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C%Scalar operators on cyclic spaces
by

RALPH peLAUBENFELS {Athens, ()

Abstract. We consider (possibly unbounded) linear operators A on a Banach space X for
which there exists xq such that X =span {A"xy|n=0, 1, 2,...]. We show that 4 is €-scalar
with real spectrum if and only if there exists a certain type of Banach lattice ¥ of complex-
valued functions on the real line and a homeomorphism U from X onto ¥ such that
(UAUT! f){) = tf (), with the domain of UAU ! equal to {fin Y|t —~¢f(2) is in Y.

When the guasi-analytic growth condition E:J: o (5P, 1 4* Xoll ") = oo is satistied, and
the domain of A equals span {4"x,|n=0,1,...}, we show that 4 is C-scalar with real
specirum if and only if there exists an equivalent norm with respect to which X is a Banach -
lattice, with

(X*)* = {o in X*|{p(A"x}2, is positive-definite}.

Similar results for C%scalar operators with nonnegative spectrum are giveh.

Introduction. Scalar-type spectral operators generalize, to an arbitrary
Banach space, selfadjoint operators on a Hilbert space. A (possibly unbound-
ed) linear operator 4 is scalar if there exists a projection-valued measure E
such that

n

Ax = lim [ td(E{t)x),
. om—w -y

with the domain of A4 equal to the set of all x for which that limit exists. The

spectral theorem asserts that a selfadjoint operator is scalar,

Another form of the spectral theorem asserts that 4 is selfadjoint if and
only if it is unitarily equivalent to a multiplication operator on an L?-space.
In particular, if the Hilbert space H is cyclic, ie. equals the closure of the
span of {A"x,|n=0,1,2,..}, for some x,, then there exists a Borel
measure m and unitary U from H onto L*(R, m) such that

(VAU i) = o (0).

We prove a similar result for scalar operators on a eyclic Banach space.
More generally, we consider C%-scalar operators (see Definition 1). These are
operators ‘that have a funetional calculus defined for continuous functions
vanishing at infinity. Scalar operators have a functional calculus defined for
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- bounded Borel measurable functions, (A4N)() =tf(), on C[0,1], is an

example of a C-scalar operator that is not scalar.

We show that the operator 4 on the cyclic Banach space X i C%scalar
if and only if it is homeomorphically equivalent to multiplication by g(t) =1
on a certain type of Banach lattice of complex-valued functions on the real
line {see Definition 4), Y. That is, there exists a homeomorphism U from X
onto ¥ such that

(VAU i =11 (1)

(see Theorem 5).

In a previous paper ([4]), we showed that when the sequence
lp(A™"x)) 2 was positive-definite (see Definition 6), for sufficiently many ¢
in X* and x in X, then A was C%scalar. In this paper, we show that the
converse is also true, on a cyclic space, ie. when A is C%scalar, then a large
supply of these positive-definite sequences does exist, enough to form the
positive cone of a Banach lattice (Theorem §). Theorem 11 gives necessary
and sufficient conditions, in terms of these sequences, for 4 to be C%-scalat,
when the domain of 4 equals span {A"xq|n=0,1,2, ...}, for some x,.

Similar results for C°-scalar operators with nonnegative spectrum are in
Theorems 9 and 14.

Corollaries 12 and 15 characterize bounded CP-scalar operators with
real or nonnegative spectrum, respectively, on cyclic spaces.

A characterization of strongly closed operator algebras generated by a
e-complete Boolean algebra of projections on a cyclic Banach space appears
in [1]. This is also treated in [1]. This characterizes scalar operators on
cyclic spaces, by using their projection-valued measure. In this paper, dealing
with C%-scalar operators, we may have no projections (o work with.

Some recent results on unbounded scalar operators appear in [4], [7],
and [8]. Basic material on scalar operators may be found in [5] and [6].
Generalized scalar operators, which include C"-scalar operators, are covered
in [3] and [9]. A reference for the classical analysis of the moment problem,
used in Theorems 9 and 10, is [12]; some of this is stated in Definition 6.
A reference for Banach lattices is [11]. We will also be using basic facts
about semigroups of operators and their generators; a reference for this is
[10]. We will write “¢4" for the semigroup generated by A. Reference [4]
contains some introductory material for all these topics.

All operators are linear, on a Banach space X, By “group” (“semigroup™
we shall mean “strongly continuous group” {*...semigroup”). X* is the dual
of X, B(X, ¥) is all bounded linear operators.from X into Y, B(X) is

B(X, X). When A is an operator on X, D(4) will be the domain of 4. 4

will be the closure of the operator 4. When X is a Banach lattice, X* will be
the positive .cone. . .
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Derinrrion 1. If TeB(X), and D is a bounded subset of the complex
plane, then T is C®scalar on D if there exists a confinuous algebra
homomorphism A from C(D) into B(X) such that A(fy)=1I, A([J)=T,
where fo(z) = 1, fi{z) ==.

The (possibly unbounded) operator 4 is C%scalar on [0, c0) if A4
generates a uniformly bounded semigroup {e”™),.,, and (1+4)"" is C%
scalar on [0, 1].

The operator A is C°-scalar on R if iA generates a uniformly bounded
group ‘el _p, and (1 —id)(1+id)"" is CPscalar on the unit circle.

The operator 4 is C%scalar on R if and only if there exists a continuous
algebra homomorphism A from C,(R) = {continuous f: R~ C|lim, .+, ()
exists} into B(X) such that A(fy) =1, A(g) = (1—id)(1+id)™*, where f, (1)
=1, g =(1-i)(1 +i) L.

The analogous assertion holds for being C°-scalar on [0, oc).

Note that this map f —f(4) = Af extends to a coatinuous algebra
homomorphism from the set of all bounded Porel measurable functions, with
the supremum norm, into B(X, X*%), by

LF () xT e = [f(BdE, (D),
where E, . is as in Lemma 3 below.

DermatioN 2. D(xq, A) =span {d"x,|n=10,1,2,...}. X is ¢yelic if X
= D(xq, A), for some x,.

LEMMA 3. Suppose A is Cscalar on R and, for o in X* and x in X, E,
is the unique complex-valued Borel measure such that

p(f(A)x)= [ f(OdE, (1), for all feC\(R).
B

Then
(a) dE, 4.(t) =tdE, (1), for all x in D(A) and ¢ in X*.
(b) E, . € E, ., for all ¢ in X* and x in D(x,, 4) (see Definition 2).
dE,, dE

(c) 7E - :Eﬂ’i’ Jor ail @, in X* and x in D(x,, A).
¥,

@iXQ

Proof (a) It is clear from the uniqueness of E,, that, for f in
Ci(R), dE, ;p.(t) = f(t)'qu, L (D), for ail @ in X* and x in X Thus for any x
in D(A), since x = (i+A) ' ((i+4)x), we have

quu,x (t) = (l + t)— ! quo.(i + Ayx (0:

which gives (a). 7
(b) Suppose E, ., (B) = 0. Define  in X* by Ox=E,.(B).By{a), 6 =0
on the dense set D (x,, 4), hence, since § is bounded,:8.=0 on X, as desired.
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{¢c) For fixed , ¢, consider # in X* defined by
dE,, dE

%

dE, ., dE
By (a), 8 =0 on the dense set D{xp, A), hence 8 =0 on X, as desired.

bx =

[ZE)]

DerFivTION 4. We will say that a Banach lattice Y of complex-valued
Borel measurable functions on R is 2 C%Jattice on R if the following hold:

() Y*"={fin Y|f()=0 for all ¢ in R}.

(2) fg €Y whenever g e, f €C,(R) (see Definition 1).

THEOREM 5. Suppose X is cyclic. Then A is CP-scalar on R if and only if
there exists Y, a C®-lattice on R, and a homeomorphism U from X onto Y such
that

U(D(A)) = {feY|t=tf (1) is in Y}, with
(UAU 1)) = of (0.
Proof Suppose (Bf){t) =tf(f), on ¥, a Clattice on R, with the domain
given in the statement of the theorem. For 4 >0, (A+iB)™! exists given by
GBI =0z (1),

Thus |(A+iB)~ () (t < |47 /(@) Since Y is a Banach lattice, this implies
that

IGA£B)™ fil < 1A A,

for all f in Y; so that [|(14+iB)" )| < |4, for all 1 > 0. By the Hille-Yosida
“theorem (see [10]), this implies that iB generates a one-parameter group,
given by ("% f)(r) = &* f[1).

Define an algebra homomorphism f = f(B) from C,(R) into B(Y) (see
Definition 1) by f(B)g = fj. Since Y is a Banach lattice,

1foll < I fHewsl] = 070 ligll,

so that ||f (B} <|/flle, 1e. the algebra homomorphism is continuous, as
desired.

Conversely, suppose X = D(x,, A) (see Definition 2) and A4 is C%scalar
on R. By Lemma 3(b),(c), for any x in X, there exists a Borel measurable

function Ux on R such that
dE, JdE, . = Ux, for all ¢ in X*.

Let Y= {Ux|xeX}. Define an ordering on Y by Y* ={feY|f(H) =0
for all ¢}. Define a norm on Y by

U = suplaliz €X. 1Uz@) < [Ux (e, for all 1}
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Since | f|{t) =|f (t)|, for all f €Y and ¢ eR, this is clearly a Riesz norm on Y.
To see that U is a homeomorphism, suppose |{Uz (1) < |Ux(1)], for all 1.

' Let

. { if Ux() =0
9O =0, 0/Ux()  otherwise.

Then z =g(4)x (see Definition 1). Since the map g —g(A4) is continuous,
and |lg|l,, <1, there exists M < oo such that

HUxl| < M||x], for all xeX.

Clearly jlx|| < (|Ux]}. Thus U is a homeomorphism from X onto Y.

Since Y has a Riesz norm, and contains a dense lattice {polynomially
bounded continuous functions!, ¥ is a Banach lattice.

Since fUx = U(f(A)x), for any f in C,(R), Y satisfies condition (2) of
Definition 4. Thus Y is a C°lattice on R.

By Lemma 3(a), (U (Ax))(t) = ¢(Ux) (1), for all x in D(A). It follows that
the one-parameter group generated by id satisfies

(U U NH{) =€ f{1),
so that U{D(4)) is as stated.

DerFINITION 6. A sequence {a,}i2, of real numbers is positive-definite if
Youda; =0,
koj

for any finite sequence {x,} of complex numbers. It satisfies a Stieltjes
moment condition if, in addition,

ka&—jak-i-j—{-l =0.
k. ’

There exists a nondecreasing function g such that
a,= [t"dg(t), n=0,1,2,...
R
if and only if {a,}%2, is positive-definite. The function g is supperted on
[0, o0) if and only if {a,} satisfies a Stieltjes moment condition.

DerFiNrTioN 7. Suppose X is a Banach lattice. Then F: R ~B(X) is
positive-definite if . _

Zako_th(Sk—J)
k.j

is positive, for any finite sequence of complex numbers Ja,}. -
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. The function G: [0, co) = B(X) is completely monotone if, for ¢ in (X*)*

and x in X,
n

d
(-1 pEid

(G(s)x)

exists, and is nonnegative, for all s > 0 and all nonnegative integers n.

In [4], we showed that, if i4 generates a positive-definite group, then 4
is C%scalar on R, and if —A generates a completely monotone semigroup,
then A4 is C%scalar on [0, o).

THEOREM §. Suppose X = D(xq, 4) (see Definition 2) and A is COscalar
on R. Then there exists an equivalent norm with respect to which X is a
Banach lattice, with

(XM* = {o in X*| {p(A"x0)}; ¢ is positive-definite).
With respect to this ordering, iA generates a positive-definite group.

Proof Let U and Y be as in Theorem 5. Then |l|x||| =||Ux| is an
equivalent norm on X, and if we define an ordering on X by x; < x, if and
only if Ux, € Ux,, then (X, ||| ||) is a Banach lattice.

Since A is CPscalar, for any ¢ in X*, there exists a unique complex-
valued measure E, such that

qD(f(A) xO) = j‘f(r)quu (t)s
. R
for all f in C;(R). This means that

@(x) = [ (Ux)(1}dE, (1),
R

for all x in X, so that ¢ is in (X*)* if and only if E, is a positive measure.
By Lemma 3(a), we have

P{A"xg) = [t"dE, (1),
R

Thus (see Definition 6), ¢ e(X*)* if and only if {p(4"xg)! ™ is positive-
definite, as desired.

Since 4 is C%-scalar on R, i4 generates a one- parameter group {4}, ».
Since (Ue U™ f)(t) = &' f(t), we have :

o (€™ x) = [ (Ux)(t)dE, (1),
so that iA generates a positive-definite group.

The same proof gives the following:

TueoReM 9. Suppose X = D(x, A) and A is CO-scalar- on [0, c0). Then
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theve exists an -equivalent norm with respect to which X is a Banach lattice,
with

(X% ={oin X* {p(A"xo)} & satisfies a Stieltjes moment condition}.
With respect to rhzs ordering, — A generates a completely monotone semigroup.

To obtain converses to Theorems 8 and 9, we will need growth
conditions on ||4"xy|l. These are easily satisfied when 4 is bounded.

Dermvrion 10, The vector x e (2 oD (A" is a quasi-analytic vector if

o :
Y sup|lA*xf| " = o0,
n=DhkEn
f {p(A"xg)} %, is positive-definite (see Definition 6), and x, is a quasi-
analytxc vector, then the solution of the moment problem

p{A"xy) = [t dgt), n=0,1,2, ..,

18 unique (see [127]).

If D(A) =D(x,, A) (see Definition 2), where x, is a quasi-analytic
vector, and A has an extension that generates a one-parameter group, then A
generates a one-parameter group {see [2]).

Tueorem 11. Suppose D (4) = D (xq, 4) (see Definition 2) and xg is quasi-

analytic. Then A is C°scalar on R if and only if there exists an equivalent
norm with respect to which X is a Banach lattice, with -

(XM7* = [peX*| (A" x0) 1% is positive-definite].

With respect to this ordering, iA generates a positive-dqﬁnite group.

Proof Suppose X is a Banach lattice, with the given (X*)*. For
@e(X*)*, since x, is a quasi-analytic vector (see comments after Definition
10), there exists a unique positive measure E, such that

p{d"xg) = [1"dE, (), n=0,1, 2,
R

Let C,(R) = {continuous complex-valued functions of compact support}.
For fin C,(R), define 8(f)eX** by

[B(f)](m)-:'j'f(r)dE @, for pe(X**.

Note that the uniqueness of E, guarantees that 0(f) extends:to a linear
functional on X*.

Let b = {0()| f eC. (R} Y =D, in X**. Define:an operat.or S‘oén Y by
D(S) =D, S(B(N)=0(f f), where f,(t)=1. We wish to show.that iS
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generates a positive-definite group. By [47, Theorem 3.20, it is sufficient to
show the followmg

1) D* ={0()feC.(R), f()=

vectors (see Definition 10).
2 {YE*
To prove (1),

@ e(X*)", then
lp{S"8(N) =I]t" f(HE, (1) <

It follows that ||S"& (/)|
as desired.

To prove (2), suppose ¥ €(Y*)*. The map f —y(6(/)) is a positive
linear functional on C,(R), thus there exists a unique positive measure "y,
such that

0, for all t} contains only quasi-analytic

+

% o is positive-definite, for all ¥ in (¥*}* and x in D™,

suppose B(f)eD*, and M =supilt||f() >0} If

M"[f(t)dE, () = M" ¢ (6(f)).
< 4MM @ (). Thus 8(f) is a quasi-analytic vector,

8(f) = { fdmy (1),
for all f in C,(R). Hence, if #(f)eD", fhen
Y(S"0(f) = J"t"f(f)dmw (1),

so that . {yr (S*8(f))}n=o is positive-definite, proving (2).

Thus, i§ gencrates a positive-definite group.

We now claim that § is an extension of 4. To prove this, we need to
show that the graph of A is contained in the closure of the graph of §.

So suppose p is a polynomial. For any n, let p, be a continuous function
supported on [—(n+1), n+1], with p,(t) = p(z), for |t| < n, and |p, (O < Ip(@),
for 5 <n+1.

There exists even N such that limy,.,.,p(8)/t¥ = 0. For any k, let M,
= sup{lp (0/t"] 11| = k}.

Suppose qu(X*) Then

L8 (1 (0)— @ (p(d) x0) = || (Pr—

P (D AE, (1)

<2 [ IpMIME, () <2M; [ tNdE,(2)

LEZ le| =k

<M, j:NdE.P () = 2M, (4" x,).

Thus [|8(pe)—p(4) xoll <
rges to p(A) xg.

The same argument-shows that S6(p,} converges to Ap(A4)x, as k = 0.
Thus the-graph of 4 is contained in the closure of the graph of 8, as desired:

8M, (14" x,l|; since M, ~0 as k —o0, O(p,)} conve-

icm
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Since i4 has an extension, iS, that generates a positive-definite group,
and x, is quasi-analytic, i4 generates a positive-definite group (see comments
after Definition 10). By Proposition 3.7 in [4], 4 is C%scalar on R.

CoroLLarY 12. If A is bounded and X is cyclic, then A is C%scalar on
(=144, |AN] if and only if there axists an equwalenr norm with respect to
which X is a Banach lattice, with

(X*)7T = {peX*|{p(A"x0)} 2, is positive-definite}.

{4}, g is positive-definite with respect to this ordering.

DeriniTioN 13, The vector x in (&2, D(A"™ satisfies a Stieltjes growth
condition " if

o

3, sup ld*x]) " = o

=0 kXn

If D(A)= D(xg, A) (see Definition 2), where x, satisfies a Stieltjes
growth condition, and 4 has an extension that generates a uniformly
bounded semigroup, then A generates a uniformly bounded semigroup
(see [2]).

If x, satisfies a Stieltjes growth condition, and {@(A"xp)} 2, satisfies a
Stielties moment condition (see Definition 6), then the solution of the
moment problem

0
(P(AHXO):‘ftndg(t)! nzos 17 2:
0

is unique (see [12]).
Essentially the same proof as in Theorem 11 gives the folIOng

THEOREM 14. Suppose D(A) = D(xq, A) and x, satisfies a Stieltjes growth
condition. Then A is C%scalar on [0, cc) if and only if there exists amn
equivalent norm with respect to which X is a Banach lattice, with

(X" = {peX*| {p(A"xg)}2

With respect to this ordering, — A generates a completely monotone serhigroup.

> o satisfies a Stieltjes moment condition}.

CoroLLARY 15. If A is bounded and X is cyclic, then A is C%scalar on
[0, l|411] if and only if there exists an equwalent norm with respect to which X
is @ Banach lattice, with

(X*)* = {peX*| {p(A"xo)}2 o satisfies a Stieltjes moment condition},

{e7*,, 4 is completely monotone with respect to this ordering.
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Weighted inequalities on product domains
by

SHUICHI SATO (Sendai)

Abstract. We prove weighted integral inequalities between the Lusin area functions and the
nontangential maximal functions of bikarmounic functions on product domains, Furthermore, we
study the duality of weighted BMO spaces and weighted H' spaces in the two-parameter theory.

~ §1. Introduction. Let A(u) and N(u) be the Lusin area function and the
nontangential maximal functmn respecnvely, of a b1harmon1c function u on
the product space R} xR2™!, where RI™'=R¥x(0,00) (i=1,2).
In this note we consider a weight function w which satisfies the two-
parameter analogue of the Muckenhoupt 4, condition and we prove the
weighted L7-“norm” inequalities:

INGle < clldGlly, (0 <p <)

for biharmonic functions satisfying a reasonable condition (see Theorem 3 in
§3). This is an extension to the weighted LP-spaces of a result of Gundy—
Stein [13]. For the proof of Theorem 3, results of Wheeden [23] (see also
[11] and [14]) about harmonic majorization and H” spaces of conjugate
harmonic functions are extended to the case of biharmonic functions on the
product domains (see Theorems 1 and 2 in §3). These results together with
the weighted inequalities for the Lusin functions and the nontangential
maximal functions (of the one-parameter theory) proved in [14] are applied
to obtain the desired result if we argue as in [13].

As for the converse, we have obtained only a partial result, which we
can derive from a weighted analogue of a result of Merryfield [16] (see also
[12], [13] and [15] for the unweighted case). We w111 state these results in
§ 3 without proofs.

Finally, we also study the duality of weighted BMO spaces and weight-
ed H' spaces on the product domains (see Theorem 5 in §3).



