

Contents of volume XCII, number 3

O.	Blasco, Interpolation between $H_{B_0}^1$ and $L_{B_1}^p$	205210
R.	MEISE, Sequence space representations for zero-solutions of convolution equations	
	on ultradifferentiable functions of Roumieu type	211-230
A.	BENKIRANE and JP. Gossez, An approximation theorem in higher order Orlicz-	
	Sobolev spaces and applications	231-255
М.	K. Mentzen, Invariant sub-σ-algebras for substitutions of constant length	257-273
C.	FINET and W. Schachermayer, Equivalent norms on separable Asplund spaces	275-283
R.	SHARPLEY and YS. SHIM, Singular integrals on Ca	285~293

STUDIA MATHEMATICA

Managing Editors: Z. Ciesielski, W. Orlicz (Editor-in-Chief), A. Pelczyński, W. Żelazko

The journal publishes original papers in English, French, German and Russian, mainly on functional analysis, abstract methods of mathematical analysis and probability theory. Usually 3 issues constitute a volume.

Manuscripts and correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA

ul. Śniadeckich 6, 00-950 Warszawa, Poland

Correspondence concerning exchange should be addressed to

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES

ul. Śniadeckich 8, 00-950 Warszawa, Poland

The journal is available at your bookseller or at

ARS POLONA

Krakowskie Przedmieście 7, 00-068 Warszawa, Poland

© Copyright by Państwowe Wydawnictwo Naukowe, Warszawa 1989

ISBN 83-01-08887-7

ISSN 0039-3223

PRINTED IN POLAND

WROCLAWSKA DRUKARNIA NAUKOWA

Interpolation between $H_{B_0}^1$ and $L_{B_1}^p$

by

OSCAR BLASCO (Zaragoza)

Abstract. It is proved that $[H^1_{B_0}, L^p_{B_1}]_{\theta} = L^q_{B_0, B_1}|_{\theta}$ for $1/q = 1 - \theta + \theta/p$.

§ 0. Introduction. In this paper we are concerned with interpolation between Hardy spaces and L^p -spaces of vector-valued functions. Following the notation in [1] we write $[A_0, A_1]_{\theta}$ and $(A_0, A_1)_{\theta,q}$ for the interpolation spaces by the complex method [2] and the real method [13] respectively. Throughout this paper $(B, ||\cdot||_B)$ stands for a Banach space and B_0, B_1 will be an interpolation pair of Banach spaces.

The Hardy space we shall deal with will be the following [7]:

$$H_B^1 = \big\{ f \in L_B^1(\mathbf{R}^n) \colon \int \sup_{t>0} \|P_t * f(x)\|_B \, dx < +\infty \big\},\,$$

 P_t being the Poisson kernel on R^n , and the main result of the paper is:

$$[H_{B_0}^1, L_{B_1}^p]_{\theta} = L_{[B_0, B_1]_{\theta}}^q,$$

where $0 < \theta < 1$, $1 , and <math>1/q = 1 - \theta + \theta/p$.

For the case $B_0 = B_1 = R$, this is the classical result of Fefferman and Stein [7]. They proved it using the duality $(H^1)^* = BMO$, and considering the "sharp" maximal function. Their technique works also in the case $B_0 = B_1 = B$, but for the general case we shall use a different approach based on the atomic decomposition of functions in H_B^1 . The ideas we shall use later have been considered by different authors (see [9], [8], [11]).

Recently several authors have extended Fefferman-Stein's complex interpolation result in the sense of replacing L^p on the right side by L^{∞} and BMO, i.e. for $1/q = 1 - \theta$,

$$[H^1, L^{\infty}]_{\theta} = [L^1, BMO]_{\theta} = [H^1, BMO]_{\theta} = L^q.$$

The reader is referred to [9], [12], [15] for different approaches to this result.

There are also interpolation results for H^p for 0 (see [3], [6],

[9]) but we restrict ourselves to the case p = 1.

We shall denote by $(L_B^p, \|\cdot\|_{p,B})$ the space $L_B^p(\mathbf{R}^n)$ with its usual norm, for $1 , and since we are not going to use <math>L_B^1$ let us denote by $\|\cdot\|_{1,B}$ the

norm in H_B^1 . As we have already said we shall consider H_B^1 defined in terms of atoms (see [10], [4], [5]). The reader can realize that the classical proofs also work for vector-valued functions on merely replacing the absolute value by the norm, so for each f in H_B^1 we write

$$||f||_{1,B} = \inf \left\{ \sum_{k} |\lambda_k| \colon f = \sum_{k} \lambda_k a_k, \ a_k \text{ are } B\text{-atoms} \right\}.$$

As usual, C will denote a constant but not necessarily the same at each occurrence.

I am very grateful to J. L. Rubio, who conjectured this result, for his valuable comments and helpful conversations; also, I would like to thank G. Weiss who referred me to [8], [11].

§ 1. The theorem and its corollaries. Let us formulate here a lemma which is essentially based on the Calderón-Zygmund decomposition and some arguments involved in Coifman's proof [4] for the atomic decomposition. The details are left to the reader.

Lemma. Given a B-valued simple function f, there exist a family of cubes $\{Q_j^k\}$ and a family of simple functions $\{a_j^k\}$ such that each a_j^k is supported in Q_j^k and

$$(1) \qquad \qquad \int a_i^k(x) \, dx = 0,$$

$$f = \sum_{k,l} a_{j}^{k},$$

(3)
$$||a_j^k(x)||_B \le C_0 2^k \chi_{O_i^k}(x)$$
 for all j ,

$$(4) \qquad \qquad \bigcup_{i} Q_{j}^{k} = \Omega_{k} = \{x \colon Mf(x) > 2^{k}\},$$

where Mf stands for the Hardy-Littlewood maximal function of f.

THEOREM A. Let $1 , <math>0 < \theta < 1$ and $1/q = 1 - \theta + \theta/p$. Then

$$[H_{B_0}^1, L_{B_1}^r]_{\theta} = L_{B_{\theta}}^r, \quad \text{where} \quad B_{\theta} = [B_0, B_1]_{\theta}.$$

Proof. Since $H_{B_0}^1 \subseteq L_{B_0}^1$ the classical results about interpolation obviously imply

$$[H_{B_0}^1, L_{B_1}^n]_{\theta} \subseteq [L_{B_0}^1, L_{B_1}^n]_{\theta} = L_{B_{\theta}}^q$$

Consider now a B_{θ} -valued simple function f. Using the lemma write $f = \sum a_j^k$, where a_j^k is also a B_{θ} -valued simple function which can be expressed as

$$a_j^k = \sum_{m=1}^{n(j,k)} x_m^{j,k} \chi_{E_m^{j,k}},$$

the $x_m^{j,k}$ being elements in B_θ and $\bigcup_m E_m^{j,k} = Q_j^k$

Let $\Omega = \{z \in \mathbb{C}: 0 < \text{Re } z < 1\}$. Given $\varepsilon > 0$ we choose continuous functions $f_m^{j,k}: \bar{\Omega} \to B_0 + B_1$, holomorphic in Ω and satisfying

$$\begin{split} f_m^{j,k}(\theta) &= x_m^{j,k}, \quad ||f_m^{j,k}(it)||_{B_0} \leqslant (1+\varepsilon) \, ||x_m^{j,k}||_{B_{\theta}}, \\ ||f_m^{j,k}(1+it)||_{B_1} &\leqslant (1+\varepsilon) \, ||x_m^{j,k}||_{B_{\theta}} \quad \text{for all } t \in R. \end{split}$$

Defining

$$F_{j}^{k}(z) = \sum_{m=1}^{n(j,k)} f_{m}^{j,k}(z) \chi_{E_{m}^{j,k}}$$

we get continuous functions F_j^k : $\bar{\Omega} \to L_{B_0}^{\infty}(Q_j^k) + L_{B_1}^{\infty}(Q_j^k)$ which are holomorphic in Ω and satisfy

$$(6) F_j^k(\theta) = a_j^k,$$

(7)
$$||F_{j}^{k}(it)(x)||_{B_{0}} \leq (1+\varepsilon)||a_{j}^{k}(x)||_{B_{\theta}}$$
 for all $x \in Q_{j}^{k}$, $t \in \mathbb{R}$,

(8)
$$||F_j^k(1+it)(x)||_{B_1} \le (1+\varepsilon) ||a_j^k(x)||_{B_\theta}$$
 for all $x \in Q_j^k$, $t \in \mathbb{R}$.

Let us consider

(9)
$$G_{j}^{k}(z) = F_{j}^{k}(z) - (|Q_{j}^{k}|^{-1} \int_{Q_{j}^{k}} F_{j}^{k}(z)(x) dx) \chi_{Q_{j}^{k}}.$$

Setting r(z) = q(1-z+z/p)-1 we define

(10)
$$F(z) = \sum_{k,j} (2^k)^{r(z)} G_j^k(z).$$

From (2) and (6) we clearly have $F(\theta) = f$. Now we want to prove that

$$\sup \{ ||F(it)||_{1,B_0}, ||F(1+it)||_{p,B_1} \} \le C ||f||_{q,B_0}.$$

To check the norm $||F(1+it)||_{p,B_1}$ we first observe that

$$||F(1+it)(x)||_{B_1} \le C \sum_{k,j} 2^{k(q/p-1)} ||G_j^k(1+it)(x)||_{B_1}$$

and according to (8) and (3) we can write

$$||F(1+it)(x)||_{B_{1}} \leq C(1+\varepsilon) \sum_{k,j} 2^{k(q/p-1)} (||a_{j}^{k}(x)||_{B_{\theta}} + ||a_{j}^{k}||_{\infty,B_{\theta}} \chi_{Q_{j}^{k}}(x))$$

$$\leq C(1+\varepsilon) \sum_{k,j} 2^{kq/p} \chi_{Q_{j}^{k}}(x).$$

Hence we get

$$\begin{split} ||F(1+it)||_{p,B_1} & \leq C(1+\varepsilon) \sum_{k,j} 2^{kq} |Q_j^k| \leq C(1+\varepsilon) \sum_k 2^{kq} |\Omega_k| \\ & \leq C(1+\varepsilon) ||Mf||_q \leq C(1+\varepsilon) ||f||_{q,B_\theta}. \end{split}$$

To compute $||F(it)||_{1,B_0}$ let us write $\lambda_j^k = C_0(1+\varepsilon) 2^{k+1} |Q_j^k|$ and $b_k^j = (\lambda_j^k)^{-1} G_j^k(it)$. From (9), (7), and (3) the b_j^k are B_0 -atoms and we have

$$F(it) = \sum_{k,j} 2^{kr(it)} \lambda_j^k b_j^k,$$

therefore

$$||F(it)||_{1,B_0} \le C \sum_{k,j} 2^{k(q-1)} |\lambda_j^k| = C(1+\varepsilon) \sum_{k,j} 2^{kq} |Q_j^k|$$

and the above computation shows that $||F(it)||_{1,B_0} \le C(1+\varepsilon)||f||_{q,B_0}$

Since ε can be chosen arbitrarily small we have just proved that for any simple function $||f||_{\theta} \le C||f||_{q,B_{\theta}}$, and the proof is completed by a simple density argument.

Now we want to deduce some interpolation result for BMO_B, and some minor conditions have to be imposed on the Banach spaces B_0 and B_1 in order to be able to apply duality interpolation results [1]:

- (*) $B_0 \cap B_1$ is dense in both B_0 and B_1 ,
- (**) $B_0^* \cap B_1^*$ is dense in both B_0^* and B_1^* .

Corollary 1. Suppose B_0 and B_1 satisfy (*) and (**) and let $0 < \theta < 1$, $1 and <math>1/q = (1-\theta)/p$. Then

(11)
$$[L_{B_0}^r, BMO_{B_1}]_{\theta} = L_{[B_0, B_1]_{\theta}}^r.$$

Proof. Since $L_{0,B_1}^{\infty} \subseteq BMO_{B_1}$, where L_{0,B_1}^{∞} is the closure of the simple functions in $L_{B_1}^{\infty}$, we already have

$$L_{B_{\theta}}^{q} = [L_{B_{0}}^{p}, L_{0,B_{1}}^{\infty}]_{\theta} \subseteq [L_{B_{0}}^{p}, BMO_{B_{1}}]_{\theta}.$$

Recall now the dualities $L_{B_0}^p \subseteq (L_{B_0}^p)^*$, 1/p+1/p'=1, and $BMO_{B_1} \subseteq (H_{B_1^n}^1)^*$. Applying Theorem A and the duality interpolation theorem we can write

$$\begin{split} [L^p_{B_0}, \, \mathrm{BMO}_{B_1}]_{\theta} &\subseteq [(L^{p'}_{B_0^*})^*, \, (H^1_{B_1^*})^*]_{\theta} = [(H^1_{B_1^*})^*, \, (L^{p'}_{B_0^*})^*]_{1-\theta} \\ &= [H^1_{B_1^*}, \, L^p_{B_0^*}]_{1-\theta}^* = (L'_{[B_1, B_0^*]_{1-\theta}})^* \\ &= (L'_{[B_0, B_1]_0})^*, \end{split}$$

where $1/r = 1 - \theta + \theta/p'$, i.e. r = q'.

To finish the proof it suffices to realize that if a function f in L_B^1 belongs to $(L_B^2)^*$ then f has to belong to L_B^2 .

Our next corollary will use Wolff's reiteration theorem [15]; let us recall it for the sake of clarity:

THEOREM B ([15]). Let A_1 , A_2 , A_3 , A_4 be Banach spaces such that $A_1 \cap A_4$ is dense in both A_2 and A_3 . Let $0 < \theta_1$, $\theta_2 < 1$ and $[A_2, A_4]_{\theta_1} = A_3$

and $[A_1, A_3]_{\theta_2} = A_2$. Then

(12)
$$[A_1, A_4]_{\eta} = A_2, \quad \text{where} \quad \eta = \frac{\theta_1 \theta_2}{1 - \theta_2 + \theta_1 \theta_2}.$$

With this result and denoting by $L_{0,B}^{\infty}$ the closure of the simple functions in L_{B}^{∞} , we have the following corollary:

Corollary 2. Let $0 < \theta < 1$ and $1/p = 1 - \theta$. Then

(13)
$$[H_{B_0}^1, L_{0,B_1}^{\infty}]_{\theta} = L_{[B_0,B_1]_{\theta}}^p.$$

If B_0 and B_1 satisfy (*) and (**) we also have

(14)
$$[L_{B_0}^1, BMO_{B_1}]_{\theta} = [H_{B_0}^1, BMO_{B_1}]_{\theta} = L_{[B_0, B_1]_{\theta}}^p,$$

Proof. Here we only present the proof of (13), leaving (14) as an exercise. Consider $p_0 = p + \sqrt{p(p-1)}$. This value is chosen to satisfy

$$(15) (p_0-1) p = p_0(p_0-p).$$

Take $\theta_1 = 1 - p/p_0$, $\theta_2 = p'_0/p'$. Then it is easy to show that (15) implies that η in Theorem B coincides with θ . Choosing

$$A_1 = H_{B_0}^1$$
, $A_2 = L_{B_{\theta}}^p$, $A_3 = L_{B_{\gamma}}^{p_0}$, $A_4 = L_{0,B_1}^{\infty}$,

where $\gamma = (1 - \theta_1) + \theta_2$, we can easily check all of the assumptions of Theorem B and then we get (13).

It is very well known that once the complex interpolation is obtained then the real interpolation can also be got by using the following theorem:

THEOREM C ([1]). Let $0 < \theta_1 < \theta_2 < 1$, $0 < \eta < 1$, $0 . Then for <math>\theta = (1 - \eta)\theta_1 + \eta\theta_2$ we get

(16)
$$(A_0, A_1)_{\theta, p} = ([A_0, A_1]_{\theta_1}, [A_0, A_1]_{\theta_2})_{\eta, p}.$$

From this last theorem and the above results it is an easy exercise to derive the following corollary:

Corollary 3. Let $0 < \theta < 1$, $1 , <math>1/p = 1 - \theta + \theta/p$. Then

$$(H_{B_0}^1, L_{B_1}^p)_{\theta,q} = L_{(B_0,B_1)_{\theta,q}}^q.$$

If B_0 and B_1 satisfy (*) and (**), and $0 < \theta < 1$, $1 \le p < \infty$, then

(18)
$$(L_{B_0}^p, BMO_{B_1})_{\theta,q} = L_{(B_0,B_1)_{\theta,q}}^q, \quad 1/q = (1-\theta)/p,$$

(19)
$$(H_{B_0}^1, \mathbf{BMO}_{B_1})_{\theta,q} = L_{(B_0, B_1)_{\theta,q}}^q, \quad 1/q = 1 - \theta,$$

Remark. Finally, we would like to mention that in the case $B_0 = B_1 = B$ we can do real interpolation not only for a fixed value of q, as in the above corollary, but for all values $0 < r \le \infty$, and it can be shown, either by

using similar arguments to Corollary 3 or with an analogous proof to that given in [14], that for $1 , <math>0 < r \le \infty$, and $1/q = 1 - \theta + \theta/p$,

$$(H_B^1, L_B^p)_{\theta,r} = L_B^{qr},$$

where Lqr stands for a Lorentz space.

References

- [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin 1976.
- [2] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190.
- [3] A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with distributions, II, Adv. in Math. 24 (1977), 101-171.
- [4] R. R. Coifman, A real variable characterization of H^p, Studia Math. 51 (1974), 269-274.
- [5] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in Analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- [6] C. Fefferman, N. Rivière and Y. Sagher, Interpolation between H^p spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81.
- [7] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137-193.
- [8] E. Hernandez, An interpolation theorem for analytic families of operators acting on certain H^p-spaces, Pacific J. Math. 110 (1984), 113-117.
- [9] S. Janson and P. W. Jones, Interpolation between H^p spaces: the complex method, J. Funct. Anal. 48 (1982), 58-80.
- [10] R. H. Latter, A characterization of H^p(Rⁿ) in terms of atoms, Studia Math. 62 (1978), 93-101.
- [11] R. A. Macias, Interpolation theorems on generalized Hardy spaces, Dissertation, Washington Univ. St. Louis 1974.
- [12] M. Milman, Fourier type and complex interpolation, Proc. Amer. Math. Soc. 89 (1983), 246-248
- [13] J. Peetre, A theory of interpolation normed spaces, Notas de Mathematica, Universidade de Brasilia, 1968.
- [14] N. M. Rivière and Y. Sagher, Interpolation between L^{∞} and H^1 , the real method, J. Funct. Anal. 14 (1973), 401-409.
- [15] T. Wolff, A note on interpolation spaces, in: Lecture Notes in Math. 908, Springer, Berlin 1982, 199-204.

DEPARTAMENTO DE MATEMÁTICAS FACULTAD DE CIENCIAS UNIVERSIDAD DE ZARAGOZA 50009 Zaragoza, Spain

> Received February 17, 1987 (2278) Revised version August 21, 1987

Sequence space representations for zero-solutions of convolution equations on ultradifferentiable functions of Roumieu type

by

REINHOLD MEISE (Düsseldorf)

Abstract. Let $\mathcal{C}_{w_i}(R)$ denote the space of all ω -ultradifferentiable functions of Roumieu type on R and let T_μ be a convolution operator on $\mathcal{E}_{\{\omega\}}(R)$ which admits a fundamental solution in $\mathcal{C}_{\{\omega\}}(R)$. We prove that the space ker T_μ of all zero-solutions of T_μ has an absolute basis of exponential solutions, hence it is isomorphic to a Köthe sequence space $\lambda(P(\mu))$ if it is infinite-dimensional. The Köthe matrix $P(\mu)$ is computed explicitly in terms of ω and the zeros of the Fourier-Laplace transform of μ . This result is a consequence of a sequence space representation for quotients of certain weighted (LF)-algebras of entire functions modulo slowly decreasing localized ideals.

Classes of non-quasianalytic functions, like the Gevrey classes, were used by Roumieu [20] to extend the notion of a distribution. Then Chou [7] studied convolution equations in these classes, using ideas of Ehrenpreis [9] and Fourier analysis. Recently Braun, Meise and Taylor [5] combined the approaches of Roumieu [20] and Beurling-Björck [2], [4] to introduce classes $\mathscr{E}_{\{\omega\}}(\mathbb{R}^N)$ of non-quasianalytic functions which are particularly adapted to the application of Fourier analysis.

In the present paper we show that for each $\mu \in \mathcal{E}_{\{\omega\}}(R)'$ which admits a fundamental solution ker T_{μ} , the space of zero-solutions of the convolution operator

$$T_{\mu}: \mathscr{E}_{\{\omega\}}(\mathbf{R}) \to \mathscr{E}_{\{\omega\}}(\mathbf{R}), \quad T_{\mu}(f): x \mapsto \langle \mu_{y}, f(x-y) \rangle,$$

has an absolute Schauder basis consisting of exponential solutions. Moreover, we show that for $\dim_{\mathcal{C}} \ker T_{\mu} = \infty$ we have a linear topological isomorphism between $\ker T_{\mu}$ and the sequence space $\lambda(\alpha, \beta)$ which is defined in the following way:

$$\lambda(\alpha, \beta) = \left\{ x \in C^N \,\middle|\, \pi_{k,y}(x) := \sum_{j=1}^{\infty} |x_j| \, y_j \, e^{k\alpha_j} < \infty \right.$$

for each $k \in \mathbb{N}$ and each $y \in \Lambda_{\beta}$,