such that M(Y) has the gliding humps property, and let A and
B be matrices with ¢ = Y " F, < cg. Choose u € {0} U (Y N (F\W,)) such that
YNF =(YnW)® ). If uely then

1ime=(x(1imAX“' z akxk)+ Z bkxk
k=1 k=1

{(xe¥YnF,)

with o:=0 for u=0 and o= Ag(u)/A, (W) for uz0.

CownsisTENcY THEOREM. The consistency of A and B on o ® ) (e, g
= b, (keN) and lim, i = limg ) implies the consistency on Y~ F,.

Proof The case u =0 is discussed in Corollary 1. Let 0 % uel, and
xeYnF,. Then x=(x—o,u)to,u with o :=d,x/4A,{# and x
—~o . ue¥Y W, < Wy. Therefore

o0 o
Hmgx = 3 b=, ¥ by ty+o, limgu
k=1 k=1
o N ; S )
=ad )+ Y byx,  with o= Ag (A, (w).
R R N i : Q. e .
The consistency theorem follows immédiately fz_'om this formula. (We remark

that on account of @, =&, (keN) and ueF, c I, the assumption uely is
fulfilied automatically.)

At the end of this section we give remarks to the bibliography of
consistency theorems presented in the corollaries above.

Remark 3. (a) First of all we observe that Corollaries 1 and 2,
especially the consistency theorem, are applicable to all sequence spaces ¥
listed in Remark 1(a). Furthermore, in the case Y := f we refer to the limit
formula in [15], Corollaries 4 and 5, which generalizes some results of
Bennett and Kalton (see [7], pp. 41-42).

(b) If Y:=m and if A and B are regular matrices then the consistency
theorem in Corollary 2 is the well-known bounded consistency theorem of
Mazur, Orlicz and Brudno: regular matrices A and B with mc, < ¢y are
consistent on mnic,. (Note that mcy =mnF = {mnW,)@® () in this
case). In 1933 Mazur and Orlicz [31] formulated this theorem and proved it
" later in [32], Theorem 2. Brudno (see [16], Theorem 1) proved it indepen-
dently of Mazur and Orlicz. Further proofs of the bounded consistency
theorem were given for example by Petersen [37] by considering factor
sequences (see also [36] and [50]), by Orlicz. [33] (see also [347) using
continuous linear functionals in Saks spaces, by Bennett and Kalton [5] with
the aid of two-norm spaces’ and :the - sequential .- completeness  of
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(I, a(l, m o Wy)), by Snyder and Wilansky [43] and Ruckle [40] proving the
sequential completeness of (I, ¢(), mnW,)) and by Snyder and Wilansky
[44] reducing it to a well-known theorem of Agnew. The bounded consisten-
cy theorem is also an immediate corollary of a quotient theorem of Baumann
(see [4], Satz 1, [10], Satz 3 and [13]). The validity of the bounded
consistency theorem in the case of conull matrices was characterized by
Chang et al, [17].

{c) Let A and B be conservative matrices which are consistent on ¢ and
let Y:=|A4| n|B|. In this special case the consistency theorem included in
Corollary 2 was proved for coregular matrices by Volkov [47]; the conull
case was studied by the first author [8].

(d)-Furthermore, the consistency theorem in Corollary 2 was provcd by
the first author ([8], Satz 3) for ¥ := w and for coreguiar matrices 4 and B
consistent on c; the conull case is also discussed in [8].

(e} In 1972 Jakimovski and Livne ([24], Theorem 2.2) gave an exiension
of the bounded consistency theorem, which was again extended by Tzimbala-
rio in 1973 ([45], Theorem 5.1). A straightforward calculation shows that
Tzimbalario’s theorem, and therefore the theorem of Jakimovski and Livne,
are now generalized by the consistency theorem in Corollary 2.

{f) Concluding these remarks we point out some other papers containing
consistency theorems which are related to the bounded consistency theorems:
(11-(31, {97, [11], [12], [18], [20]-[23], [25T-[27], [29], [30]. [35}-[39],
[41] and [46]. Other references to consistency theorems of Mazur-Orlicz
type can be found in [51] and [28].

4. Proof of the main result. Corresponding to the proofs of [15], Satz 1
énd [14], Theorem 1, the implication (i)=>(iii} in Theorem 2 is proved if we
show that ‘

YW, Cep = YoWecly = YnW, o Fp = YW, c W,

for each matrix B, every FK-space £ containing ¢ and each sequence space
Y containing ¢ such that & < M(Y) or such that M (Y) has the gliding
humps property. The proofs of the second and third implications will run
similarly te those in [14] because for these statements in [14] we did not use
the FK-AB-space property of Y. In contrast to [147,.Y is not necessarily an
FK-AB-space in this paper. Therefore we have to prove the first implication
with classical arguments too. For this purpose we refine essennally Lemmas
1 and 3 in [14].

Lemma 1. Let (E, 1} be an FK-space comammg ¢, and ier (n\,) be an mdex.
sequence. If x eWg, then

S —
xeconv {x™ [veN]
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and there exists a sequence (x™) of convex combinations

ty

(# x= 3 o XM (s, t, €N with s, <1, <84,

v=3,
0 < ! ! #0, i 1)
\Mrv\r+1slursr“ 15 #rr 5 irlur\l_
of sections x™ of x such that
(%) x = x n (E, 1).

Proof. Applying [14], Lemma 1, wé can choose a sequence () of
convex combinations

’r
= 2 A‘rv x[’fv]

= Sr

(s,, t,eN with s, <1,,

1 t
:)'-rt'_/:o Z’lw"" )

\msr

€4y <

[n,]

of sections x * of x such that y* —x in (E, ). We put

1 1
s, 5 rv:=‘2'rv— 72T DR LT - s
o = " (r—l—l ’“’) sl t)

where m,, (v =5,44,...,t) is chosen such that m,, =0, g,

>0, f, #0,
¥ _tny=1. Then we have

t, tr
(L]
Z m,, =1, hence Y mx™econv {x™|veN),
y=5.+1 vt 1

and therefore

1 ] 1 e
x(")_y(") — ( _1” ) s,. -+ ( r ) ) x['fv]
+1 ¥ + I Sr v=§+ 1 F¥

-0 (r—w) in (E, 1)

because (1/(r+1)—4,)ec, and conv {x["“}]veN} is bounded. Thus (x")
satisfies the conditions () and (*+).

The next lemma is. identical Wlth Lemma 2 in [14] and is due to Snyder
[42].

icm
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Lemma 2. Let E be an FK-space containing ¢ and let (y;) be an index

sequence with y; =1, Furthermore, let y = (y,) sw and
}’j+1—1 ’
yWi= Y we (jeN)  such that  sup|yV,, < co.
k:yj J

Then for each x € Wy the conditions yx eE and yx = E;: .
imply yxeWz.

yxin (E, o(E, EY)

The basis of the next lemma is Lemma 3 in [14], but for the proof of
the main result we have to extend the statement of this lemma and to refine
essentially the method of proof.

"Lemma 3. Ler (E, 1) be an FK-space with ¢ — E and let Y be a sequence
space containing @ such thar & < M(Y) or such that M(Y) has the gliding
humps property. Let B = (by) be a matrix with ¢ <cg. Then for every
x €Wy Ny each of the following statements implies the existence of a sequence
yeM(Y) such that yxeW; and yx¢cy:

(i} There exists an index sequence (n,) with

iy
lim| Y b, x| # limg x.
v k=1

(i) sup, [Y, ., bexe| = o0
(i) x Az Lg.

Proof. (i) Let xeW, nep and let (n,) be an index sequence with

Ay
ai=1lim Y bex, # limpx =:d.

v k=1

We have to prove the existence of a yeM(Y) such that yxeW; and yx¢cy.
In the special case of x ;= ¢ and & < M (Y) this is Lemma 3 in {14]. For a
general x €W}, the proof is quite similar, but with some more complicated
details. For that reason and because we need a similar construction in the
second part of the proof, we carry out the construction of y.

Without loss of generality we may assume that
Tyt p

IS bx| <27

k=n,+1

(v, HEN).

According to Lemma 1 we choose a sequence (x') in conv kx[ e |veN} such
that

iy XM —~x in (K, 1),
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. iy .
2 =3 ,u”,x["”] (s, t,eN with 5, <t, <8§,14,

=g,

iy

s Hn # 0, Z ,Ll'z,.,,:l).

0 fyy < ——
\”V\r+1 " VS

As in the proof of Lemma 3 in [14] we inductively construct index sequences
(k, (n), (r)) and (k}). For that purpose let a;:=27/ (jeN) and let ! ! be a
paranorm generating the FK-topology t of E. We start with k¥ 1=k, :1=1,
and because of ¢ < ¢z we may choose an ny €N such that

k1

2 b — b Il = (by =Byl 3] <2y

k=1 .

In addition, by (1) and x scy we may choose an r; €N such that

2 Fis ,U.EN),

XD =X <, (r
yidp

IZ bnkxk| <, {r<ng, v>ns,19 #EN).
k=v :

We assume that k¥, k;_,, rij_ll' and #;-1 have been chosen, Then we
put '
(3) k?:znsrj_l’ kj:x mj
In particular,

C] kfon <kjoy < ki <k

(cf. (2)). Since ¢ < ¢z we may take n;> n;_; such that

kj
(3 Z |bujk‘"bk| |2l < ey
R k=1
Furthermore, by (1) and xec, we may choose r; >r;—; so that
(6) WO X g (r 21, uEN),
vty
{7) IZ bnkku <aj+l (J’Is‘{\ﬂ_, V?’Ts,j: PU'EM
k=1y

Now we define

t) 20 = "2y C2-0 ey,
. oo .

) zi= Y zW (pointwise sum).

i J=1 .

On account of the representanon of x"’ in (2) we may choose y? (jeN) with

icm
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20 = U x and

0 (k<k¥; or k>kyjyy),
10 ) { i J
1o SN ke <k < k)
because of (3), (8) and (2), and

‘ 1
() e - k¥ <
(11) 0< ik —yi \?‘2;_14‘1 { %S

1
rytl

k<k%..),

(12) O W~y < (kyy < k <kyyiy)

BecauSe of (2) and (8). In particular, we have

(13) W9, =2 (eN).

Obviously,

(14) z=yx =3 yx=3%3:9 where y:=3 ¥
i J i)

(pointwise sum, cf. (9)) and we may conciude

0 (kyjoq <k ki .
15 = e i)
) 5 {1 oy <k kyor) U
because of (10}, (4} and (14), and
(16) 0yt (keN), Oh—hsi)Eco, ye®&

because of {10)}<12) and {15). In addition, yeM (Y) if & < M(Y), and if
M (Y) has the gliding humps property, we may also assume y e M (Y) because
(y¥) is a sequence as in Definition 2 (cf. (10){13)) and we may consider a
subscquence of () (and therefore the corresponding subsequences of
(kp), (n), (r;) and (k})). Thus, in both cases we have yeM(Y).

Futhermore, by (6), the sequence (E 7W)y.n is a Cauchy sequence in
(E, 1), and therefore (cf. (14))

yx =3 y¥x
F

in (E, 7).

Evidently, y and (y) satisfy the conditions in Lemma 2 and therefore
yx € W,. It remains to prove yx¢cy. This part of the proof runs similarly to
that of Lemma 3 in [14]. We have only to replace dy, by b xy, du by b,,k xk
and y¢cp by yxécs.

{ii) Now ‘we assume x € W; mcg and sup, |Zk L Dx xk| = oo . Then without
loss of generality we may choose an index sequence (,) satisfying
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Red . hyx, 20 (veN) and
Tv+1 Ry

(17) RC z bkxk_Re Z bkxk 2 ¥V (VEN).
k=1 k=1

The construction of the desired yeM(Y) goes as in (i) starting with
“According to Lemma 1..” and finishing with “.... therefore yxeW,".

It remains to prove yx¢c3 Obviously, we may assume that 2 b Vi xy
exists for each neN. We prove the divergence of (Zk i Vi X Jien cons:dermg
odd integers J.

Let j be an odd integer, ie. j:= 2u—1 for a suitable ueN. Then we
obtain (cf. (15))

Rau—1 kay-1
zbnjhxkyk:: b3 (bnjk_bk)xkyk+ Y bex
x k=1 k=1

1]
+ Z br X Vi =:d;+4}+C;.

k= k2“+1
As in the proof of Lemma 3 in [14] one proves 4; -0 and C;—0 (] — oo}

k2p—1

|4} < Y |bnjk_'bk| el v < otzumy = a; =0

k=1
because of {5} and (16), and

o kzpa1

CI<Y ] X bynl (see (19)
VEH k=ky +1
<2 ) a;, (because of (3), (7) and (16))
v=p

-0  {u—co,thus j->o0).

By the construction of y we obtain

fy Mg+ 1
E byxy = Z Yape1 Z bu X
k=1 k=ng+

v—1 v—1

= Z y?19+1(”9+1"u9)+i Z yﬂ9+1(ua+1_vﬂ)
=1 g=1

where u, and v, denote the real part and the imaginary part of E b X,

respectively, With 0 <y, <1 (keN), (15) and (17) we conclude that the
sequence

v—1
{ Zl Yngis (gt 1= p))uen
Pl
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is ingreasing and unbounded. Therefore each subsequence of
E:" b % Y)en, hence (4¥), is unbounded. This proves yxécy.

(iii) Let x Wy ncg and xedz\Ly, ie.

V
sup| Y, by x| =0

Y k=1

d::ﬁmer—bekxk,
k

Because of the last condition we may choose index sequences (n,} and (u,)
with

My
|Z buvkxklw’w (V—*W)
k=1
and hence
e 4]
| ¥ bux|—w  (voo).

=+ 1

Without loss of generality we may assume

1 oo
b, Xl =00 (v —or),
v—}~1‘,‘=,,2v:+1 i ¥
i+p
(18} lzbnkxk| < (n\<_,uv, Izrn’vi—ls pEN)
k=1
and (since x&lj)
MTv+pu
(19 | > b,‘xk|<oc (v, penN)
k=n,t1
where o, ;= 27" (veN). Therefore we obtain
1 My+1 1 L2
v+1|,¢h2 buawnl 2l %Hb“v"x"l“vﬂ“"
and thus
1 My+1
— b, % 20 (v —>0).
(20) i h%‘,ﬁ ok X
For (n,) we choose according to Lemma 1 a sequence (x*) in

conv [x™ [ve N satisfying (1), (2) and
(21) ths, = 1/r+1)  (reN).

Then we inductively construct index sequences (k;), (k7), (I])', (r) and (n).
Starting with I, := k¥ :=k, :=1 we choose r, e N with
X tt cq,  (r2ry, LEN),

|bage =il x4} <oy Where ny 1= s, -
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Furthermore, we put

k§5=Ws,1= 125:’1s,1+1, k2:=77r,.3-
Then we have
I+p
l Z b"kxkl < %y (”\'(.nl, l; l;;, pEEN)
k=1+ 1

because of (18). If n;. i, r;_y, k¥, ;- and k;_, are defined, then we put

k,,?:'—'ns,,j_l! lj:=ﬂs,j_1-;-19 kj::nt
Thus, since (18) is valid, we have
I+p

(22) ‘k=;+1bnk X <oy (azm_y, 121, peN).

Now we cheose »; €V such that ry> g,
(23) X — Xt <y, (r2 1y, LEN),
k: :
(24) ;fjl lbap—billx) <a;  where n;:= oy
Thus kfyy =74, lj+.1 =1, S and kjq = mrj are defined and one obtains

‘ Z By x| <a

k=1+1

(n<ny, 1240, pen).

In the next step of the proof we define (z'), (1), z and y as in part (i)
of the proof and we obtain yeM(Y) and yxeW; as in (i). By (21) we
additionally obtain

(25) Vi %..yiz =Yry1+1) (% <k<l,).

Now we prove yxdcy and we assume the existence of Z by Xz (neN).
For ji=2u—1 (ueN) we obtain (cf. (15)

kl,u‘-l M
anjkxkyk= Y bn;k’%)’k‘*’ )y bnkxkyk+ Z bnkxl:yk
k . k=1 ke=ky, +1 k=l3u+1
=:4;+A4;+C,.

First we show that

Ty

B:=lim ¥ b, % ¥,

v k=1
exists; this is easy to check by (19) because

(26) W=y U, <k< m+1)

icm
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for every veN. Then we obtain A4;-—f§ (f »c0) because

of (19),
(24), 0<y, <1 and

"2#—1

2 b

oy 1

l4;— B < — by 1% J’k+‘ Z by x yp— ﬁl

By (22), (26) and the corresponding proof in (i) one may easily prove C;

=0 (j = o). Furthermore, on account of (25) and (20) we may check that
1 2

r2ﬂ“1+1'k k§+l & .

|4j] =

(j=2p—1, uen)

=+ (f—o0).
This shows yxécg. Altogether, we have proved Lemma 3.

Proof of Theorem 2, (i)=(iii). Let ¥ be a sequence space containing
@ such that € < M(Y) or such that M(Y) has the gliding humps property,
let B be a matrix and E an FK-space with ¢ <« Y nW; <. Then
Y n W c W; is established if we prove the following implications:

() YW, cop = YW < L.
18] YnWyocly = YWyl (thas Yn W, < Fy).
%% YW, cFp = YnWe oAy (thus Yo W < W), -

We are going to reduce the implications (5), (B) and” (y) to Lemma 3.

(o) Let Y n W, <y, but ¥ n Wy & Lp. Consequently, we may choose an
x €Y nW; so that xecg\Ly. Then x satisfies one of the three conditions (i)
(ii) of Lemma 3. Therefore we may choose a yeM (Y) with yx €W%, hence
yxeY¥ Wy, and yxécg. This contradicts the assumption Y n Wy < cg.

(B) Let Y N W, < Ly, but ¥ W, & I,. Therefore we may choose an
xeY ~ W so that xeLg\Ip. The last statement implies (3 1= by X )yew EM\C.
Therefore, by Lemma 3(i), there exists a yeM(Y) with yxeY n W, but
yxécy, contrary to Yn Wy < L.

(v) Let Y "W, < Fg, but Y nW & Az. Again, we may apply Lemma
3() to each xeY W, with xeFy\A; and we obtain a yeM(Y) with
yxeY¥ n Wy, but yxé¢cg; this contradicts Y mW; = Fy and completes the:
proof of Theorem 2, (i)=>(iii).
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