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Nonhomogeneous initial-boundary value problems
for linear parabolic systems
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Abstract, The existence and regularity properties of the strict solution of z linear
autonomous parabolic system under general nonhomogeneous boundary conditions are analy-
zed in detail. Optimal regularity results, generalizing those known by the use of semigroup
theory in the homogeneous case, are proved in the Hdlder classes of [I7()]"-valued functions.

0. Introduction. We are concerned with C!([0, T], [ {(&)]1")-solutions of
linear parabolic systems of the following kind:-

'%(f, x)=A(x, D)ult, x) = f({t, x), (, 9 el0, T] x4,
1 (0, ) = o), xe@, |
Bix, Dyu(t,x) =g, x)}, (t,x)e[0, T] xéQ,

where f, @, g are prescribed C¥-valued functions and A, B are matrices of
differentia! operators; suitable hypotheses of regularity and ellipticity are
assumed on the data and on the pair (4, B).

Several authors have studied various types of solutions of problem (0.1):
in [11], among other things, the case N =1 is considered by means of
techniques relying on the abstract theory of sums of linear operators (see also
[6]) and on the extensive use of trace spaces. Many results concerning the
case g = 0 are due to [147, [7], as an application of the theory of analytic
semigroups. On the other hand, in [12] weak solutions of an abstract Hilbert
space version of (0.1) are studied, and an explicit representation formula for
such solutions is exhibited. ‘

Our technique here is in some sense intermediate with respect to those
of [11] and [12], since it is based on the extensive use of operator-valued
Dunford integrals, as in [11], and on an “a-priori” representation formula for
the solution of (0.1) which is very similar to that of [12]. Indeed, it can be
seen that our formula reduces to that of [12] in the I?()-case (see Remark
3.3 below); however, it is to be noted that the former seems to be better from
the point of view of applications to. linear nonautonomous as well as
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nonlinear parabolic problems. Such problems will be studied in a forth-
coming paper.

Keeping in mind such developments, it is important here to get a
solution # of (0.1) possessing an “optimal” regularity with respect to that of
data: this is achieved by choosing as evolution space the Holder space
C*{[0, T, [I7()]") and assuming suitable compatibility conditions on
initial and boundary values, which turn out to be necessary and sufficient.
Thus we find that «', A(-, D)u, B(-, D)u belong to the same space as f, g,
and the related “good” estimates hold: this is precisely what is needed for the
above applications.

Let us describe the subjects of the next sections. Section 1 is devoted to
preliminaries such as notation, assumptions and basic results to be used later.
In Section 2 we introduce the main tools of our technique: “resolvent”-type
operators and suitable Poincaré inequalities. In Section 3 we study existence
of the solution and derive its representation formula. Section 4 contains some
further technicalities which are needed in Section 3, where maximal regularity
of the solution is (tediously) proved. Finally, there is an appendix containing
the proof of a few results stated in Section 4. '

1. Preliminaries

1.A. Some function spaces. Our basic function classes are the Lebesgue
spaces I”(£2) and the Sobolev spaces W*?(Q), WEr(Q) (keN, pe[l, «]),
endowed with their usual norms; we denote by [IP(@)1" and [W:?(Q)]",
[WEP(Q)]Y the corresponding spaces for functions f: 2 —+C¥ N = 1. In both
cases, the IZ-norm (resp. the W*?-norm) of f will be denoted by | f], or
If 15, (resp- I ll,p Or_ﬂf”k,p.ﬂ)-

If Yis a Banach space, we will usually consider spaces of continuous
functions [0, 7] — Y: namely, the whole space CU(Y), the Hlder classes
C4(Y) (fe]0, 1D, the spaces C*(¥) and C***(Y), keN", whose definitions
and norms are obvious; in particular, the Holder seminorm of a function f
will be denoted by [f] chn, (B e]0, tI). We will also use the space

B(Y):= {u: [0, T1 = Y: |jullap, := sup [lu(®lly < co}.
ts[0,T] )

1.B. Setting of the problem, assumptions. Let 2 = R* be a bounded open
set with C? boundary. We consider the following linear differential operators
with complex-valued coefficients, defined for xe:

n

Y a*(x)D,D;+ Y a*(x)Dj+a™*(x)I, hk=1,..., N,

5f=1 i=1
[

> WD+ (0L rhk=1,.., N,

j=1

(1.1) AM(x, D):

Il

I

(1.2) B *(x, D) :

where N 2 1 is a fixed integer. Under sﬁitab__]p_ ellipticity’ assumptions on the
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coefficients of the operators {4 and {B"™", we are going to study the
following evolution problem:

r k N

%(1‘, x)= 2, [A™(x, D)+wd™]u (z, ) =f"(t, x),
k=1

h=1,..., N, (t, x)€[0, T] x 2,

(1.3)< uh(O, x) = (P’l(xL k=1,..., N, xe8,
g _
Y B, Dyut(t, ) =g, 6, r=1,..., N, (1, ) €[0, T1x 00,
HAW h=1 -

where Te]0,00[, weC, § is the Kronecker matrix and {f*}, {¢"], ig'] are

prescribed data.

.The assumptions listed below will guarantee the solvability of system
(1.3) in suitable function spaces; such assumptions are essentially those
required in order to study the spectral properties in [IF (€)1, pe]l,co[, of the
elliptic boundary value problem ‘

N
AUR(x)— 3 A (x, D) U*(x) = F*(x),
14 < =1 .
B(x,D)U(x):= Y B"*"x, D)UMx)=G"(x), r=1,..., N, xed;
h=1

h=1,...,N, =xe@,

they are formulated in [87, [9], [5]. It is worth while to recall them and
quote the related results in the most useful way for the study of problem (1.3).
For each (6, x, £, DeR xQ xR" xR set

A(x, £, 0= Y, alf(x)¢& -+ 8%

5j=1

HypotHesis 1.1 (8,-root condition). There exist 8y eln/2, n[ and c, > 0
such that

Jdet {A%*(x, &, 0 = oo [ELP+21Y V{8, x, &, el —bg, 6,] xQ@ xR" xR;
in addition, for each (8, x, £, 1) €[~ 84, 8o] x 82 x R" x R with |E|*+t* > 0 and
E-v{x) =0, the polynomial

t —det {Af*(x, E+Tv(0), 1)}
has precisely N roots tf (8, x, &, 1), j =1, ..., N, with positive imaginary part
(here v{x) is the unit outward normal vector at x €9).

In other words, Hypothesis 1.1 says that for each #e[—48,, 6,] the
system of differential operators

Al (x, D, 8/3t): = A" (x, D)+5* ® 32/ 2

is uniformly elliptic in £ xR in the sense of [4].
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For all xed® and £eR"—

10!, we denote by A, the adjoint matrix of
LAME e : ‘
teig s

(AR} = (det [A}*))- {4+ 71

Concerning the boundary operators |B""], we assume that for each
x €00 the order of the operator B~"(x, D) does not exceed m,,, where m, ,
=0 or m,;, = 1. This means that if m,, = 0 then no derivatives appear in
Br(-, D) = B""(-), so that each function b7" vanishes identically, whereas if
m,, =1 then at least one among the functions b}" does not vanish. We
denote by B""(x, D) the principal part of B*(x, D), ie. that having precisely
order m,,. Note that even if m,, = 1 it may happen that B""(x, D) =0 at
some x e8; however, we require the following

Hyroruesis 1.2 (f,-complementing condition). For each (8,x,{,tf)e
[—6y, 00]x02xR"xR with [¢*+t* >0 and E-v(x) =0 the rows of the
matrix

. :
{Z ( ‘f+7v(x))Ahk(xs £+Tv(x))1rk 1
=1
are linearly independent modulo the polynomial

N
=[] (=7 6, x, &, 1)

NETRE
Finally, concerning the regularity of the coefficients of {A%*}, {B"), we
assume:

HypoTHests 1.3. Ser m,:=max {m,,: h=1,..., N}; then
ay, aff, a*eC(), sji=1,..,mhk=1,..N,
bR b eC? @), j=1,..,n hr=1,..,N.

TueoreM 1.4, Under Hypotheses 1.1-1.3, for each pe]l,oo[ there ex:st
4, >0 and C, >0 such that for each A in the sector

Sp00 = izeC: |arg(z—A,)| < 8,!, ‘
and for all Fe[I?(D)]%, GEH w*" ™P(Q), problem (14) has a unique
solution U e[W>P(Q)]", which sat:sfles in addition

(15 3 @i+ 0y,

k=0

N ' L
< G, {IFN,+ ¥ inf 10" V7,4 (4] + 1 v,

re=1

where for =1, ..., N the infimum is taken among all V'eW> "™ (£) such
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that V' =G on 8Q (in the sense of W> ™
on 0Q).

1/p, . .
e (89Q), ie. in the sense of traces

Proof. The existence of U is proved in [9, Teorema 537; the depen-
dence on 1 is proved in [5, Theorems 12.2-13.1]. m

Remark LS. It is not restrictive to suppose that the numbers m, satisfy
M <My, r=1,..., N—1; as m, is either 0 or 1, we can define the integer
rg, 0<ry <N, as

fm#0forr=1,..., N,

1.6
(1.9 otherwise.

{0

roi=

°" |maxlr: m, =0
Hence we can divide the N boundary operators {B’(x, D)} (see (14)) into two
classes, one of them possibly empty:

(17) Bo(x D) BO(x) lBr( )ll&r‘(rd’ 1(x; D)= {Br(x D)}r0<r

"Note that By (-) maps [W“’(Q}]N into [W*?(Q)]°°, whereas B, (-, D) maps

[W2r(@1" into [W'?(27" ™. Correspondingly, the data (G7} }i<ren ©an
also be divided into two classes :

(18)  Goi= (G} 1 crany €ELWHPEOTS,  Gy:= G, <pay WP (@1

Remark L.6. If we are able to solve {1,3) for a certain @ eC, then we
can solve it for each weC. Thus instead of (1.3) we can study

e

h

—{t, x}— f: [A" (x, D)— A, 8% (t, x) = f*(z, x),
ar k=1 _

h=1,...,N, (t, x)e[0, T] =1,

(19) < w0, x)=¢"x), h=1,.., N, xef,

N
Y B (x, D)u*(t, x) = g" (¢, x),

h=1

B(x,Dult,x) =

L r=1,..., N, (r, x)e[0, T]xoQ,

where A, is the constant appearing in Theorem 1.4. The elliptic boundary
value problem which corresponds to (1.9) is now

AU —A(x, DUX =F(), xeQ,
(1.10) By (x) U(x) = Go(x), xeéQ,
By (x, D)U(x} = G, (%), x€68Q,

where we have set

. v ,
(1.11) Al DU )= | T [A% (x, D)—2, % U*(X) Jpuss
: k=1 o
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problem (1.10) is uniquely solvable for each 1 belonging to the sec-

tor Ss:= 1z€C: |argz] <] and for all Fe[LF(@1%, Goe[war (@)1,

G, c[WP ()] "%, In addition, the estimate (1.5} holds for each 1€S5,,.
Let us define what we mean by a solution of problem (1.9).
Dermvimion 1.7. A striet solution of (1.9} is a function

ueCH[L(Q)Y) N COW>? (1Y)

such that:

i) dujet—A(-, D) = f in the sense of Co([Lr(2)1").

(i) B’(, D)u =g in the sense of CO(W*™ ™" ), r =1,
in the sense of traces on 8Q for each fixed 1.

(iif) #(0, ) = @ in the sense of [W>F(Q)]".

1.C. A little bit of interpolation. If X,Y are Banach spaces with X =, Y
{continuous imbedding) we can construct the interpolation spaces
(X, ¥);-p,00 (0€]0,1]) in the following way ([13]):

.» N, ie.

Derinvimion 18, (X, ¥);_4 ., is the set of xeX such that there exists
a function #: 10,17 — X differentiable as a function ]0,1] — ¥, satisfying:

() sup '@y <o,  sup t' 7w (B)lly < oo.
tell, 1] 1g]0, 1]

(1) 2{0) =x.
We set

nf {sup 7 lufnllx+ sup 17 @y}

1%llex, 74 - P
w®=x re]0,1] 1)0,1]

Lemma 19, Ler f eCHX)INC (Y with a,8 €TO[. We have:

@) feB((X, Y)1-p,e) where 8 = Bf(1 +p—a) and

C(C( ﬁ) l[f]ca(x}—i_[f ]Cﬁ(Y)J

(i) If 0 €108, then f' €C*(X, Y),_, ) where 4 = (B—a)(1+B—a} and
< C(a, ﬂ! 0') {[f]cm(x)+[f’3cﬂ(r)} .

||fl|cc,(x‘y,lma’w, <
Proof. (i) It is easy to see that if t,&[0, T), then f'(r,) satisfies
Definition 18 with

uft) i =v (e TE7),

L N, Vo0 =

v :=r"1 [ [ (to+ ) @ ((r—s)r)ds
R

@ being a C® real-valued function with support contained in ]—1, 1[ and
such that [pe(x)dx =1.

Part (ii) follows by interpolation via the Reiteration Theorem. m
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If we choose in particular X = [W>P{Q)V, Y = [I2(Q)]", pe]l, oof, we
can characterize the interpolation spaces (X, Y); g, -

Derivrmion 1.10. (i) Let NeN*, s> Q. The Besor—Nikol'skii spaces
[B42(RM]Y = [B*P(R™]" are defined in the following way:
(a) If s<]0,1[,

[Bs'p(R")]N t=if E{Lp(R")]N;
[fJepi=sup A ~*[ [ £ (x+h)~f (0P dx] """ < o)

he R7 Rt
M) If s=1,

[BY?(R"]" := {f e[I? (R"]™:
[fJer, = sup b ™[ | [f e+ B+ (x— =2 (oPdx]"” <

he R"
(c) f s =k+0o where kEN, ge]0,17,

[B** (RN := |f e[W*P(R]Y: D*f e[BP (RO} VIy = k}.
A norm in [B*?(RY)Y, s =k+0, keN, ae]01[, is given by
1A, on = Wl = 1 Thnt Y. [D7f e

lr|=k
an obvious modification is required when $ =1, in which case we write
[ f1l4,1,p to denote the B'-P-norm (in order to avoid confusion with the WP,
norm).
(i) The space [B*P()]" consists of the restrictions f|, such that

fe[B**(RM]"; a norm in [B*?(Q)]" is

liglls,z,2 = llglls,p 2= inf- {Lf]
i P Ao=8 s, p. R?

(writing ||gli4.s,, instead of |lg|l;, when s is an integer).
The characterization of the spaces (X, ¥),_, ., is the following:
Prorosiion 1.11. If 8€30,I[ we have:

@ (W P (@1", [P (D)6, = [BP (] (keN");
@ (WP @ (DY, (T — 6, = [BE*7(Q)]%,
provided 0 % 1/(2p);

@) ([Wir @1V, [P (Q1M)1-0,0 = [BEP (DT,
provided 6 % 1/(2p), 8 # 1/2+1/(2p),

where we have set

(1.12) B3P (Q]Y:={fe[B**?(]": f =0 on 32 if 20 > 1/p},
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(1.13) [Wi"’(.Q)]N =1f E[WZ'F(Q)]N: B(:, D)f =0 on 02,

o s r=1,..., N}
(1.14) [Bz#""’(f))]” T= {f E[Bza"’(.Q)]N: B (D) f =0 on 2 .

if 20 >m,+1/p, ¥==1,..., N},

Proof. For the case N =1 see [15, Theorems 4.3.1/1-4.3.3(a)] and [11,
Théoréme 7.5]. In the general case, N = 1, one can proceed by adapting the
argument of [1] with the aid of Definition 1.8 and of Lemma 4.2 below. We
omit the details. m '

2. Tools

2.A. The operators R(4), Ny(4), N{(4). Theorem 1.4 allows us to cons-
truct three “resolvent” operators which play a fundamental role in our
theory. ‘

For fixed pe]l,oo[ and for each 1&S,, we denote by R(4): [L"(2)]"

= [W*P()V the operator defined by

AU~A(-, DU = F in @,
1) v RM)F@{BO(-)U:O, B,(,D)U =0 on 80
By Theorem 1.4, R(4) is well defined and we have
2
(2.2 2 (L+[A) 2 |ID* R(A) Fil, < C,iIFl, VA €Sgy-

CR=0

If we set Y= [IP(Q)]Y, Ds:=[WZP(2)]¥ (see (1.13)), and Au:= A(-, D)u,
then (2.1) and (2.2) say that R(1) =(A—A)"'e.¥(Y) and IRl g, < C/Al
thus A is the infinitesimal generator of an analytic semigroup [E (Vo0
which is strongly continuous at ¢ =0 since D, = ¥. The semigroup can be
represented as '

(2.3) E(s) =fe*R(Aydi, s>0, yelIr(@I",

where {, means (2m)~' [, and y.is a curve contained in S, and joining ‘

we™® to oce® (@e]r/2, 6,0); for instance we can take
(24) yi=uzeCiz=re* rz21UlzeC: z=¢" |o < 0).
The main properties of E(-) are summarized in the following
Prorosimion 2.1. We have:

O EOYCY), ImIEQY-dly=0 Ve
() E(C)YeCh(y), felo, 1L < ¢ e[BL#(@)]",

Be1/2p), 1/2+1/2p)) - (see (1.14).
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(i) E()YeC'(¥) « WeD,: in this case %E(g)w = E(&) Ay.

() EC)ypeCt™H(Y), Bel0l] < yeD, and Ay e[B¥ (D],

B¢ 11A2p), 1/2+1/2p)].

Moreover, in each case E(-)\ depends continuously on \r in the corresponding
nerms.

Proof. This follows by the results of [14] and by Proposition
L.11(ii). m

Next, by using again Theorem 1.4 we construct for fixed pe]l,=[ and
for each 1€S,, the operators No(4): [W2P(Q)]® - [W2*(2)]" and N, (A):

[lfV""(Q)]NHr0 = [W2(Q)]" (r; is defined in (1.6)) in the following manner:

AV—A(-, D)V =0 inQ
25 V =N,(LG ;
@3) o(4) °¢{BO(-)V=GO, B,(.D)V=0 on 30,
(26 W=N,()G, < {EW~A(-,D)W=0 in 2,
BD()W:O, Bl(',D)W:Gl on 69-

By Theorem 14, No(4) and N,{1) are well defined and satisfy

2
27 ) (1+AD ¥ D Ny () Goll,
k=0
< Cpinf {ID* )l + 1+ DI, ¢ e[W (TP, ¥ = Gy on 82},
(28) X (1+A 2D N (A G,

k=0
< Cyinf YIDY(l,+(1+ (D2 |l,: v e[W (@], ¥ =G, on 0Q).
The reader can amuse himself in proving the following simple
Lemma 2.2. Fix pe]l, oof and let A, HESy,. We have:
@ AC,DRAY =ARAY -y  Ve[Lr @IV
(i) AR()Y =y +RDYA(, D)
—No(WBo( )y =Ny (B, (-, Dyy Wy e[W2()]".

(@) [A(, D)R(A)—RAA(, D)y

= —No@WBo(W—N (DB, (. D)y Vi e[ WP (@)]".
) [RA-RWI¥ =u—-HRAOR@WyY W e[LX(@]".

4 — Studia Mathematics 922
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(V) [No(A—No(e = (u— YR Nolu¥o
W e[W2P(@)]°

(vi) [N;(D)-N @]y, =@—HRAN ),
v, e[Whe(@1 " (see (1.6). m

Remark 2.3. By Lemma 2.2(vi{vi) we see that the operators No(4),
N (), as well as R(1), are holomorphic functions of 4, defined in Sy, .

(see (1.6)).

2.B. The open set . We have assumed that Q is a bounded open set of
R" with C* boundary. For each x € set d(x) : = dist (x, #Q) and for g > 0 set
Q{p):= {xe: d(x) <o}

Lemma 2.4, There exists go > 0 such that d(-)eC*(2{g,)). Moreover, for
each x €€ (g,) there exists a unique y(x)€8Q such that d(x) = dist(x, y(x))
and such that x, y(x) and y(x)+v(y(x)) lie on the same line (v(y(x)) is the unit
ourward normal vector at y(x)). Moreover, x = y(x) and x =»v(y(x)) = v{x)

belong to C*(Q(g,)) and may be extended as functions in C* ().
Proof. See [10, Appendix]. m

Lemma 2.5. Fix pe]l, cof. There exists K,>0 such that for each
2€]0, 0o] (0, is given in Lemma 2.4) and for each u e[W2?(£)]¥ we have

29

1Dull,, gy < K (o|lD? Ullp, 0 T2~ |“”p.n(o)} .

Proof. Estimate (2.9) is classical, except for the dependence on ¢. The
latter can be achieved by adapting e.g. the proof of [2, Theorem 4.14], m

Lgmma 2.6 (Poincaré). Fix pe]l,co[. We have:
(i) There exists K, > 0 such that for all p €10, g,] (see Lemma 2.4) and
felWg (2"

(2.10) L p 0@ < KpellDf |l a0 -

(Zii) If 9;:]0,1/(2;)}[ there exists K, 4> 0 such that for all ¢ €]0,00] and
fe[BP Q)]

(2.11) 1,00 < Kp,o @2 1f1120,p, 000 -

(i) If 0e]i/2p), 1/2+1/2p)[ there exists K, o> 0 such thar for all
g€10,00] and f e[BF*(2)]Y (see (1.12)

212 11,00 <

Proof. (2.10) follows easily by using the properties of € and the fact
that f = 0 on 8Q; (2.11) is a consequence of (2.10} and of interpolation theory
([15, Theorem 4.3.3]). Finally, (2.12) follows by applying first (2.10) to f and
then (2.11) to Df. m ' '

28
p e ”f“za PO -
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An immediate consequence of Lemma 2.6 is a refinement of the estimate
2.7. :

Lavma 2.7. If 0e]0,1/2p)[ there exists C(p. oo, 8) such that for each
Goe[W2P(2)71°

2

2 (LAY T2 D" No (A) Goll, <

k=0

(2.13) C(p, 2o, O)inf {ID*y},

+(LHIAD O W20, W ELWP(DTC, ¥ = Go on 0R).
Proof It is enough to apply (2.7) with  replaced by ym,, where
7, €C™(2) is such that:
1 on @3:=Q(F(e0 AQLHIA)TH),
(2.14) "‘"{0 on Q—0(go A(1+]A) 13,
1Dl < cLog v (1+1ADY2), ID*mall o < clo

Indeed, by (2.14) and (2.7) we have for each e[W>2 ()] with = G, on
a0

Zp(1+]AD]-

2
Y (L+A) TH2|ID* No (D Goll, <

k=0

e 1P+ (L D Wl g5

noting that there exists c(go) > 0 such that

c(go) ™ (1 +1A) Y2 < go AL+ S eloo) A +1AD 72 VA S,

we use (2.11) and the result follows. =

3. Existence and representation of the solution. We suppose that Hypo-
theses 1.1-1.3 hold and we fix pe]l, o[, x€]01[ with a¢{1/(2p), 1/2,
1/2+1/2p)} (such values of o are critical in some sense; see Remark
3.2 below). For notational simplicity we set
Y= L@

X, o= [Whr (@]

Yo :=[IP(@)7°,
Xo:=[W>P ()T,

Y:=[IF (]

G.1)
X :=[w2(Q)]",

We choose the data of problem (1.9} in the following way:

(32) f={fMeC(Y),

(3.3) = {g"12, eCH(XJNC*F 1 (Ty),
(34) g1 = tgr}y—«ro-l’l eCH(X)NCT2(Ty),
(3.5) o = {p"h-1€X.

In addition, we assume the following compatibility conditions:
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(3.6) Bolx)p(x) =g0(0, x), x60Q,
(3.7) Bi(x, D)e(x) =g,(0,x), xedf.

Tueorem 3.1. Under the above assumptions, problem (1.9) has a unique
strict solution u, which is given by the following representation formula:

(38) u@=ult,") =4e*R(Apdi+ j‘{,‘e""mR(,l)f(s) d.ds
¥ 0y

¢ !
+ [{e* "M Ny (A go (s)dAds+ [{e*~ 9 N (A) g, (s)dA ds,
oy O ‘

where y is the curve (24), f, means 2m)™* |, and f (), go(s), g1 (5) stand for
(s, ), gols, ) 9.(s, -). Moreover, for each 610, 1/(2p). 10, a] the following
estimate holds:

B9 W1l o+ leoy < Co l-t 1S O+ T*[L1 Ly eJteny
+ {gb]ca(yo) + [gl]ce(xl) -+ [gl]cﬂ+ 1,’2(}:1)] }'

Proof. Uniqueness of the strict solution follows by the theory of

analytic semigroups (see eg. [14]). The proof of existence consists of four
steps: .

Step 1:
Step 2:

Formula (3.8} is meaningful,

The function u given by (3.8) is differentiable in Y and (3.9)
holds.

u solves the equation of (19) in [0, T] x Q.
u satisfies the boundary conditions of (1.9).

Step 3:
Step 4:

Proof of Step 1. This is the simplest part of the .proof, but it is worth
while' performing it carefully since we use a complex variable change which,
will appear systematically in the sequel; thus the details of this calculation
will not be repeated any more.

Proposition 2.1(i) immediately gives E(-)p eC°(¥) and E(0)p =
15 defined in (2.3)).

Fix 0<s <t €

@ (E(C)
Tand set g:=(t—s)A in the complex integral
1(t, 5) :=Fe" "I [R(A) £ (8)+ No {2 go (8)+ Ny (M g, ()] dA.

¥

‘We obtain

It, )= § e [R{u(t~s)

-

)18+ No(ult—5)"")gols)

+ Ny (u(t—5)"")g: ()] (t—5)" " dp.
Now we remark that the curve (t—s)-y is homotopic to 7 in S, and that the
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integrand is a holomorphic function of u in Sp, (Remark 2.3). Hence we can
replace ]f(,_s,_,, by 3&, so that by (2.2), (2.13) and (2.8) we get for a fixed
6¢10,1/2p)L
Y
e, sy sc_[e‘***[ — 29
¥

s+ul - (t—s+|u)?

17l + ( )ngotsnsxo

—8+ |y

(t—s)!/2 J |
+(t—"s+lﬂ|)”2 ”gl( )”Xl
e [1 +'(t""s)a_1 +(E—s)—1l2] ”rfl'CO(y)+|lg0||Co(X0) +”glllco(x1)} -

This estimate immediately yields that formula (3.8) makes sense and for each
8 €]0,1/2p)[

+( t—s
r—s+|y

llu ()= ¢lly < |E@) @ - olly +0(t%)

A similar calculation shows that u eC°(Y).

as t]0.

Proof of Step 2. Actually we will prove that ' €C%(Y) and

(3.10) u'(t) = {1 R(A) .(p di+ _Effle"-m RYLFS ]
¥ Gy

+ 2 N [g;(9—g;(0]}dAds
=0

I
+HE [RWSO+ T N; (B, 0] di.
¥ J=

The hardest task consists in verifying that formula (3.10) is meaningful, ie.
that all integrals involved are in fact convergent; next, we will show, by a
usual approximation procedure on intervals [§, T], § > 0, that formula (3.10)
indeed coincides with u'{t), and finally we will prove that ' (t), constructed in
10, T], is in fact a continuous function in [0, T].

First of all, fix #€10,1/(2p)[~]0a]. Using Lemma 1.9(i), Proposition
1.11(i) and (3.3), we certainly have

feC’(Y), g1 eCOX)INCPTHA(Y),  goeC(X)nCT(Yy),
(3.11) go € B([B*? (1Y),
”gﬂ (t)ulﬂp l[:g()]cﬂ(x )+[gl):|c9(y 3] Vt E[O’ T']‘

By (2.2), for each 7 > 0 we casily get (via the change p:=(t—s)d; we will
mention this fact no more!)
(3.12)

{7~ RULT6)—F @ dhdslly < o'Tf o
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on the other hand, (2.8) yields
(3.13) |27 N1 (D) g1 (5)~g1 )] d ds|y
Cy

' <etf {[91],30(,(1) +1g1]100+ 1/2(,,1}} ,
and finally by (2.11) and (3.11)

(314) H‘o“‘}:le“_”l NO ()') [gO (S)“g()(t)] d‘l dS”Y < Cte {[gU]Ca(XO) + [gb]ca(yo)} .
H

The remaining integrals appearing in (3.10) are obviously convergent, so that
(3.10) is meaningful.
Next, we consider the following functions defined in [8, T, é > O:

t—g 1
W) =utt, ) i=fe* R @di+ [ e [R5+ ) N;(Dg(9)] dids,
b4 0 v Jj=0

where £ €]0,6[. By using again (2.2), (2.8), (2.13) and (3.11) it is not difficult to
show that if ¢ [0 then w*(t} —»u(2) in Y, uniformly in [é, T], whereas (u%)' (1)
tends in Y to the right-hand side of (3.10), uniformly in [, T7]. Thus &’ is
given by (3.10) and 1s continuous in 0, T].

In order to get continuity at ¢ =0, we rewrite u'() as

J

1
W' (£) = fe* [AR{A) o+ R{4) f (O} + _ONj()L)gj(O)] dA

t 1
+ [ ARMLS ) —F 0]+ X AN; (D [g,(8)—g; (0]} A
0y Jj=0

+e ROLF O~ OT+ 3, 5,0 Ta,0-0, 0143
=il 1,4+ 1.
The same arguments as before now lead to
GAS) Wl + sl € et {0 oo+ [91d oy + 91 Tgos 1720
' +[g90]coe gy + 9000y )

concerning I,, we invoke Lemma 2.2(ji) and the compatibility conditions
(3:6), (3.7) and rewrite it in the following way:

Iy ={e*[AR{4) ¢+ No(2) Bo @+ N (1) B, (D) o+ R(D)f (0)]dA -

=fe*R(I[A4 (D) o +f (0)]dA
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(here A(D) stands for A(-, D), see (1.11), and B,, By(D) stand for B,(),

B, (-, D). see (1.7)). Now by Proposition 2.1(i) and (2.2) we conclude that
I = AD)p+f O+o(1) as 10, [y < cllAD) @+f O)ly:
recalling (3.15) we easily find that u'(0) = A(D)p+f(0) exists, so that

u' €C°(Y). Moreover, by (3.15) and the equation u'—A(D)u =f, (3.9) also
follows.

Proof of Step 3. For each z€]0, T] rewrite (3.8) in the following
manner:

(.16 wlt) = ¢ R() pdit [0~ RA)LF (9= (0]
¥ oy

1

+ 2 N;(Ag;(8)—g; ()]} dAds

J=0

1
+{17 @ [RA) f)+ Y NyHg (0] d2
y j=0
1
—fAT [RDF@O+ L N;(Dg; (0] da.
1 F

By using once again the estimates (2.2), (2.8), (2.13) as well as (3.11), it is easy
to see that the first three integrals in (3.16) are convergent in . X
= [W2P((2)]", whereas the last one vanishes, since the integrand is holo-
morphic in S,, and decays as |4]~ 17 for large |1|. Hence we can operate with

A(D), obtaining by Lemma 2.2(i)

317 AD)ul) =fAe* R pdA+ tHe“"“ ARMLS (5)~f )]

¥
1

+ 3 AN; (3 [g;(5)-g;(0]} dads

Jj=0
1
+fe*[R(A) f )+ X N;()gfn]di—fa~* e (f)dA.
¥ j=0 ¥
By the Residue Theorem the last integral equals f(z) and consequently a
comparison between (3.17) and (3.10) shows that
AD)u)=w'@®)=f@®), te]0, T].

Recalling that f, u' €C°(Y) and that u (0) = A (D) ¢+f(0), we conclude that
A(D)ueCO(Y), and the equation of (1.9) holds. -

Proof of Step 4. As we saw before, u(t)eX so that we can operate
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with By and B; (D) on u{f). By (3.16) and the Residue Theorem we have

By (D)u(r) = [e"™* B, (D) N () [g1 (s)—g, (1)1 dA ds

0y
+{A7 e By (D)N{ (g, (dd = g, (1),

and similarly we gel Bou(r') =g'0 (t).
The proof of Theorem 3.1 is complete. m

Remark 3.2. The values o =1/(2p), a =1/2 and a = 1/2+1/2p) are
critical for different reasons. When o = 1/2 it is not clear which is the right
space for g, (see (3.4): it should perhaps be the space CUHX )NC*1(Y))
where C*'(Y)) is the Zygmund class of functions heC®(Y,) such that

sup (t—s)“l“h(t)-l—h(s)—-2_h((t+s)/2)”r1 < 0.
O€s<tsT
When o = 1/(2p} or a=1/2-+1/(2p) the problem is that the interpolation
spaces ([W22(Q]Y, [I2(2)]"),. have not been concretely characterized, so
that we are not able to state the explicit compatibility conditions in our
maximal regularity theorem (see Section 5 below),

Remark 33. By Lemma 2.2(v},(vi) we have (setting ry:= N—rg)
[IN; (A = N; (O] 8 = ~IR(IN{Ok;  Vhye[W2H (@4 j = 0,1;

hence formula (3.8) can be rewritten as

Uty = {e‘iR(l) qod&—j':fie“‘s” R4 i N;{(Q) g;(s}dAds
bl 0y J=0

1
+ [ fet M R() f(s)dA ds,
oy
or, recalling (2.3) and denoting by 4 the infinitesimal generator of E(),
H i : H
(318} u()=Etio+4 VE(t—s) Y N;(Oyg;(s)ds+ [E(r—s) f (s)ds.
4} =0 0

‘Formula (3.18) looks very close to the representation formula (1.1) of [12].
However, (3.8) and [12, (1.1)] act in different situations: in the latter, the
functions g, are less regular than ours, and consequently there is a need for
extending the operators N ;(0) to larger trace spaces: this is possible, due to
the Hilbert space framework of [12].

4. Technicalities

4.A. Approximation of B**’functions, Let fe[B* ()1, ae]0l[,
keN*. By definition, there exists a function F e[B**?(R"]* such that

F'ﬂ "'_"':f! “FHZG,p,R" “'<~.2”f”20,p,ﬂ'
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For ¢ > 0 set

Fo,(x):=e"" [Fo(e™ ' (x—y)dy, xeR,
®
@ being a scalar even function in C®{R”) with support contained in the unit

ball and such that {_,¢(x)dx = 1; next, define

4.1 Fo(x):=Fg.(x)—&(dF,/0e){x), xeR"

for= z|!2'

Remark 4.1. The approximating functions of type (4.1) play a fund?.-
mental role in this paper; hence the above notatiorr (with subscript &) will
always refer to this, and only this, kind of approximation.

The following properties are proved in the Appendix.

Lemma 4.2. Fix keN", ¢ €]0,1[—{1/2} and let f e[B**?(Q)T*. Then for
each ¢ > 0 we have:

(I) ”fe_f”p,ﬂ € CE;U”f”Za’,p,ﬂ'

(i) N5 =fN20.0 < 8"l fll20pn V0100,
(i) D* fll,0 < ™ | flagpe  VHEN, B> 2.
(iv) [IDf,—Dfllp0o € €™ | fllzgpe i o€T/21L.

Finally, if f e[WYP()1* rhen
W Afe=Sllpe< cciDfllp, 0
Proef. See the Appendix below. m

Lemma 43. Fix keN™, o €]0,1[— {1/2) and let f e[B***(Q)}]*. Then for
each ¢ > 0 we have

@ ID"(8/elp,0 < &> M| fll20,p.0

@) N8/ Bellzg, 50 < 827 H I fll200p,0
Proof. See the Appendix below. m

YheN,
¥ €]0,1[.

The above lemmata imply the following simple but useful corollary:

CoroLLARY 4.4. Fix keN™, 6€]0,1[ - {1/2), and let f e[B*"P(Q)]*. Set
%i=[f) .12, t >0; then for t>r >0 we have:

W 10" %o < et ™| fllaepo VAEN, h> 20,

@ D"~ 1 Mpo < [ ~1""%2| fll20p0  VhEN.
(iil) 1% — %2050 < = fllznpe  VOEI05].

@) DO/ My < €t" "2 fllz0pe  VhEN.

(W) ot/ otlzope < c® " IS lzpw  YOEI00].
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Proof This is a straightforward consequence of Lemma 4.2 and of the
identity
O/ =t L8], 12 W
4.B. Further properties of Ng(4), N, (). Recall that r, is the number
defined in (1.6), By = By (-} and B, (D) = B,(-, D) are the boundary opera-
tors defined in (1.7), and the spaces Y, X, Y, Y, X, X; were introduced in
(3.1).

LemMa 4.5, Fix o€]0,1[—{1/21/2p)} and let  he[B**?(Q)],
g €[B**?(Q)1° be such that Boh =g on éQ if o > 1/2p). Then for all ¢ > 0
and 6<]0,1/2p)[] Q0] we have:

2

4.2 ¥ (141 H2ID*No(4) (Bo ho—golly

k=0
gc[eza~3(1+|/1|)—L/2+g2a'—2+82¢-29(1+|;{'|)1—6+(1+|Ai)1wa]
X {lHll20, 5,07+ 119ll20, 5.0} -
Proof. Set
2
Iopt= 3, (1+]A) "2 ||D* No{2) (Bo k.~ gy -
k=0

Case 1: ¢€]0,1/2+ 1/2p) [~ {1/(2p),1/2}. We apply estimate (2.7) with
== (By h,—g.) n,, where #, is defined by (2.14) (recall also Remark 4.1). We get

Iy < ¢ {[ID? (Bo = gllp, o, +(1+|ADI1Bo he —gall )
< ¢ Iy, +gailxy + (1 + 12D 0IBo (e~ ) .0,
+1Bo h—glly, 0, +11g = Gelly, 0,1} -
Now by Lemma 4.2(iii) and (2.11) we obtain for a fixed #¢70,1/(2p)[~10,¢7:
To < ¢e® 72 illlag,p,0+ 119 20,p,0}
+e (A = {lh— Rlizg, p, o+ 11g: —ali2,p,0) +¢|1Bo h—3ll 0 -

Finally, we use Lemma 4.2() and (2.11) (or (2.12) if ¢ > 1/(2p)), deducing

To < [ 26N (4D + L+ 1A' =Y bllag, 0+ 920,10}
which implies the result.

Case 2: a €[1/2+1/(2p),1[. We apply again (2.7) with

0

OIS [Bo (9 (=g, (x)—d (3 (W(BO he—gz)) (X)]m @

where n, is the function (2.14) and d(x), v(x) are defined in Lemma 2.4
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{again, recall also Remark 4.1). Set for simplicity J*:= Boh,—g,, J := Boh
—g; then we get

o)

ar
v

@3) I, < c{

52
aJe ot

J5-E)).

p,ﬂ;_ H aV a\, € 82

On the other hand, by Lemma 4.2(ii) and recalling that d eC?(£2;) and
arjovelC (2)7° by Lemma 2.4, we have

Ji—d

+(1 +Il|)[

:=I1+Iz+13.

1D Ty, 0 < € {ltelixg +1gullxy} < €227 Ulhllza,p, 0 19|20 5,01

w15 <A G PG E)L

oJe
< c{(l A2 203
2a—1,p,0
aJ!

aJe }
F N ¢)

)N 171

+£20'— 2

v 5
Scle? A+ T+ T 4 2o 0
<ci

c e 31+ |ADY2 +2 2+ 1) | sap 0

20— 1,p,02

and therefore
4.4) I < e[ 3 (1) Y2 4627724+ 17 Il 26,5 0+ 1G] 20, p 1 -

Next, concerning I, as aJ%/ove[C'(Q]° we deduce by Lemma
4.2(v),(118)

(4.5) Iy < c(UH1 2 ellD* Il 0 < c (L A2 827 Pl 20,0

=
< es® (1A' Il 20,5, 0+ 191 20,2,0)

Finally, we have to estimate I,. Noting that J —d-8J%/dv = 0 on &2 and
using (2.11), (2.10) and Lemma 4.2(ii),(iv),(iii), a direct calculation yields for a
fixed 0€10,1/2p)[]0,0]

S
F 2171

2
I <c(1+]4) [uﬁ—.rnp_ﬂﬁ ”J—d—av—

are
D (.I—-d % )

P2

S e(L+ A 7O = Tllas,pot e (1HIAD2
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< &R (LA 1) 20, p, 0

oJ

+c(1+lil)1"2[ DJ—Dd=-

P82y
al ar
Dd (Ev“—“év—) +”dD2J ”p.m]

< el 20U+ ™ e (U + A2 422 2] Wl 20 g

DJ —Dd—a!—
av P 5
Now we remark that Dd=v and DJ =(dJ/8v)v on ©6; hence
DJ—-Dd(2J/év) = 0 on 042, so that by (2.12) we get

-+

P o,

+e(1+]A)y?

oy
DJ — Dd—
“ J Ddav

and consequently

(4.6) I, < c[2 (L4 |A)t 04201 (L+1AN2 422724 (L -+ AP ]
X {”h”h',p,ﬂ+“g“hr.p.ﬂ; .

By (4.3)4.6) we obtain the result. m

LeMMa 4.(2'._rFix o e]l/21[ - \1/2+1/(2p)) and let h e[B2*7 ()",
ge[B¥ L7()]" ™. For each ¢ >0 we have:

(@} If o €11/2,1/2+1/2p), then
2

. < (AN 1D gg- 1 g0 < €U+ AN W 20
oy

4.7) ki\:o(l + ) TH2 D% Ny () By (DY i lly < c[27™ 2 (1 +|4))* "Bl 20,00
() If o€]1/24-1/(2p), L[ and B,(D)h =g on 80, then
2z
(4.8) Eo (1+1A)" =42 |1D* N (1) [B, (D) by, —g,]lly

S efe? 2482 (14 |2 (1 + A ] WAl 20,50+ gl 20—
Proof. Set

?
1,01

To:= 3 (L+IA)* 72| D* N, ()(B, (D) )y,

=
I

; |
Joi= T (LHIAD 2 DN, ({8, (D)~ goff-

() We apply (28) with y :={B, (D) k), n; being the function (2.14).
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Using (2.8) and Lemma 4.2(iii)(ii) we have
Io < ¢ {{[D (By (D) 1)+ (1+A) Y2 1By (D) Rill, 0, )
< ¢ HlID* hlly, o+ 1DRlp, o+ (1 + (D7 1By (D) Aellz- 1.5, 0,
<l 2 (LAY lizop.p
(i} Choose now in (28) y:= (B, (D)h,—g,)n;. Then
49)  Jo<cl|D(B) (D) h—g), 0, ,
+(1 A2 LB, (D) (he~ W)y, 0, + 1By (DY = gl 0, + g ~ Gl 2,1}
= +1;+13+1,.
Now, arguing as before, we get
(4.10} Iy < es® 7 llag,pot1gll 20— 1,500 »
and similarly, using Lemma 4.2(iv),

(4.11) L+1, <c(l+|A)112g2e! ”Ihllz;r.p,ﬂ_'_”g“h'—l,p.Q} .

On the other hand, as B, (D)h—g =0 on 6§, {(2.12) yields
(4.12) Iy <c(I+[A)' 7B, (D)}'1—9”2.;»—1.11,:151
< e+ 2 HlAll2o,po+ llallze— 1,50 »

and by (4.9-(4.12) we get the result, m

4.C. An approximation result. Let go, g, be as in (3.3), (3.4), ie.
go €CH(X)NC*"* (Yy), g, eCH(X)NC* Y2 (Y,). We prove a sort of “Taylor’s
formula” for such functions.

Lemma 4.7. For all 000 and st e[0, T] we have:
M o) —go(—{s—1)(8go ) er)|x,
< ellr=sf+Ir =51 6% 21 {[g0]carygy T 96T cary
i) [lg0(5) =90 (01— (s=1) (800 0/ 20,0
< el =04 |t =516 2] {ligoll ey T190llc +ap )

Proof. (i) Due to Lemma 1.9()) and Proposition 1.11()
' ¥ ’
(4.13) 5up 11890 (Al < ¢ g0Jcsrgy + 961y )

so that by Lemma 4.2(iif} we obtain
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Hgo (8)—go &) —(s—1}(ge (t)/af)euxo
< [lgo (8)~go Blxy+1s—1 ||(590 (E)/af)n”xo
< e[t —sf+ 1t~ 8162 {[g0]pagegy + L6 cxcr -
fii) Due to Lemma 1.9(ii} and Proposition L.11¢1)
(4.14) | 8go/ Otll o 0gm 26 g0y S ||:go]Ca(x t [Qo]ca(y i
hence by Lemma 4.2(ii), (4.14) and (4.13)
(g0 (s} — g0 ) —(s—1)(Gao @/ &)ell20,0.0

< ||j'[ago(r)/8r— ogo (t)/ ét] d"”zo,p,n”*‘f’*ﬂ”ago(f)/at"(ago (f)/ai)n”za,p,n

<efle—s' T+t —sl 627 ] g0 cayy + 901 cay ) -
Lemma 4.8. Let 0€71/2, 1[. For all st [0, T] we have:
(i) ”91(S)“Ql(t)—(s“t)(agl(t)/at)a”xl
€ [Jt— s+t —sl 82 2] {[Qﬂca(xl)+|JQ’1|JC¢—1/2(Y1)}‘-
“91(5)“91(1")“‘(3“‘4)(691 (t)/at)z”fl
< et st V4=l % 01 Ty 10 oo 112y -

Proof. Similar to the proof of Lemma 4.7. m

5. Maximal regularity. Theorem 3.1 allows us to solve problem (1.9) in
CHY)NC°(X) (see (3.1)), starting from data whose ‘regularity is described in
(3.2)H3.5). This situation is not satisfactory from the point of view of the '
regularity of the solution, and is also useless for applications to quasilinear
parabolic problems. Actually, (3.2~(3.5) imply more smoothness of the solu-
tion: of, course, in order to obtain as much smoothness as possible (i.e. &/,
A(D)u, }E?0 (v) and B, (D)u as regular as the data) we shall need to impose,
together with (3.6) and (3.7), further compatibility conditions.

The result we are going to prove is the following:

) THeOREM 5.1. Assume Hypotheses 1.1-1.3. Let f, g,, g, and ¢ be such that
(3.2)3.5) hold with ae]0, 1[-{1A2p), 1/2, 1/2+1/(2p)), and suppose that

conditions (3.6) and (3.7) are true. The strict solution u of problem (1.9), which

is given by formula (3.8), belongs to C***(Y)NC*(X) if and only if the foHowmg

conditions are fulfilled:

(5.1} hi=AD)p+f(O)e[B*>P (@1 i «€]0,1/2p,

(5.2)  he[B*?(Q)]" and Boh=[dg,(t, )/ 8]ey on 0Q

if a€11/(2p), 1/2+1/2p)[~{1/2},
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(53) he[B*P(QI" and Boh=[2golt, )/ &)=o.
B, (D)h =[8g.(t, Y 0t]uo on 0Q if a €]1/2+1/(2p), 1[.
Moreover, if this is the case, then the following estimate holds:
(54) [ D g, + Dy < € 1A D) @+ (Ol + Fu},
where

F i [f]cuur, + [Q‘OJCIZI(XO) + Hgbuca(ro) + [gljcd(xl) + Gas
(5.5) G,:= {[gijow Yy lf xe]0,1/2[,
lfg1] e 12y, if o e]1/21.
Proof. It consists (as usual!} of four steps:

Step 1: Conditions (5.1)H5.3) are necessary.

Step 2: If 2 €]0,1/(2p)[, condition (5.1} is sufficient, and (5.4) holds

Step 3: If e31/(2p), 1/2+1/2p) [ — {1/2}, condition (5.2) is sufficient, and
(54) holds.

Step 4: If w eJ1/2+1/(2p),1[, condition (5.3) is sufficient, and (54) holds.

Proof of Step 1. It is just a formality. First of all we remark that the
property “u €C*(X)” is a consequence of “u €C' *=(¥)”. Indeed, if ueC* *=(¥)
then u(t)—u(s), t,s €[0, T1, solves the elliptic problem

AD)[u)—uls)] =f(&)—f O+ () —1'(s)
Bo[u®y—u(s)] = go(—gols) on &,
D)[u(f—u(s)] =g1(t)—g:(s) on o
hence by Theorem 1.4 we havé (see (5.5)):
et ()= 0 (Mlx < €l =5 LS D, + ¥ oy [0 gy + 91 D}
' +elt—s@TIP AL G, +clt— 5] llgoll

in £,

CO(]’D) 2
ie. ueC*(X) and

(5.6) [iJonn < 0 Tce + 1 Jos + oy 191D

+eTU-An2 G +l|90”c°(fo)' '

Now by Lemma 19(i) and Proposition 1.11(i) we get u'(0) = QBZ""P(Q)]N
g5 (0) e[B®P ()T and, provided x &]1/2, 1[, gi (0} e[B>*~17()]" °. Thus
By ko and g5{0)an, as well as B; (D) hls, and g) (0)|a, are s1mu1tancously
meaningful, and in this case they must coincide, so that conditions (5.1)5.3)
must hold.

Proof of Step 2. This is an “easy” step: the proof relies on a good
decomposition of the difference u'(t)—u'(r) for 0 <'r < t. Using (3.10) we can -
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write after easy manipulations:
G w@-u)

= [ ROL O~ O+ 3 N0 )=4,000) 1ds

rt—s

+{ [ {242 IR LA (- 1+ Z NJ(i Lg;(s}—g,; ()]} didgds

Or—sy

e RO O 01+ ; 805,00 a

+ Hle‘“‘ RO O]+ Z N;(A) [g;(r)—g;(0)] ] dAdq

+fle* = &) AR (2) @+ R (D) f (0 +Z N;(7)g;(0)}dA =: 21

We will now use systematically the estimates (2.2), (2.8), (2.13) and the
regularity on the data described by (3.11); in addition we recall that, by
Lemma 1.9(),

|u"U|_l||go(“)—go(v)”2a,p < sup {|8go (£)/ét]5a,p
td0,T]

¢ {[g0)caxgy + [90Jcapyy) V0 €0, T, u #0.

Concerning I, we have (see (5.5))

iy < C[’(f“ LA =1 9)lly +llgo (1)~ g0 () x,]

(e~ 52 | [ {290 () ) die] 20,5,

+ (=97 igy (g1 SMlx, =97 *llg, (1)~ g, SNy, }ds

< c(t—r"F,,

whereas I, is estimated by

rr—s

Mally < cf [ g7 £ —f (lly +lgo () — g0 ()l

0r-s
+6* 1190 () =90 20,5, 0+ 4> 191 (8)~g1 (Mx,
+q7% gy ()~g1 (Mly, ) dgds < c(t—r)*F,
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Next, for I and I, we get
Mally < cdlf (0 —Ff ()l +llgo ) —go (7)ilx,
+ =1 g0 () = Go Mzapmatllgs (O — g1 ()x,
(=17 lgy (€)= g1 (y,} < clt~rF Fy;

Mally < ¢ [ ig™ " [ILf ()} =1 (Ol +llgo () — go (Olly]

+4° 7 lgo ()~ 9o (Olau,po+a7 " 191 ()= g1 Oy,
+47%*]g: () —g1 O)lly,} dg < c(t—rFF,

Finally, remembering Lemma 2.2(i), the compatibility conditions (3.6),
(3.7), and the definition (2.3) of E(),

(5:8) {[e — TR [AD)p+f(O]ds = [E(t)—E()] ;
thus by Proposmon 2.1(ii)
=0(—17) as 1—r |0 = he[B™P(@),
and in this case we have also
Mslly < ¢t —r)*[lAll g, p-

Collecting the above estimates for I, ...,
recalling (5.6) estimate (5.4) also holds.

I; we get the result, and

Remark 5.2. Before starting with Step 3, which is much harder, let us
observe that many of the integrals appearing in (5.7) are O((r—r)*) as t—r |0
even when o ¢]0,1/(2p)[: for instance, all integrals in I,, I,, I3, I, involving
N, (4) are of this kind when a0, 1/2+ 1/(2p)[ — {1/2]; similarly, all integrals
in I, 1, I3, I, involving R(4) are O((t—n))* as t—r | 0 when o €]0,1[. This
will relieve our toil

Proof of Step 3. If we just repeat the estimates of Step 2, we can
only obtain «' e C?(Y) for each 6 €]0,1/(2p)[, due to the fact that in estimating
the terms which contain Ny{l) we cannot fully use the fact that
o €CHX )NCI*(Y,). In order to overcome this obstacle, we introduce
suitable approximations of dgy(t)/é&t and of h:= A(D)ep+f(0). Namely,
recalling (4.1) and Remark 4.1, we set

X: (t ) =X (t) = [( t)/at) ]z=11/21

(59
l:[Jv() Ewr:=‘[ha]n=rlf29 0_<t€ T.

5 — Studin Mathematics 92.2
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Taking into account Remark 5.2 we rewrite (5.7) by separating the terms
which are O((t—-r)") as t—r |0 from the others; in addition, we add and
subtract other integral terms involving the function (5.9). We can evaluate
exactly such new integrals (with the help of (2.13) and Corollary 4.4(i)) and
after boring but elementary calculations we get as t—r [0

(5100  w'()=u'(r) = O((t—ry)
+_tf?f1€“_’” No()[go (9 —go (O —ls—1) x-, ()] dAds
ry

+4e " (r — 1) No (A gl () dA+4A7 " No () xi- (1) dA
T T

I—-5

+.rH f 22 N () [g0(5) > g0 (N —(s=1) 1, ()] dg dAds
Dyr—s

+ YHX [et= 9% — eI NG (D) (s—1) x- o (r) dAds
Q7

+§e 7 No () [go () — g0 (1) —(t—7) x2-, ()] d2
¥

+4e Tt =) No (A 47~ (r)dA

¥

+ [§4* N, () [go{) — g0 (0)—rx; (] dAdg

¥y

+4[e —eTrNo (4) 27 (r) dA
¥

+4le* = TRA hdL =:0{t =)+ 1. J,

i=1

where J,, is just the term I; of (5.7), written in the form (5.8).
Now we use Lemma 4.7, (2.13) and Corollary 4.4()(iii), getting for a
fixed 6€30,1/(2p)

(1D Tl < e JHr—5)7go () —go e} =~ 1) %~ (DI,

(=8 2lgo (S~ go (0 —(5— 1) 1y (D] 20,5} ds < (¢ =1 Fy
(512 [l I+ Tlly = “‘ffﬂ_m(t*r) No [, () —x-, (1] fm”v
¥

< et iy Olleg + s O]+ =101 22, (7) = % - @20,
< C(I“r)mFa;
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(.13 Mally <cf | @ 2190 =g0()—=(—1) - Plix,
Or—s .
+4" 72 llgo () —go (N —(s—1) 2 (PMllz0,p} dgds < c(t—1)* Fys
(5.14)  [elly < cllga®—go ()= =1 2, (lilx,
+{t =1 lgo O —go () —(t—r) 2-s (Dl26,) S (=) Fos
(5.15)  IJsliy < ¢fig™ " lIgo(r)~go(0)—rxd (Mllx,

+4° 7 lgo (N —go (0) ~rx2 (Mo, ) dg < et —1)*F,.

Concerning J,, Js, Jo, Jyy, here are the worst troubles. We start with
Js. Integration by part yields

(5.16) Js = —f[e*~e™TrNo(d) x () dA
¥
~ A NG (), (1) 42
7

+4171 [¢* —* I No (D) 1 () dA
¥
r = _ _ a
+ ({27 [N M N (D — 4 (r) dAds
oy : &s
+ h [e¥~ 9 — et =M (s—71) 2 xi-s(r}ydAds
oy O

5
= Z ‘I5,J"
=1 .
We couple Js; with Jy and Js, with J;. By Corollary 4.4(i),(iii)
(517 Vs +Jslly = |HLe? —e*1rNo (A kP () — 27 (W1 dAlly
?

t

< e[ irg e O, + 10 Ollxo 147" 2 1 (1) — 22 (|20, 49

¥
= C(t'—r)aFm

whereas
s,2+J3lly = |H:)“_ Lel "2 Ny (A) [X_:o—r(t)"Xzo—r(r)] ‘U-“Y
. y

< e =)Dl Ollxg + il Ol +E =1 s @ =22 (20,515
now, since g €C*™° ([B**7 (@)]°)nB ([B*?(2)]°°) (Lemma 1.9), we can write
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by Lemma 4.2(ii)

Xz r (T ”29 D

< xP- () — g6 (Yl 26,, + g0 () — g0 (PHl20,p+ llgo = x5+l 20,
< (=" 6o MLz + 196 W+ (961 cam gzt

so that by Corollary 4.4(1) we obtain

[t (1)

(5.18) Ws.2+Jslly < clt—r)F,
Next, we estimate J; , and J5 5: by Corollary 4.4(iv),(v) we have
ri—s _ a
(5.19) ||J5,4iiy~€c,(\“_§ { o s(r) +q" ' 5;xf’«s(r) m}dq
\'(._C(f—r)a as
ri—s a
(5.20) Wsslly <cf § jl(f—s - ()
Or-s aS Xo
86— 2 a 0 o
+r—8)q"? | xs () dg < c(t—t)"F,
aS 20,p.

Finally, we couple Js 5 with Jyg:
(5.21) Jssz+Jio ”f[eﬂ_erl] AT No(x? (N+R(A) h}da

"P» [em_‘ed]No(A)[Xr " —x: 0)]d/1+{[e ~ e IR (A [h—yr]dA
+{,1 et — 4] fNO(A)x, O+ AR(DY,) dA = J% + T +J5.

Now, arguing as before, it is easily seen that

(522 W ally +Illy < et —rf o

thus we have only to treat J5. By Lemma 2.2(ii)

No () 22 (0)+ AR (DY, = ¥, +R{A A(D) e+ No (1) [ (O} = Bo ] —

so that we can perform the last splitting:

N (4) By,

- fHe“ R()A

ry

(5.23) (D)4, di dq

+ (€4 No (4) [x? (0)— By ¥, ] di dg

"_['_fequl (1) B; (D)

ry

Yedhdg=:J5 + T 3+ 45
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By (2.2) and Corollary 4.4(i)

t

[Ia ! dq ”hlfzm p

r

on the other hand, if & €]1/A2p),1/2[ by (2.8) and Corollary 4.4{i) we have

(5.24) 13,1lly < et —r)*[Alizs,p:

1/3,3lly < C|[f“"1+t°‘ 27121 dq ||Hllsa,p < c{t =) || 20, ps

whereas if o« e]1/2,1/24 1/(2p)[ we obtain by (4.7)

t
W3,3lly € e [0*7 + 4" "1 dg 1Al 20,3
¥

hence in any case we have
(5.25) IW3,3lly < ¢ (t—7)*|Bll2a,p-

Finally (and this is a real end!), we estimate J3 ,: as, by (5.2), Boh = g5(0) on
4Q, by (4.2) we obtain

(5.26)

75,2l < ¢ {[H2 A2 111 im0 o= 1] dg

lifhllzap+llgo(01||zap e (t—rf* Fat Il p} -

Collecting (5.10)<5.26) and (5.6}, we conclude the proof of Step 3.

Remark 5.3. We regret that Step 4 will be as troublesome as Step 3.
However, as done in Remark 5.2, some simplifications can be made, In the
basic splitting (5.7) we need only consider the terms involving N, (4). Indeed,
those containing R(4) are O((t—r)*) when «€]0,1[; on the other hand, we
can treat those containing Ng(4) as in Step 3, and all terms generated in
(5.10), (5.16), (5.21) and (5.23) are O((r—r)) even when xe]l/2+1/(2p), 1[,
with the only exception of J3, in (5.23).

Proof of Step 4, Again, if we repeat the estimates of Step 3, we cannot
take full advantage of the regularity of dg, (t)/ét, so that the estimates for
N (g, (t) are not optimal. We skip this obstacle by adding and subtracting
wisely some terms containing the functions W, = [h] _ 1,2 (see (5.9)) and

=1 (1) :=[( gy (t)/af)s]a,tuz,
We recall that, since g, eC*(X,)

(5.27) e ) 0<t<T
A YY), Lemma 1.9() yields
=" lg, (@) = g1 )l 2a- 1.5 < ‘S[‘éli;'] 18g 1 () &tl| 20~ 1,p

¢ {{9’1]@:{,{1)‘*‘||9'1|!ca—1/z(yl)} Vu:v E[O, T]5 u v,
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If t > r > 0 we split «' ()~ () by assembling all terms which are O ((t~r)’)
according to Remark 5.3. We add and subtract suitable integral terms which
are exactly evaluable (with the aid of (2.8) and Corollary 4.4(i)). The result is,
as t—~r |0O:

(5.28y uw@—-u@= O((tw—r)“) ‘
1264795 N, () g1 (9)—g1 (O (s D) 18-, (O] 2 ds

ry

e A =) Ny (D) i, (V dA+f AT N (D) -, (1) dA
¥ Y

rt—s

+] [ $42M N (D) [91(8) g1 () —(s~7)xi-, (D] dAdgds

Gr—sy

+ (Al = =9 (s— ) N, () 2y (1) dA ds
0y

e N () [gy ()= 0)— (=) ke, (]

+_J:e(t—r))- (t--:l‘) N1 (,l)le_,.(r) di

+[f4e" N1 (D) [9: ()= g1 (O)—ri ()] dAdg

+{[e¥— e 1Ny (A xr () di
! |

— A7 [~ 1N, (1) By (D), dd =: Ot —1})+ f L

where I,, is just J4 5 of (5.23) and the other terms come from I, I, I, I, of

(5.7). By using Lemma 4.8(i),(ii), (2.8) and Corollary 4.4 (i),(i) we easily arrive,
as in Step 3, at

(5.29) IE3lly + 12+ Ially + Mally + | slly +ilslly < c(t =7 F,.
Coencerning I;, we integrate by parts:
(530) Is=—f[e*—*IrN (})x} () dA
v
—fAT TN (D 2, (M) dA

¥

+fA7 [EF e INy (D) 1 () dA
¥

+ [fAT [ — e M N, (A}—gs—x,‘_s(r) dlds
0y
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~

+ [§Le™ ="M (s—r) Ny (4) %xf—s(r) di.ds

!

= 15 N

+f

iI'MLn o

i=1

We couple I5, with Iy and I5, with I;. By (2.8) and Corollary 4.4(ii)
(531 s+ Lolly = |[§[e* —*1rN (A [ () — 1! (1)1 dsfy
¥

H

< e firg ™ gt O —xt Ollx, +ra” ¥z )= Olly, ) da

Kce(t—-rfF,,

whereas

5.2+ Dally = [FA71 €™ Ny () Do o (0 — 2= (] Al
?

< c {0 =r) Dlgd-r Ollx, + 2= (]2, ]
(=) it O =X (P Wy 35

now, since g} EC"“1”(1’})03([82“"1'P(Q)]N-"’) (Lemma 1.9), we can write
by Lemma 4.2(1)

(532 llxr (O —xior Oy, S - O ~g1 Wy,
+1igt @ — g% (Wly, + gy () = sti-r Pl
< ct—r*" 12 {lg1 (M 2a-1,p 195 Mlzam 1, + [91] e 1/2{,»1,} ,

_so that Corollary 4.4() implies

(5.33) 5,2+ 15lly < e(E—r)* Fy.
Next, we estimate Is, and J5 s by (28) and Corollary 4.4(iv):
rt—s 6 _ a )
(3.34) s,afly <cf § {‘é“xﬁs(r) +q7 12 -5~x:‘—x(7’) }dqu
Or-y 8 Xy 5 Yy
re—g
sef | [r—sr ?+q 2 (-5 **1dqds|lgy Mllaa-1,p
Or-g .

< C(r*?’)“Fa,

T_fs {(r—-sm“‘

¥

!

v 3 :
(535 |iUsslly<c] é“X:‘»—s(”)
° s

r Xy

2
+(r—s5) g -ags—x}_,(r)

}dqu < c(t—ry F,.
¥1) . .
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The end is closer and closer! It remains to estimate f55-+1;o, which we
rewrite as

Iss+1o = A7 [ =™ I Ny () [ (-2 (0] dA
¥
+fA7 e —e* TN (A [ (O — B, (D), ]dA =Ty +1;
7Y
but, using (5.32), we find that

(536)  IT4lly < e § {00! Olx, + 106 O, 147172 1 ) — 2 (Ol dg

Scl[P ' +q 2~ 12)dg F, < c{t—rFF,,

)
i

and concerning I3 we have by (5.3) and (48)

-
(537)  IMsily Sc [ +e7 Vg7 12 4 g dg {hll20,p+1lgs (Oll2a-1,p)

L

S c(t—rf* {Fy+ Al 2a,p) -

By (5.28)+5.31), (5.33)}-{5.37), taking into account (5.6), we conclude the proof
of Step 4. Theorem 5.1 is completely proved. m

Appendix
A. Proof of Lemma 4.3. We recall that f, is defined in (4.1), and it is
plain that
' ¢ = f,6C*(]J0,00, n [ ()]

Let us start by remarking that if £ e[B2*?(Q)]* and F is any B*®P-gxtension
of f to R", then we have

AL p 0 .

(A1) D'—F, = —s=3D'F,,.
Let us prove (i). Suppose first o €]0,1/2[; then it is easily seen that
| &2

632D FOu(x)

e™* "2 | F(x—e2) [(n+h+1)(n+h) D" ¢(2)
»

+2(n+h+1) Y, D;D* @2}z + Y. D D;D"o(2)22)] dz
i=1 fj=1

™2 [ |F(x—ez)—F (P dz]"”,
BOL -

since the integral of the expression in square brackets vanishes; similarly, if
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ge]1/2,1[, we see that

i

7£2D FOz(xl—s“" al ‘ DF (x—ez)[(n+h)(n+h~1) D" @ (2)

F2nth) Y DD gzt Y DDy DM () zzy] e
i=1 =1

e"h L[ | |DF(x—sz)—DF (x)}|"dz]""";
B(OJ.)

hence in both cases we get
62
< C[_:Za“ 2=h F

T o IF|
By (A.1), (A.2) and the arbitrariness of the extension F, we obtain the resuit.

Part (i) follows (i) via an interpolation argument (recall Proposition
1L.11(0). =

Remark A.l, We can prove quite similarly the following generalization

of (A.2):

(A2 D" Fo,

zf’oﬂlml

< c(m, B> " | F|
mR

20, R

(A3) H—~D"Fos

YmheN with m+h > 20, Ve > 0.
B. Proof of Lemma 4.2. (i) For each 0¢70,1/2[]0,0] we have

A4 fi~Slpe<[f| | Flx—e)-FleEdz"dx]"
PO (88

+[§] | [F (x —ez)— F ()] [ (2)+ Do (2) - 2] dz]” dx] "™ < e (|Fll o
p B

so that the result follows provided ¢€30,1/2[. On the other hand, if
o e]1/2,1[ we write

and by (A2) we get
Ilfll:—'f”p.ﬁ < “Fe_F“p'Rn 8 e HFllzdyp‘Rn;
this implies (i).
(i) If h > 20 we have
d
DhFu = DhFO,B_B"a';DhFO.w
and by (A.3) the result follows. '
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(iv) As o €]1/2,1[ we have DF e[B**~ 17 (Q)]™ and

{DF)OZ a (DF)OB:

thus the result follows by (A.3) with f replaced by DF and 8 =o—1/2.
(v) follows obviously by a direct calculation.
Finally, we prove (ii). Suppose first 8 =g, in which case we have to
show that

(AS) ”le“Za’,p Q== c”f”h.p,

If 0€]0,1/2[ we set g{t):=F,¢,, t>0, so that, by (Al), ¢'@t) =
—(e+1) [8% Fo 0/ @],_ps. Thus (A.3) yields
' (O], g+ D2 G (M, g < e+ 1) "1 IFIL, o
Hence for u(f):=g(t'?) we obtain u(0) = F, and

Nt (N, g2 NP @], g S €I, o

By Definition 1.8 and Proposition 1.11(i) we deduce

WFolly, e < CHFN,, , oo

and by the arbitrariness of the extension F we get (A.5).

On the other hand, if 8 = 0 €]1/2,1[, we can apply the above argument
to Df e[B2*~1-r()]™, and again (A.5) follows.

Finally, if 8€]0,6[ we interpolate between [B2e?(€)T* and [IP(Q)T* (via
the Reiteration Theorem), obtaining by (i) and (A.5)

Ife=SN20p.0 < I ~Fllp 2" LA =FU132 5,0 < €62 72| Fll2g,

The proof is complete.

Remark A2 Lemma 4.1 holds also in the case o = 1/2; the proof is
analogous, but it is now crucial that the mollifier @ is even.
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