icm

the derivative of a, and with the involution $a^*(z) = \bar{a}(\bar{z})$. The extreme points of P_A can be identified with [-1,1], the set of all fixed points of $z \to \bar{z}$. By Corollary 3.1 the function a defined by a(z) := 1-z is contained in the cone \bar{A}_+ , but it is not in A_+ : Let $a(z) = 1-z = \sum_{i=1}^N a_i^*(z) a_i(z)$ be a combination of positive elements. Differentiating both sides and using the continuity of a' on D we obtain a'(1) = -1 = 0, a contradiction.

References

- [1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973.
- [2] R. M. Brooks, On locally m-convex algebras, Pacific J. Math. 23 (1967), 5-23.
- [3] R. S. Bucy and G. Maltese, A representation theorem for positive functionals on involution algebras, Math. Ann. 162 (1966), 365-367.
- [4] P. Civin and B. Yood, Involutions on Banach algebras, Pacific J. Math. 9 (1959), 415-436.
- [5] P. C. Curtis, Order and commutativity in Banach algebras, Proc. Amer. Math. Soc. 9 (1958), 643-646.
- [6] P. G. Dixon, Automatic continuity of positive functionals on topological involution algebras, Bull. Austral. Math. Soc. 23 (1981), 265-281.
- [7] R. S. Doran and V. A. Belfi, Characterizations of C*-Algebras, Dekker, 1986.
- [8] I. M. Gelfand, D. A. Raikow und G. E. Schilow, Kommutative normierte Algebren, Deutscher Verlag der Wissensch., Berlin 1964.
- [9] T. Husain, Multiplicative Functionals of Topological Algebras, Res. Notes in Math. 85, Pitman, Boston 1983.
- [10] J. L. Kelley and R. L. Vaught, The positive cone in Banach algebras, Trans. Amer. Math. Soc. 74 (1953), 44-55.
- [11] M. A. Naimark, Normed Alaebras, 3rd ed., Wolters-Noordhoff, Groningen 1972.
- [12] T. W. Palmer, The Gelfand-Naimark pseudo-norm on Banach *-algebras, J. London Math. Soc. (2) 3 (1971), 89-96.
- [13] M. Pannenberg, Korovkin approximation in Waelbroeck algebras, Math. Ann. 274 (1986), 423-427.
- [14] V. Pt ák, Banach algebras with involution, Manuscripta Math. 6 (1972), 245-290.
- [15] H. Render, A characterization of C*-algebras via positive operators, Arch. Math. (Basel) 50 (1988), to appear.
- [16] W. Rudin, Functional Analysis, McGraw-Hill, New York 1973.
- [17] H. Schaefer, Halbgeordnete lokal-konvexe Vektorräume III, Math. Ann. 141 (1966), 113-142.
- [18] -, Topological Vector Spaces, Graduate Texts in Math. 3, Springer, Berlin 1971.
- [19] D. M. Topping, Vector lattices of selfadjoint operators, Trans. Amer. Math. Soc. 115 (1965), 14-30.
- [20] L. Waelbroeck, Topological Vector Spaces and Algebras, Lecture Notes in Math. 230, Springer, Berlin 1970.

UNIVERSITÄT-GESAMTHOCHSCHULE DUISBURG Lotharstr. 65, D-4100 Duisburg, F.R.G.

Received April 4, 1987 (2301)
Revised version October 15, 1987

STUDIA MATHEMATICA, T. XCII. (1989)

On the integrability and L1-convergence of sine series*

b

· FERENC MÓRICZ (Szeged)

Abstract. We study sine series $(*)\sum_{k=1}^{\infty}a_k$ sin kx with coefficients belonging to one or two of the classes \widetilde{C} , $\widetilde{B}V$, and \widetilde{V}_p introduced in this paper. Among other things, we prove that if $\{a_k\}\in\widetilde{C}\cap\widetilde{B}V$, then (*) is the Fourier series of some function $f\in L^1(0,\pi)$. Furthermore, if $\{a_k\}\in\widetilde{C}\cap\widetilde{B}V$, or $\{a\}\in\widetilde{V}_p$ and $f\in L^1(0,\pi)$, then the condition (**) $a_n\log n\to 0$ is necessary and sufficient for the $L^1(0,\pi)$ -convergence of the partial sums $s_n(x)$ of series (*). Criterion (**) has been known so far only in the case of cosine series. Our results generalize those obtained by Telyakovskii [9] for sine series, while our new classes are the counterparts of those introduced by Garrett and Stanojević [5] as well as by Bojanic and Stanojević [2] for cosine series.

1. Introduction. We will study the sine series

$$(1.1) \sum_{k=1}^{\infty} a_k \sin kx$$

where $\{a_k\}$ is a sequence of real numbers in the class $\tilde{B}V$ defined as follows.

DEFINITION 1. A null sequence $\{a_k\}$ belongs to $\tilde{B}V$ if

where

$$b_k := a_k/k$$
, $\Delta b_k := b_k - b_{k+1}$ $(k = 1, 2, ...)$.

We do not require any monotonicity of the sequences $\{a_k\}$ and $\{b_k\}$.

Following an idea of Kano [6], we represent the partial sums $s_n(x)$ of series (1.1) in the form

$$s_n(x) = \sum_{k=1}^n a_k \sin kx = -\sum_{k=1}^n b_k (\cos kx)'$$

¹⁹⁸⁰ Mathematics Subject Classification: Primary 42A20, 42A32.

Key words and phrases: integrability of sine series, L¹-convergence of Fourier series, modified sine sums.

^{*} This research was completed while the author was a visiting professor at Syracuse University, Syracuse, New York, U.S.A., during the academic year 1986/87.

where prime denotes derivative. By summation by parts,

(1.3)
$$s_n(x) = -\sum_{k=1}^n \Delta b_k D'_k(x) - b_{n+1} D'_n(x) (n = 1, 2, ...)$$

where

$$D_n(x) = \frac{1}{2} + \sum_{k=1}^n \cos kx = \frac{\sin(n + \frac{1}{2})x}{2\sin\frac{1}{2}x}$$

is the Dirichlet kernel. It is easy to see that

$$|D'_n(x)| \le Cn/x^2 \quad \text{uniformly in } n \text{ and } x.$$

Here and in the sequel, C denotes positive absolute constants not necessarily the same at different occurrences.

Now a routine calculation gives that if $\{a_k\} \in \widetilde{BV}$, then at every x the series $\sum_{k=1}^{\infty} \Delta b_k D_k'(x)$ converges absolutely and $b_{n+1} D_n'(x) \to 0$ $(n \to \infty)$. Consequently, we can write

(1.5)
$$\sum_{k=1}^{\infty} a_k \sin kx = -\sum_{k=1}^{\infty} \Delta b_k D'_k(x) = : f(x), \text{ say.}$$

Remark 1. We recall that the class BV of sequences of bounded variation is defined as follows. A null sequence $\{a_k\}$ belongs to BV if

$$\sum_{k=1}^{\infty} |\Delta a_k| < \infty \quad \text{where} \quad \Delta a_k := a_k - a_{k+1}.$$

However, it seems to us that $\tilde{B}V$ is a more appropriate notion for sine series than BV.

We note that the difference between BV and $\tilde{B}V$ is merely a slight one. For instance, if F denotes the class of sequences $\{a_k\}$ such that

then we have $\tilde{B}V \cap F = BV \cap F$.

Indeed, the inclusion $BV \cap F \subset \widetilde{B}V$ follows from the inequality

$$(1.7) k|\Delta b_k| \leq |\Delta a_k| + \frac{|a_{k+1}|}{k+1}.$$

On the other hand, the inequality

$$|\Delta a_k| \leqslant k |\Delta b_k| + \frac{|a_{k+1}|}{k+1}$$

implies $\tilde{B}V \cap F \subset BV$.

Various conditions are known in the literature which ensure that series

(1.1) is a Fourier series (see e.g. [4], [6]-[9], and [10, Vol. 1, pp. 185-186]). Recently, Telyakovskii [9] introduced a class \tilde{S} as follows. A null sequence $\{a_k\}$ belongs to \tilde{S} if there exists a nonincreasing sequence $\{B_k\}$ of numbers such that

(1.9)
$$|\Delta b_k| \leqslant B_k \quad \text{for all } k, \quad \sum_{k=1}^{\infty} kB_k < \infty.$$

THEOREM A (Telyakovskii [9]). If $\{a_k\} \in \widetilde{S}$, then series (1.1) is the Fourier series of some function $f \in L^1(0, \pi)$.

2. Main results. We introduce another new class \tilde{C} of coefficient sequences for sine series.

Definition 2. A null sequence $\{a_k\}$ belongs to \tilde{C} if for every $\varepsilon > 0$ there exists $\delta > 0$, independent of n, and such that for all n,

(2.1)
$$\int_{0}^{\delta} \left| \sum_{k=n}^{\infty} \Delta b_k D'_k(x) \right| dx \leqslant \varepsilon.$$

It is clear that (2.1) implies, for $1 \le n \le N$,

(2.2)
$$\int_{0}^{\delta} \left| \sum_{k=n}^{N} \Delta b_{k} D_{k}'(x) \right| dx \leq 2\varepsilon.$$

Conversely, by virtue of Fatou's lemma, it follows from (2.2) that (2.1) holds true with 2ε in place of ε . Thus, conditions (2.1) and (2.2) as required to be satisfied for all $\varepsilon > 0$ are equivalent.

DEFINITION 3. Motivated by (1.3), the sums

(2.3)
$$u_n(x) := s_n(x) + b_{n+1} D'_n(x) \qquad (n = 1, 2, ...)$$

are called the modified sums of series (1.1).

It will turn out that these modified sums $u_n(x)$ exhibit nicer convergence behavior in comparison with that of the ordinary partial sums $s_n(x)$.

According to (1.3),

(2.4)
$$u_n(x) = -\sum_{k=1}^n \Delta b_k D'_k(x).$$

Another representation for $u_n(x)$ is

$$u_n(x) = \sum_{k=1}^n \left(\sum_{j=k}^n \Delta a_j \right) \sin kx + a_{n+1} \widetilde{K}_n(x)$$

where

$$\tilde{K}_n(x) = \frac{1}{n+1} \sum_{k=1}^n \tilde{D}_k(x) = \sum_{k=1}^n \left(1 - \frac{k}{n+1} \right) \sin kx$$

is the conjugate Fejér kernel, while

$$\tilde{D}_n(x) = \sum_{k=1}^n \sin kx = \frac{1}{2} \cot \frac{1}{2} x - \frac{\cos (n + \frac{1}{2}) x}{2 \sin \frac{1}{2} x}$$

is the conjugate Dirichlet kernel.

We note that in the case of cosine series an analogous class C as well as analogous modified cosine sums were defined by Garrett and Stanojević [5].

THEOREM 1. If $\{a_k\} \in \tilde{B}V$, then

(2.5)
$$||u_n - f|| \to 0 \quad (n \to \infty) \quad \text{if and only if} \quad \{a_k\} \in \widetilde{C}.$$

In this paper, $\|\cdot\|$ denotes the $L^1(0, \pi)$ -norm:

$$||g|| := \int_{0}^{\pi} |g(x)| dx.$$

COROLLARY 1. If $\{a_k\} \in \tilde{C} \cap \tilde{B}V$, then series (1.1) is the Fourier series of some function $f \in L^1(0, \pi)$.

In Section 3, we will prove that the class \tilde{S} is a subset of $\tilde{C} \cap \tilde{B}V$ (see Lemma 7 there). Thus, Theorem A is a special case of Corollary 1.

Corollary 2. If $\{a_k\} \in \tilde{C} \cap \tilde{B}V$, then

$$(2.6) ||s_n - f|| \to 0 if and only if a_n \log n \to 0 (n \to \infty).$$

Combining Corollary 2 and Lemma 7 results in a natural continuation of Theorem A.

COROLLARY 3. If $\{a_k\} \in \widetilde{S}$, then the equivalence relation in (2.6) holds true.

We recall that if $\{a_k\} \in \widetilde{S}$, then by Lemma 2 we have (1.6). If, in addition, $\{a_k\}$ is a nonincreasing sequence of positive numbers, then it follows from (1.6) that $a_n \log n \to 0$ $(n \to \infty)$ and we get back the following classical result.

THEOREM B ([10, Vol. 1, p. 185]). If a null sequence $\{a_k\}$ is nonincreasing, then (1.1) is the Fourier series of some function $f \in L^1(0, \pi)$ if and only if condition (1.6) is satisfied. Moreover, if (1.6) is satisfied, then

$$||s_n-f||\to 0 \quad (n\to\infty).$$

PROBLEM. We are unable either to prove that $\{a_k\} \in \widetilde{S}$ implies $a_n \log n \to 0$ $(n \to \infty)$ or to construct a counterexample.

We introduce further classes \tilde{V}_p of sequences as follows.

Definition 4. Let p > 0. A sequence $\{a_k\}$ belongs to \tilde{V}_p if

(2.7)
$$n^{-1} \sum_{k=1}^{n} k^{2p} |\Delta b_k|^p \to 0 \quad (n \to \infty)$$

(recall that $b_k = a_k/k$).

Condition (2.7) is certainly satisfied if

(2.8)
$$\sum_{k=1}^{\infty} k^{2p-1} |\Delta b_k|^p < \infty.$$

This immediately follows by applying the so-called Kronecker lemma (see e.g. [1, p. 68]). A particular case of (2.8) in the case $p \ge 1$ is the one where $|a_k| \in \tilde{B}V$ and $k^2 |\Delta b_k| \le C$ (k = 1, 2, ...).

On the other hand, in Section 3 we will prove that $\tilde{S} \subset \tilde{V}_p$ for any p > 0 (see Lemma 8 there).

Remark 2. In the case of cosine series analogous classes V_p were defined by Bojanic and Stanojević [2] as follows. A sequence $\{a_k\}$ belongs to V_p if

$$n^{-1}\sum_{k=1}^n k^p |\Delta a_k|^p \to 0 \qquad (n \to \infty).$$

Now, it follows easily that if

$$n^{-1}\sum_{k=1}^{n}|a_{k+1}|^{p}\to 0 \quad (n\to\infty),$$

in particular, if $a_n \to 0$ $(n \to \infty)$, then actually $V_p = \tilde{V}_p$ for any p > 0. In fact, the inclusion $V_p \subset \tilde{V}_p$ follows from (1.7), while $\tilde{V}_p \subset V_p$ follows from (1.8) in routine ways.

THEOREM 2. If $\{a_k\} \in \widetilde{V}_p$ for some p > 1 and $f \in L^1(0, \pi)$, then

$$(2.9) ||u_n - f|| \to 0 (n \to \infty).$$

We can draw two corollaries.

Corollary 4. If $\{a_k\} \in \tilde{V}_p \cap \tilde{B}V$ for some p > 1, then

$$f \in L^1(0, \pi)$$
 if and only if $\{a_k\} \in \tilde{C}$.

COROLLARY 5. If $\{a_k\} \in \tilde{V}_p$ for some p > 1 and $f \in L^1(0, \pi)$, then the equivalence relation in (2.6) holds true.

Using Hölder's inequality, it is easily shown that the class \tilde{V}_p is wider when p is closer to 1. Hence, without loss of generality we may assume that 1 in all subsequent considerations.

Before proving our theorems and the corollaries to them in Section 4, we will cite a few known and prove a few new auxiliary lemmas in Section 3.

3. Auxiliary results

LEMMA 1. If $\{B_k\}$ is a null sequence of positive numbers such that

then

$$(3.2) n^2 B_n \to 0 (n \to \infty),$$

$$(3.3) \sum_{k=1}^{\infty} kB_k < \infty.$$

In the case when $\{B_k\}$ is nonincreasing, conditions (3.1) and (3.3) are equivalent.

Proof. (3.2) is clear from the estimate

$$n^2 B_n = n^2 \sum_{k=n}^{\infty} \Delta B_k \leqslant \sum_{k=n}^{\infty} k^2 |\Delta B_k|.$$

Summation by parts gives

(3.4)
$$\sum_{k=1}^{n} k^2 \Delta B_k = \sum_{k=1}^{n} (2k-1)B_k - n^2 B_{n+1},$$

whence

$$\sum_{k=1}^{n} k B_{k} \leqslant \sum_{k=1}^{n} k^{2} \Delta B_{k} + n^{2} B_{n+1}.$$

This yields (3.3).

If $\{B_k\}$ is nonincreasing, then from (3.4) it follows that

$$\sum_{k=1}^{n} k^{2} |\Delta B_{k}| = \sum_{k=1}^{n} k^{2} \Delta B_{k} \leq 2 \sum_{k=1}^{n} k B_{k},$$

completing the proof of the equivalence of (3.1) and (3.3).

LEMMA 2 (Telyakovskii [9]). Let

$$B_k := \max_{i \geq k} |\Delta b_j| \qquad (k = 1, 2, \ldots).$$

Then $\sum_{k=1}^{\infty} kB_k < \infty$ is equivalent to the following two conditions:

(3.5)
$$\sum_{k=1}^{\infty} (\max_{j \ge k} |\Delta a_j|) < \infty, \quad \sum_{k=1}^{\infty} |a_k|/k < \infty.$$

We note that this equivalence remains valid if the second condition in (3.5) is replaced by the stronger one

$$\sum_{k=1}^{\infty} (\max_{j \ge k'} |a_j/j|) < \infty.$$

LEMMA 3. If T(x) is an even trigonometric polynomial of order n, then $||T'|| \le n||T||$.

This is S. Bernstein's inequality in the $L^1(0, \pi)$ -metric (see e.g. [10, Vol. 2, p. 11]).

Lemma 4 (Bojanic-Stanojević [2]). Let $\{c_k\}$ be a sequence of real numbers. Then for any $1 and <math>n \ge 1$.

(3.6)
$$\left\| \sum_{k=n}^{2n-1} c_k D_k \right\| \leqslant C_p n^{1-1/p} \left(\sum_{k=n}^{2n-1} |c_k|^p \right)^{1/p}$$

where the constant C_p depends only on p.

The following special case, known as the Sidon-Fomin inequality, can easily be deduced from Lemma 4.

Lemma 5. Let $\{c_k\}$ be a sequence of real numbers such that $|c_k| \le 1$ for all k. Then there exists a constant C such that for any $n \ge 1$

$$\left\|\sum_{k=0}^{n} c_k D_k\right\| \leqslant Cn_{\frac{1}{2}}$$

Now we will prove a counterpart of inequality (3.6) in the case where $D'_k(x)$ is used instead of $D_k(x)$.

Lemma 6. Let $\{c_k\}$ be a sequence of real numbers. Then for any $1 and <math>n \ge 1$

(3.7)
$$\left\| \sum_{k=1}^{n} c_k D_k' \right\| \leq \tilde{C}_p n^{1-1/p} \left(\sum_{k=1}^{n} k^p |c_k|^p \right)^{1/p}$$

where the constant \tilde{C}_p depends only on p.

Proof. Without loss of generality, we may assume that n is of the form $n = 2^m - 1$ with some $m \ge 1$. Let $j \ge 1$. Applying first Bernstein's inequality, then inequality (3.6) yields

$$\left\| \sum_{k=2^{j-1}}^{2^{j-1}} c_k D_k' \right\| \leq 2^j \left\| \sum_{k=2^{j-1}}^{2^{j-1}} c_k D_k \right\| \leq 2^j C_p 2^{(j-1)(1-1/p)} \left(\sum_{k=2^{j-1}}^{2^{j-1}} |c_k|^p \right)^{1/p}$$

$$\leq 2^{2-1/p} C_p 2^{j(1-1/p)} \left(\sum_{k=2^{j-1}}^{2^{j-1}} k^p |c_k|^p \right)^{1/p}.$$

Continuing by making use of the triangle inequality, then Hölder's inequality with the exponents p and q, 1/p+1/q=1, we get

$$\left\| \sum_{k=1}^{2^{m}} c_{k} D'_{k} \right\| \leq \sum_{j=1}^{m} \left\| \sum_{k=2^{j-1}}^{2^{j-1}} c_{k} D'_{k} \right\|$$

$$\leq 2^{2-1/p} C_{p} \sum_{j=1}^{m} 2^{j(1-1/p)} \left(\sum_{k=2^{j-1}}^{2^{j-1}} k^{p} |c_{k}|^{p} \right)^{1/p}$$

$$\leq 2^{2-1/p} C_p \left(\sum_{j=1}^m 2^{j(1-1/p)q} \right)^{1/q} \left(\sum_{j=1}^m \sum_{k=2^{j-1}}^{2^{j-1}} k^p |c_k|^p \right)^{1/p}$$

$$\leq \tilde{C}_p 2^{m(1-1/p)} \left(\sum_{k=1}^{2^{m-1}} k^p |c_k|^p \right)^{1/p},$$

which is (3.7) for $n = 2^m - 1$.

LEMMA 7. $\tilde{S} \subset \tilde{C} \cap \tilde{B}V$.

Proof. It is plain that $\tilde{S} \subset \tilde{B}V$.

In order to prove $\tilde{S} \subset \tilde{C}$ we take a sequence $\{a_k\}$ in \tilde{S} and set

$$c_k := \Delta b_k / B_k, \quad E_k(x) := \sum_{j=1}^k c_j D'_j(x) \quad (k = 1, 2, ...).$$

Clearly $|c_k| \le 1$ for all k. By summation by parts, for N > n,

$$\sum_{k=n}^{N} \Delta b_k D_k'(x) = \sum_{k=n}^{N} B_k c_k D_k'(x)$$

$$= -B_{n+1} E_n(x) + \sum_{k=n+1}^{N} \Delta B_k E_k(x) + B_{N+1} E_N(x).$$

Hence

(3.8)
$$\left\| \sum_{k=n}^{N} \Delta b_k D_k' \right\| \leq B_{n+1} \|E_n\| + \sum_{k=n+1}^{N} \Delta B_k \|E_k\| + B_{N+1} \|E_N\|.$$

Since $D_j(x)$ is an even trigonometric polynomial of order j, applying Lemma 3 gives

$$||E_k|| \leqslant k \Big|\Big| \sum_{j=1}^k c_j D_j \Big|\Big|,$$

then applying the Sidon-Fomin lemma gives

$$||E_k|| \le Ck^2$$
 $(k = 1, 2, ...)$

Substituting this into (3.8) yields

$$\left\| \sum_{k=n}^{N} \Delta b_{k} D_{k}' \right\| \leq C \left[n^{2} B_{n+1} + \sum_{k=n+1}^{\infty} k^{2} \Delta B_{k} + N^{2} B_{N+1} \right].$$

Given any $\varepsilon > 0$, by (1.9) and Lemma 1, the last inequality implies that

(3.9)
$$\left\| \sum_{k=n}^{N} \Delta b_k D_k' \right\| \leq \varepsilon/2$$
 if n and N are large enough,

say $N \ge n > n_0$. Finally, using the obvious inequality

$$|D'_k(x)| = \Big| \sum_{j=1}^k j \sin jx \Big| \le k (k+1)/2,$$

for any $1 \le n \le N$ we can estimate as follows:

(3.11)
$$\int_{0}^{\delta} \left| \sum_{k=n}^{N} \Delta b_{k} D_{k}'(x) \right| dx \leq \int_{0}^{\delta} \left| \sum_{k=n}^{n_{0}} \Delta b_{k} D_{k}'(x) \right| dx$$

$$+ \int_{0}^{\pi} \left| \sum_{k=n_{0}+1}^{N} \Delta b_{k} D_{k}'(x) \right| dx \leq \frac{1}{2} \delta \sum_{k=1}^{n_{0}} k (k+1) |\Delta b_{k}| + \varepsilon/2 \leq \varepsilon$$

provided δ is small enough. This proves that $\{a_k\} \in \tilde{C}$.

LEMMA 8. $\tilde{S} \subset \tilde{V}_p$ for any p > 0.

Proof. We assume $\{a_k\} \in \widetilde{S}$ and will prove $\{a_k\} \in \widetilde{V}_p$. To this end, set

$$\delta_j := \left[2^{(p-1)j} \sum_{k=2^j}^{2^{j+1}-1} |\Delta b_k|^p \right]^{1/p} \quad (j=0, 1, \ldots).$$

Owing to (1.9)(i) and the nonincreasing property of $\{B_k\}$, we conclude that $\delta_j \leq 2^j B_{\gamma j}$, whence

(3.12)
$$\sum_{j=0}^{\infty} 2^{j} \delta_{j} \leqslant \sum_{j=0}^{\infty} 2^{2j} \boldsymbol{B}_{2^{j}}.$$

Now we apply the following Cauchy type theorem: If $\{c_k\}$ is a nonincreasing sequence of positive numbers, then the series $\sum_{k=1}^{\infty} kc_k$ and $\sum_{j=0}^{\infty} 2^{2j}c_{2j}$ are convergent or divergent simultaneously. Therefore (1.9)(ii) implies that the series on the right-hand side of (3.12) is convergent. So is the series on the left-hand side of (3.12). In particular,

$$(3.13) 2^{j} \delta_{j} \to 0 (j \to \infty).$$

A simple estimate shows that

$$2^{j} \delta_{j} \geqslant \frac{1}{4} \left[2^{-j} \sum_{k=2^{j}}^{2^{j+1}-1} k^{2p} |\Delta b_{k}|^{p} \right]^{1/p},$$

whence, via (3,13),

$$2^{-j} \sum_{k=2^{j}}^{2^{j+1}-1} k^{2p} |\Delta b_{k}|^{p} \to 0 \quad (j \to \infty).$$

It is not hard to see that this is equivalent to condition (2.7) to be proved (cf. [2, Lemma 2.1]).

In the proofs of Corollaries 2 and 5 we will need the following estimate.

LEMMA 9. There exist two positive constants C_1 and C_2 such that

(3.14)
$$C_1 n \log (n+1) \le ||D_n'|| \le C_2 n \log (n+1) \quad (n=1, 2, ...,).$$

Proof. The upper estimate in (3.14) immediately follows from Bernstein's inequality (stated in Lemma 3 above) and from the estimate of the Lebesgue constant $L_n = (2/\pi)||D_n||$ (see e.g. [10, Vol. 1, p. 67]).

In order to prove the lower estimate in (3.14), we begin with the representation

(3.15)
$$D'_{n}(x) = -\sum_{k=1}^{n} k \sin kx = (n+1) \left[\tilde{K}_{n}(x) - \tilde{D}_{n}(x) \right]$$
$$= (n+1) \left[\tilde{K}_{n}(x) - \frac{1}{2} \cot \frac{1}{2} x + \frac{\cos (n + \frac{1}{2}) x}{2 \sin \frac{1}{2} x} \right]$$

where $\tilde{D}_n(x)$ and $\tilde{K}_n(x)$ are the conjugate Dirichlet and Fejér kernels, respectively. It is well known that

(3.16)
$$|\tilde{K}_n(x) - \frac{1}{2}\cot\frac{1}{2}x| \le \frac{C}{(n+1)x^2} \quad (0 < x \le \pi)$$

(see e.g. [10, Vol. 1, p. 92]). By (3.15),

$$(3.17) ||D'_{n}|| \ge (n+1) \left[\int_{\pi/(2n+1)}^{\pi} \frac{|\cos(n+\frac{1}{2})x|}{2\sin\frac{1}{2}x} dx - \int_{\pi/(2n+1)}^{\pi} |\widetilde{K}_{n}(x) - \frac{1}{2}\cot\frac{1}{2}x| dx \right] - \int_{0}^{\pi/(2n+1)} |D'_{n}(x)| dx.$$

A similar reasoning which leads to a lower estimate of the integral

$$\int_{0}^{\pi} \frac{\left|\sin\left(n + \frac{1}{2}\right)x\right|}{2\sin\frac{1}{2}x} dx$$

(see e.g. [10, Vol. 1, p. 67]) shows that there is a constant C > 0 such that

(3.18)
$$\int_{\pi/(2n+1)}^{\pi} \frac{|\cos(n+\frac{1}{2})x|}{2\sin\frac{1}{2}x} dx \ge C\log(n+1) \quad (n=1, 2, \ldots).$$

Hence and from (3.16), (3.17) and (3.10), we get

$$||D'_n|| \ge C(n+1)\log(n+1) - C(2n+1)/\pi - \pi(n+1)/4$$

and this completes the proof of (3.14).

Remark 3. A more accurate calculation shows that actually

$$\frac{1}{\log(n+1)} \int_{\pi/(2n+1)}^{\pi} \frac{|\cos(n+\frac{1}{2})x|}{2\sin\frac{1}{2}x} dx \to \frac{2}{\pi} \quad (n \to \infty)$$

(cf. (3.18)), which implies in turn that

$$\frac{||D'_n||}{n\log(n+1)}\to \frac{2}{\pi} \quad (n\to\infty).$$

4. Proofs of Theorems 1-2 and Corollaries 1-5

Proof of Theorem 1. Sufficiency. Assume $\{a_k\} \in \widetilde{C} \cap \widetilde{B}V$. By (1.5) and (2.4),

(4.1)
$$f(x) - u_n(x) = -\sum_{k=n+1}^{\infty} \Delta b_k D'_k(x).$$

Given any $\varepsilon > 0$, let δ correspond to $\varepsilon/2$ in the definition of the class \tilde{C} . Then, by applying (1.4) again, a simple calculation shows that

$$||u_n - f|| = \left(\int_0^\delta + \int_\delta^\pi\right) \left| \sum_{k=n+1}^\infty \Delta b_k D_k'(x) \right| dx$$

$$\leq \varepsilon/2 + \sum_{k=n+1}^\infty |\Delta b_k| \int_\delta^\pi |D_k'(x)| dx$$

$$\leq \varepsilon/2 + C \sum_{k=n+1}^\infty k |\Delta b_k| \int_\delta^\pi dx/x^2$$

$$\leq \varepsilon/2 + C\delta^{-1} \sum_{k=n+1}^\infty k |\Delta b_k| \leq \varepsilon$$

if n is large enough, thanks to the fact that $\{a_k\} \in \widetilde{B}V$. This proves the limit relation in (2.5).

Necessity. Now we assume that given any $\varepsilon > 0$, $||u_n - f|| \le \varepsilon/2$ if n is large enough, say $n \ge n_0$. By (4.1), this is equivalent to

(4.2)
$$\int_{0}^{\pi} \left| \sum_{k=n+1}^{\infty} \Delta b_{k} D'_{k}(x) \right| dx \leqslant \varepsilon/2 \quad \text{if } n \geqslant n_{0}.$$

If $1 \le n \le n_0$, then by (3.10)

$$\int_{0}^{\delta} \left| \sum_{k=n}^{\infty} \Delta b_{k} D_{k}'(x) \right| dx \leqslant \frac{1}{2} \delta \sum_{k=1}^{n_{0}} k(k+1) \left| \Delta b_{k} \right| + \varepsilon/2 \leqslant \varepsilon$$

(cf. (3.11)) provided δ is small enough. This is (2.1), which means that $\{a_k\} \in \tilde{C}$.

Proof of Corollary 1. In order to prove that (1.1) is a Fourier series, by a standard argument it suffices to show that for the sum f(x) of series (1.1) we have $f \in L^1(0, \pi)$. According to Theorem 1, this is the case whenever $\{a_k\} \in \widetilde{C} \cap \widetilde{B}V$.

Proof of Corollary 2. Sufficiency. Keeping (2.3) in mind, by

^{7 -} Studia Mathematica 92.2

Theorem 1,

$$||s_n - f|| \le ||s_n - u_n|| + ||u_n - f|| = |b_{n+1}| \, ||D_n'|| + o(1).$$

Necessity. Similarly, by assumption and again by Theorem 1,

$$|b_{n+1}| ||D_n'|| = ||u_n - s_n|| \le ||u_n - f|| + ||f - s_n|| = o(1).$$

In both cases, it remains only to take into account that by Lemma 9

$$(4.3) |b_{n+1}| ||D'_n|| = \frac{|a_{n+1}|}{n+1} ||D'_n|| \sim |a_{n+1}| \log(n+1),$$

where ~ means that the sides are of the same order of magnitude.

Proof of Theorem 2. Denote by $\sigma_n(x)$ the first arithmetic means of series (1.1), i.e.,

$$\sigma_n(x) = \frac{1}{n+1} \sum_{k=1}^n s_k(x) = \sum_{k=1}^n \left(1 - \frac{k}{n+1}\right) a_k \sin kx \qquad (n = 1, 2, \ldots).$$

The basic idea is to show that under the conditions of Theorem 2,

$$(4.4) ||u_n - \sigma_n|| \to 0 (n \to \infty).$$

To this end, we use the representation

$$s_n(x) - \sigma_n(x) = \frac{1}{n+1} \sum_{k=1}^n k a_k \sin kx = -\frac{1}{n+1} \sum_{k=1}^n k b_k (\cos kx)'$$

whence by summation by parts,

$$s_n(x) - \sigma_n(x) = -\frac{1}{n+1} \sum_{k=1}^n k \Delta b_k D_k'(x) + \frac{1}{n+1} \sum_{k=1}^n b_{k+1} D_k'(x) - b_{n+1} D_n'(x).$$

By (2.3), this can be rewritten as

$$u_n(x) - \sigma_n(x) = -\frac{1}{n+1} \sum_{k=1}^n k \Delta b_k D'_k(x) + \frac{1}{n+1} \sum_{k=1}^n b_{k+1} D'_k(x),$$

so

$$(4.5) ||u_n - \sigma_n|| \leq \frac{1}{n+1} \Big\| \sum_{k=1}^n k \Delta b_k D_k' \Big\| + \frac{1}{n+1} \Big\| \sum_{k=1}^n b_{k+1} D_k' \Big\|.$$

We apply Lemma 6 twice in order to obtain

(4.6)
$$\frac{1}{n+1} \left\| \sum_{k=1}^{n} k \Delta b_k D_k' \right\| \leq \frac{\tilde{C}_p n^{1-1/p}}{n+1} \left(\sum_{k=1}^{n} k^{2p} |\Delta b_k|^p \right)^{1/p}$$

$$\leq \tilde{C}_p \left(n^{-1} \sum_{k=1}^{n} k^{2p} |\Delta b_k|^p \right)^{1/p} = o(1)$$

by (2.7), whereas

(4.7)
$$\frac{1}{n+1} \Big\| \sum_{k=1}^{n} b_{k+1} D_{k}' \Big\| \leq \frac{\tilde{C}_{p} n^{1-1/p}}{n+1} \Big(\sum_{k=1}^{n} k^{p} |b_{k+1}|^{p} \Big)^{1/p}$$

$$\leq \tilde{C}_{p} \Big(n^{-1} \sum_{k=2}^{n+1} k^{p} |b_{k}|^{p} \Big)^{1/p} = o(1)$$

because $kb_k = a_k \to 0$ as $k \to \infty$. Putting (4.5)–(4.7) together yields (4.4). To complete the proof we have to take into account that

$$||u_n - f|| \le ||u_n - \sigma_n|| + ||\sigma_n - f||.$$

The first term on the right tends to zero by (4.4), while the second term tends to zero since $f \in L^1(0, \pi)$, thereby yielding (2.9).

We note that this kind of approach was first applied by Bray [3] for cosine series.

Proof of Corollary 4. Necessity. Assume $\{a_k\} \in \tilde{B}V$. Then, by Corollary 1, $\{a_k\} \in \tilde{C}$ is a sufficient condition for $f \in L^1(0, \pi)$.

Sufficiency. Assume $f \in \widetilde{V}_p$ for some p > 1 and $f \in L^1(0, \pi)$. Then, by Theorem 2, we have (2.9). By combining this with the condition $\{a_k\} \in \widetilde{B}V$, Theorem 1 implies $\{a_k\} \in \widetilde{C}$.

Proof of Corollary 5. It is essentially a repetition of that of Corollary 2, with Theorem 2 used instead of Theorem 1.

References

- [1] G. Alexits, Convergence Problems of Orthogonal Series, Pergamon Press, Oxford 1961,
- [2] R. Bojanic and Č. V. Stanojević, A class of L¹-convergence, Trans. Amer. Math. Soc. 269 (1982), 677-683.
- [3] W. O. Bray, On the Sidon-Telyakovskii integrability class for cosine series, J. Math. Anal. Appl. 108 (1985), 73-78.
- [4] G. A. Fomin, A class of trigonometric series, Mat. Zametki 23 (1978), 213-222 (in Russian); Math. Notes 23 (1978), 117-123.
- [5] J. W. Garrett and Č. V. Stanojević, On Li-convergence of certain cosine sums, Proc. Amer. Math. Soc. 54 (1976), 101-105.
- [6] T. Kano, Coefficients of some trigonometric series, J. Fac. Sci. Shinshu Univ. 3 (1968), 153– 162.
- [7] S. Sidon, Hinreichende Bedingungen für den Fourier-Charakter einer trigonometrischen Reihe, J. London Math. Soc. 14 (1939), 158-160.
- [8] S. A. Telyakovskii, On a sufficient condition of Sidon for integrability of trigonometric series, Mat. Zametki 14 (1973), 317-328 (in Russian); Math. Notes 14 (1973), 742-748.

F. Móricz

200

STUDIA MATHEMATICA, T. XCII. (1989)

[9] -, On the integrability of sine series, Trudy Mat. Inst. Steklov. 163 (1984), 229-233 (in Russian).

[10] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, 1959.

BOLYAI INSTITUTE UNIVERSITY OF SZEGED Aradi vértanúk tere 1, 6720 Szeged, Hungary

Received June 25, 1987

(2328)

The socle and finite-dimensionality of a semiprime Banach algebra

bу

LEONI DALLA, S. GIOTOPOULOS and NELLI KATSELI (Athens)

Abstract. All finite-dimensional semiprime Banach algebras are semisimple.

The purpose of this paper is to give a characterization of the elements of the socle of a semiprime Banach algebra. If A is a semiprime Banach algebra we prove that $\operatorname{soc} A \cap \operatorname{rad} A = \{0\}$, and $t \in \operatorname{soc} A$ if and only if $\dim(tAt) < +\infty$ (i.e. tAt has finite dimension). This extends a result of Alexander in [1] concerning semisimple Banach algebras, and is used to prove that the elements of $\operatorname{soc} A$ are algebraic and that A is finite-dimensional if and only if $A = \operatorname{soc} A$ (and in this case A is forced to be semisimple). This completes Tullo's assertion in Theorem 5 of [8]. We also give a different proof of Tullo's result.

An element s of A is called *single* if whenever asb = 0 for some a, b in A, at least one of as or sb is zero. We say that an element t of A acts compactly if the map $a \to tat$ $(A \to A)$ is compact. If the algebra A has no minimal ideals we define $soc A = \{0\}$.

In general, notation and terminology used are as in [3]. All the algebras and subspaces considered will be over the complex field.

Single elements that act compactly have proved to have a close connection with the elements of the minimal ideals of the algebra.

More precisely, with a slight modification (see e.g. [5] or [6]) in the proofs of Theorem 4 and Corollary 5 in [4] one can easily deduce Theorem 1 and Corollary 2 below (see also [7] for an alternative approach).

THEOREM 1. Let s and t be nonzero compactly acting single elements of a semiprime Banach algebra A, and s, $t \notin rad A$. Then:

- (i) There exist minimal idempotents e and f such that s = se and t = ft.
- (ii) The dimension of tAs is at most 1.

From Theorem 1 we find that if $s \notin rad A$ and s is a compactly acting

¹⁹⁸⁰ Mathematics Subject Classification: Primary 46L05.

Key words and phrases: semiprime Banach algebra, minimal ideal, socle, algebraic elements.