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the derivative of @, and with the involution a* (z) == @(%). The extreme points
of P, can be identified with [—1,1], the set of all fixed points of z =Z. By
Corollary 3.1 the function a defined by a(z}:= 1—z is contained in the cone
A.,butitisnotin 4,: Let az) = 1—z _Zi“l a¥ (2)a; (z) be a combination
of positive elements. Differentiating both sides and using the continuity of o
on D we obtain & (1) = —1 =0, a contradiction.
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On the integrability and ['-convergence of sine series*
by
. FERENC MORICZ (Szeged)

Abstract. We study sine series (¢) Y%, 4, sinkx with coefficients belonging to one or
two af the classes €, B, and ¥, introduced in this paper. Among other things, we prove that if
ta,) eCBY, then (¥ is the Fourier series of some function feL!(0, m). Furthermore, if
{a,} e€nBY, or la) eV, and f €Ll (0, n), then the condition (%) a,logn —0 is necessary and
sufficient for the L'(0, n)-convergence of the partial sums s,(x) of series (*). Criterion (*+) has
been known so far only in the case of cosine series. Qur results generalize those obtained by
Telyakovskii [9] for sine series, while our new classes are the counterparts ol those introduced
by Garrett and Stanojevi¢ [5] as well as by Bojanic and Stanojevi¢ [2] for cosine series,

L. Introduction. We will study the sine series
(1.1 > asinkx
k=1

where {a,} is a sequence of real numbers in the class BV defined as follows.

Dermvition 1. A null sequence {g,} belongs to BV if

o
1.3 > kldb| < oo

k=1

where
bei=agk, dbyi=bo—bys; (k=1,2,..).
We do not require any monotonicity of the sequences {a,} and {b,}.

Following an idea of Kano [6], we represent the partial sums s,(x) of
series (1.1} in the form

n n
= Y @sinkx =~ b,(coskx)

k=1 ke

1980 Mathematics Subject Classification: Primary 42A20, 42A32,

Key words and phrases: integrability of sine series, L’"-convergenoe of Fourier series,
modified sine sums,

* This research was completed while the author was a visiting professor at Syracuse
University, Syracuse, New York, US.A,, during the academic year 1986/87.
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where prime denotes derivative. By summation by parts,

(13) . s =-X DN =bu i DX (=12..)
k== 1 _

where
D () = 1 i Sk'__“sin(n—k{s)x
r,(x)—2+k=1co X = 2sinix

is the Dirichlet kernel. It is easy to see that
{1.4) D, (x)] < Cnfx*

Here and in the sequel, C denotes positive absolute constants not necessarily
the same at different occurrences. ‘

Now a routine calculation gives that if {a,} BV, then at every x the
serics. Z:; 1 4b, D (x) converges absolutely and b,,, D, (x) =0 {(n —a0). Con-
sequently, we can write

uniformly in » and x.

(1.5) f: asinkx = — 3 Ab, Di(x) =:f(x), say.
k=1

k=1

Remark 1. We recall that the class BV of sequences of bounded
variation is defined as follows. A null sequence {a,} belongs to BV if

Z ]AakE < o0 Where Aak V= ak“ak+1.
k=1

However, it seems to us that BV is a more appropriate notion for sine series
than BV

We note that the difference between BY and BV is merely a slight one.
For instance, if F denotes the class of sequences {a,} such that

(1.6 E lad/k < o,
k=1

then we have BVnF =BVnF.
Indeed, the inclusion BV nF < BV follows from the inequality

(1.7 k|db) <[4 kl+‘ "*;'

On the other hand, the inequality

[+ 1]
1.8
(1.8) lda) < k|Abk|+ i

implies BV ~F < BV,
Various conditions are known in the literature which ensure that series
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(1.1) is a Fourier series (see eg. [4], [6]——[9], and {10, Vol 1, pp. 185-186]).
Recently, Te]yakovskn [9] introduced a class § as follows. A null sequence
{a,} belongs to § if there exists a nonmcreasmg sequence {B,} of numbers
such that

ac
> kB, < w.
k=1

Theorem A (Telyakovskii [9]). If {a,] €8, then series (1.1) is the Fourier
series of some function fell(0, n).

(1.9) {db| < B, for all k,

2. Main results. We introduce another new class € of coefficient se-
quences for sine series.

Dermvrion 2. A null sequence (o, belongs to C if for every & > 0 there
exists 4 > 0, independent of n, and such that for all n,

4 o
2.1) Y 4b Di(x)|dx <e.

O k=n

It is clear that (2.1) implies, for 1l K n< N,

i N
(2.2) {3 Aby Di(x)]dx < 26
0 k=n

Conversely, by virtue of Fatou's lemma, it follows from (2.2) that (2.1) holds
true with 2e in place of & Thus, conditions (2.1) and (2.2} as required to be
satisfied for all ¢ > 0 are equivalent.

DeriniTion 3. Motivated by (1.3), the sums
(23) o 30) 1= 5,09 bys Do) (n=1,2,..)

are called the modified sums of seties (1.1).
It will turn out that these modified sums u,(x) exhibit nicer convergence
behavior in comparison with that of the ordinary partial sums s, (x).
According to (1.3),

(24) U, (x) = kzl by Dy (x).

Another representation for u,(x) is

"

‘u,,(x ) (Z AaJ)51nkx+a,,+1K (x)

where
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is the conjugate Fejér kernel, while

~ n ‘ cos(n+4) x
D ix) =Y sinkx =4cotdx ———51
ntx) ,c; Ehaatd 2sind x

is the conjugate Dirichlet kernel.
We note that in the case of cosine series an analogous class C as well as
analogous modified cosine sums were defined by Garrett and Stanojevi¢ [5],

Treorem 1. If {a,! €BV, then

(2.5) luy—fIl 0 (n—>c0) if and only if la,)eC.
In this paper, ||-|| denotes the I!(0, m)}-norm:
™
gl == {lg (x))dx.

0

CoroLLARY 1. If [a,) eCnBV, then series (1.1) is the Fourier series of
some function fel}(0, n).

In Section 3, we will prove that the class § is a subset of CrBY (see
Lemma 7 there). Thus, Theorem A is a special case of Corollary 1.

Cororary 2. If (@) eCrBY, then
(2.6) I$a=fll =0 if and only if a,logn—+0 (n— o).

Combining Corollary 2 and Lemma 7 results in a natural continuation
of Theorem A.

CoroLrary 3. If {a) €S then the equivalence relation in (2.6) holds rrue.

We recall that if {a,! &5, then by Lemma 2 we have (1.6). If, in addition,
{a! is a nonincreasing sequence of positive numbers, then it follows from
(1.6) that g,logn —0 (n —+oc) and we get back the following classical result.

Tueorem B ([10, Vol. 1, p. 185]). If a null sequence la,} is nonincreasing,
then (1.1) is the Fourier series of some function f €I (0, n) if and only if
condition (1.6) is satisfied. Moreover, if (1.6) is satisfied, then

llsa=f1l =0 (n—00).

ProsLEM. We are unable either to prove that {a,) €§ implies a,logn —0
(n ~ ) or to construct a counterexample.

We introduce further classes ¥, of sequences as follows.

Deriniion 4. Let p > 0. A sequence {a} belongs to 17,, if

2.7 nTl Y kAR -0 (n - o0)
k=1
(recall that b, = a/k).
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Condition (2.7) is certainky satisfied if

o)

238) Y k2 L ABP < oo,

k=1
This immediately follows by applying the so-called Kronecker lemma (see e.g.
{1, p. 68]). A particular case of (2.8) in the case p>1 is the one where
fa,) €BV and k*|db| < C (k=1,2,..).

On the other hand, in Section 3 we wilt prove that § < ¥, for any p > 0
(see Lemma 8§ there).

Remark 2. In the case of cosine series analogous classes ¥, were
defined by Bojanic and Stanojevié [2] as follows. A sequence a,) belongs to
v, if

r

n"t Y kP |dafP »0  (n ).

k=1

Now, it follows easily that if
nt Z [ays 1 =0 (n—o0),
k=1

in particular, if a, -0 (n —0), then actually V, = V; for any p > 0. In fact,
the inclusion ¥, = V, follows from (1.7), while V, < V, follows from (1.8) in
routine ways. :

Tueorem 2. If (a,) €V, for some p>1 and f €L (0, n), then
(29 lleta—fIF =0 (n—>c0).
We can draw two corollaries.
CoroLiary 4. If {a,) €eV,~BV for some p > 1, then
fel’(0,m) if and only if |a)€C.

CoroLLARY 5. If la} €V, for some p>1 and feL'(0,n), then the
equivalence relation in (2.6) holds true,

Using Hdlder’s inequality, it is easily shown that the class I7;, is wider
when p is closer to 1. Hence, without loss of generality we may assume that
1 <p <2 in all subsequent considerations.

Before proving our theorems and the corollaries to them in Section 4,
we will cite a few known and prove a few new auxiliary lemmas in Section 3.

3. Auxiliary results

Levma L. If {B,} is a null sequence of positive numbers such that

o
(3.1 Z k%|AB,) < o,
k=1
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then
(3.2) B, -0 (n-o0),
(3.3) > kB, < co.

k=1

In the case when {B,) is nonincreasing, conditions (3.1) and (3.3) are
equivalent.

Proof (3.2) is clear from the estimate

o o).
n*B,=n*Y AB, < Y k*|4B.
k=

k=n

Summation by parts gives
(34) Z k*4B, = Z (2k—1)B,~n*B,, ,,

whence

RZI )_: 4By +n *B.sy.

This yields (3.3).
I By} is nonincreasing, then from (34) it follows that

Y K*AB =Y k4B, <2 Y kB,
k=1 k=1 k=1
completing the proof of the equivalence of (3.1} and (3.3).

Lemma 2 (Telyakovskii [97). Ler
By :=max{db]| (k=1,2,..).

izk

Then &= kB, < oo is equivalent to the following two conditions:

(3.5 Z {maxlzlajl) <o, Y lalk <oo.
k=1 J2k k=1
We note that this eqmvaleucc remains valid if the second condition 1n'
(3.5) is replaced by the stronger one

& ; max!aj/J[) <.

Lemma 3. If T(x) is. an even trigonometric polynomial of order n, then
1T < nf| T,
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This is S. Bernstein's inequality in the I} (0Q, n)*memc (see eg. [10, Vol
2, p. 11].

Lemma 4 (Bojanic-Stanojevié [2]). Let {c,) be a sequence of real
numbers. Then for any 1 <p<2 and n2 1

2n—1

Zn—1
(3.6) » abD| < C (Y jel)”
k=n k=n

where the constant C, depends only on p.

The following special case, known as the Sidon-Fomin mequahty, can
casily be deduced from Lemma 4.

Lemma 5. Let [¢,) be a sequence of real numbers such that |c,) < 1 for all
k. Then there exists a constant C such that for any n 21

1T aD| < Cn
k=0
Now we will prove a counterpart of inequality (3.6) in the case where
Dy (x) is used instead of Dk(x)

Lemma 6. Let ¢,) be a sequence of real numbers. Then for any 1 <p <2
and n =1

3.7 HZ Dy < Gyt~ Hr( Z kP lcyl?)' "

where the constant C‘,7 depends only on p.

Proof. Without loss of generality, we may assume that n is of the form
n=2"—1 with some mz 1. Let j > 1. Applying first Bernstein's inequality,
then inequality (3.6} yields

2/ 1 2t . 2d-1 "
” Z cij’c||£2J” Z ckD,,”QZJCPZ(J"”“‘”‘”( Z |Ck|p)
k=il e 24— 1 k=2i—1

J
< 234, 2f- 1R 121 k®cf?) "
fa 24— 1

Continuing by making use of the triangle inequality, then Hilder’s inequality
with the exponents p cmd g 1/p+1/g =1, we get

HZC::DuII L_‘:Ifw2 a Dl

< 22" 1lnC Z 241~ lfm( Z kP |, ].P)‘“’

k=i 1
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m 21—

Jj=1 J=Llg=1i-1
2m—

Sép?"”"””’( Z kpfckfp)l"p,

which is (3.7) for n = 2"—1.

Lemma 7. § <= ERBY

kw1

Proof. It is plain that § = BV.

In order to prove § < C we take a sequence [g,) in § and set

Clearly |¢ <

>

k=n

Hence

(3.8)

. Since D;(x) is an even trigonometric polynomial of order j, applying Lemma

3 gives

Ck L= Abk/B;“

4by Dy (x) =

N
= =B, 1 E,(x)+ 3, 4By E,(x)+ By, Ey(x).

“Z Akak” < B, |E+ Z ABy ||[Exfl + By sy || Eqll.

k
E(x) =Y ¢Di(x) (k=1,2,.
j=1

I for all k. By summation by parts, for N > n,

N
Z B¢, D;(x)

k=n

k=n+1

k=n+1

k
B < k|| X ¢;D;
=1

then applying the Sidon-Fomin lemma gives

1E <

Ck?* (k=1,2,..).

Substituting this into (3.8) yields

Given any &> 0, by (1.9) and Lemma 1, the last inequality implies that

. (3.9

IIZ b Dij| <

N
[
k=n

C[n?

< g/2

R

Byi+ Y k*AB+N*By..].

k=n+1

if n and N are large enough,

icm
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say N = n > ng. Finally, using the obvious inequality
(3.10) | Dy () -|stmpc| k(k+1)/2,

for any 1 £ n< N we can estimate as follows:
§ "o

& N
3.1 §|Y 4bDi(x)|dx < ||Z Aby Dy (x)f dx
0

k=n

LI no
e S b, Dyl dx <48 Y k(k+1)|dbl+e/2 <o
k=1

Q k= llo'l'l
provided & is small enough. This proves that {a,) eC.
Levuva 8. § < 7, for any p > 0.

Proof. We assume (g} ef and will prove lay EV To this end, set
2ty )
5 =[2"00 T JaplT (G =0,1,..0.

k= 2f
Owing to (1.9)(1) and the nonincreasing property of [B.!, we conclude that
8; < 2/B,;, whence
(3.12) Z 26 < Z 2YB

J_

Now we apply the fo]lowxng Cauchy type theorem: If {¢,] is a nonine-
reasmg sequence of positive numbers, then the series Z ke, and
Z jo 2%e ,j are convergent or divergent simultancously. Therefore (1.9)(i1)
imphes that the series on the right-hand side of (3.12) is convergent. So is the
series on the left-hand side of (3.12). In particular, :

(3.13) 26, =0 (j—oo0).

A simple estimate shows that
Jilqi
e B2 T k¥ |abr]),
k= 2/
whence, via (3,13),
Lt ‘
270 % kA =0 ().
= 2] .
It is. not hard to see that this is equivalent to condition {2.7) to be proved (cf,
[2, Lemma 2.1]).

In the proofs of Corollaries 2 and § we will need the following estimate.
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Lemma 9. There exist two positive constants C, and C, such that
(3.14) Cinlogin+1) < |ID)l < Cpnlogn+1) (m=1,2,...,).

Proof The upper estimate in (3.14) immediately follows from Bern-
stein’s inequality (stated in Lemma 3 above) and from the estimate of the
Lebesgue constant L, = (2/n}(|D,|| (see e.g. [10, Vol. 1, p. 67].

In order to prove the lower estimate in (3.14), we begin with the
representation
(3.15) (%) = — Z ksinkx = (n+1)[K, (x)— D, (x)]

k=1
. cos{n+3x
=(n+1)|:K"(x)—%cot%x+m“

where D,(x) and K,(x) are the conjugate Dirichlet and Fejér kernels,
respectively. It is well known that

- ' C
(3.16) !K,,(x)—%cot%xl < DA 0<x<m

(see e.g. [10, Vol 1, p. 92].
By (3.15),

® lcos(n+%) x|
1 , T2siniy
@17 D = (et 1) LM}H, 2sindx

r _ T Az
- | K, () ~3cotgxdx [~ [ (D, (x)dx.
m(2n+ 1) - 0

A similar reasoning which leads to a lower estimate of the integral

’iisin(n—f-%)xl_
5 2sindx
(see e.g. [10, Vol. I, 'p.. 67]) shows that there is a constant C > 0 such that

"'. lcos (n+3) x|
wza+y 28ingx
Hence and from (3.16), (3.17) and (3.10), we get

1D = C{n+1)log(n+1)—C (2n- Iy/m—n(n+1)/4,

and this completes the proof of (3.14).

(3.18) dxz Clog(n+1) (n=1,2,..).

Remark 3. A more accurate calculation shows that actually

1 © |cos(n+4) x|

2
-— - : d — i
log(n+1) ygiyy, 2sinix- 7w =)
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(cf. (3.18)), which implies in turn that
g2
nlog(n+l) T
4. Proofs of Theorems 1-2 and Corollaries 1-5

(n — o0,

. Proof of Theorem 1. Sufficiency. Assume la“ eCnBYV. By (1.5)
and (2.4),

(41) f(X) un( = Z Abk Dk(x)
k=n-t+1
Given any ¢ > 0, let § correspond to ¢/2 in the definition of the class .
Then, by applying (1.4) again, a simple calculation shows that

“un—“f” = _ ’SD’ Z Ab Dk x)ldx
0

k=n+1

< g2+ Z |Abk|fka(xidx

k=n+1

<e2+C }j k |dby) [dx/x

k=n+1

< t;'/2+Cr$‘1 }: kldbj <«
k=n-+1
if n is large enough, thanks to the fact that {a,} eBV. This proves the limit
relation in (2.5). .
Necessity. Now we assume that given any ¢ > 0, ||u, —f]l € &/2 if n is
large enough, say n 2 ny. By (4.1), this is equivalent to.

(4.2) ¢| ): Ab Di(x)|dx < /2 if n= n,.

0 k=n+1
If 1< n<ng, then by (3.10)
HZ Ab, Dj(x) dx <46 z Je( k+I)JAka+a/2
Q k=n

{cf. (3.11)) provided & is small enough. This is (2.1), which means that {g,} €C.

Proof of Corellary 1. In order to prove that (1.1) is a Fourier series,
by a.standard argument it suffices to show that for the sum f(x) of series
(1 1) we have f €' (0, n). According to Theorem 1, this is the case whenever
{a,) eCrnBY,

Proof of Corollary 2. Sufficiency. Keeping (2.3) in mind, by

7 = Studis Muthematicn 92.2
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Theorem 1,
lsy =F11 < Hsn— vl sty =51l = Bt 1l [1D3f] +0(1)
‘ Necessity. Similarly, by assumption and again by Theorem 1,
B D] = ity =501 < ity =Nl = L f=54ll = 0 (1)
In both cases, it remains only to take into account that by Lemma 9

i, ,
(43) sl = 2203 ~ a0 1+ 1

where ~ means that the sides are of the same order of magnitude.

Proof of Theorem 2. Denote by a,(x) the first arithmetic means of
series (1. 1), ie.,

k= k=1

1 n n k . '
a, (x)—nj_— lek(x > (1 —m)aksmkx (h=1,2,..).

The basic idea is to show that under the conditions of Theorem 2,

(44 lup—onll =0 (n—c0).
To this end, we use the representation
1 1
S, (X)— 6, (x) = 1 Z ka,sinkx = o) Z kb (cos kx)'
k=1

whence by summation by parts,
1 '
5, (X)—0,(x) = ] Z k 4b,, Dj (x) Z bys1 Dp(x) = by iy Dyix).

By (2.3), this can be rewritten as

! 1 ,
U, (x) ~0,(x) = _—11;1 kdb, D (x )+mk§1 s 1 D (%),

80

(4.5) Nl — ol < —-—-—nz kAkak||+———~|l Z bes 1 Dif)-

We apply Lemma 6 twice in order to obtaln
| n C 1ip
(4.6) ~—1--;] Y kdb, Dy| < ~—~”~m—(z k22| dby7)"?
n+ 172 b1

<C,(nt S k22 4byH"? = o (1)

k=1

icm
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by (2.7), whereas
1 “ é n" fp n 1
4.7 ——|| S byw Dy < =2 kP by, 7)1
4.7) n+1J|k§1 K+ 1 kl ST (kgl 1By )

n+1
<Gt Y kP pn) T = 0(1)
k=12
because kb, =a, —~0 as k —oo. Putting (4.54(4.7) together yields (4.4).
To complete the proof we have to take into account that

lln =Sl < ltp = all + low =11

The first term on the right tends to zero by (4.4), while the second term tends
to zero since feL!(0, m), thereby yielding (2.9).

We note that this kind of approach was first applied by Bray [3] for
cosine series.

Proof of Corollary 4. Necessity. Assume {q) €BV. Then, by
Corollary 1, {a) eC is a sufficient condition for f el!(0, n).

Sufficiency. Assume feV for some p> 1 and f&L'(0, n). Then, by
Theorem 2, we have {2.9). By combining this with the condition {a,} € BV,
Theorem 1 implies (¢} eC.

Proof of Corollary 5. It is essentially a repetition of that of
Corollary 2, with Theorem 2 used instead of Theorem 1.
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The socle and finite-dimensionality of a semiprime Banach algebra
by

LEON! DALLA, S. GIOTOPOULOS and NELLI KATSELI (Athens)
Abstract. All finite-dimensional semiprime Banach algebras are semisimple.

The purpose of this paper is to give a characterization of the elements of
the socle of a semiprime Banach algebra. If 4 is a semiprime Banach algebra
we prove that socArradA = [0}, and tesoc4 if and only if dim(rAf) <
+ oo (i.e. tAr has finite dimension). This extends a result of Alexander in [1]
concerning semisimple Banach algebras, and is used to prove that the
elements of soc A are algebraic and that A is finite-dimensional if and only if
A =socA (and in this case A is forced to be semisimple). This completes
Tullo’s assertion in Theorem 5 of [8]. We also give a different proof of

ITullo’s result.

An element s of A is called single if whenever asb = 0 for some a, b in A,
at least one of as or sb is zero. We say that an element ¢ of A acts compactly
if the map a —tat (A — A) is compact. If the algebra A has no minimal ideals
we define soc A == 0],

In general, notation and terminology used are as in [3]. All the algebras
and subspaces considered will be over the complex field.

Single elements that act compactly have proved to have a close connec-
tion with the elements of the minimal ideals of the algebra.

' More precisely, with a slight modification (see eg. [5] or [6]) in the
proofs of Theorem 4 and Corollary 5 in [4] one can easily deduce Theorem
1 and Corollary 2 below (see also [7] for an alternative approach).

TucoreM 1. Let s and t be nonzero compactly acting single elements of a
semiprime Banach algebra A, and st ¢rad A. Then:

(i) There exist minimal idempotents ¢ and f such that s =se ond t = It

(ii) The dimension of tAs is at most 1,

From Theorem 1 we find that if s¢rad A and s is a compactly acting
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