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Interpolation between Hj and Lf,
by

OSCAR BLASCO (Zaragoza)
Abstract, It is proved that [Hp, 5 1o = L, s,, for Hg= 1—-8+48/p.

§ 0. Introduction. In this paper we are concerned with interpolati.on
between Hardy spaces and IP-spaces of vector-valued functions. Following
the notation in [17 we write [Aq, 4,1, and (4q, A;)eq for the interpolgtion
spaces by the complex method [2] and the real method [13] respectwel_‘y.
Throughout this paper (B, ||| stands for a Banach space and By, By will
be an interpolation pair of Banach spaces.

The Hardy space we shall deal with will be the following [71:

Hb = {f elh(RY: [supllPx f(x)lipdx < +oo},
>0

P, being the Poisson kernel on R”, and the main result of the paper is:

[Hb .y 5,00 = Lag.ayior

where 0 <0 <1, 1 <p <oo, and /g =1-0+6/p.

For the case By = B, = R, this is the classical result of Fet‘ferman'and
Stein [7). They proved it using the duality (Hl)* = BMO, and consider-
ing the “sharp” maximal function. Their technique \:vorks also in the case
B, = B; = B, but for the general case we shall use a dllfferent approach based
on the atomic decomposition of functions in HL. The ideas we shall use later
have been considered by different authors. (see [9], 81, !:11]). .

Recently several authors have extended Fetfcmpanms‘tem’S cowmplex inter-
polation result in the sense of replacing I7 on the right side by L and BMO,
ie. for 1/g=1-—0,

[Hl, L*], = [Ll, BMO], = [Hl, BMO], = 1.

The reader is referred to [9], [12], [15] for different approaches to this
result,

There are also interpolation results for H” for & <p <1 (see [3], [6)

bu rict = 1.
[97) but we restrict ourselves to the case p o

We shall denote by (1%, [|*|l,.5) the space L (R" with its usual norm, for
1 < p < o0, and since we are not going to use IL let us denote by || |l1,5 the
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norm in Hj. As we have already said we shall consider Hj defined in terms
of atoms (see [107, [4}, [51). The reader can realize that the classical proofs
also work for vector-valued functions on merely replacing the absolute value
by the norm, so for each f in Hj we write

1 1ly,5 = inf {Z [Aelz f = z.lkak, a, are B—atoms},
& k

As usual, C will denote a constant but not necessarily the same at each
occurrence.

I am very grateful to J. L. Rubio, who conjectured this result, for his
valuable .comments and helpful conversations; also, I would like to thank G.
Weiss who referred me to [8], [11].

§ 1. The theorem and its corollaries, Let us formwulate here a lemma
which is essentially based on the Calderén-Zygmund decomposition and
some arguments involved in Coifman’s proof [4] for the atomic decomposi-
tion. The details are left to the reader.

Lemma. Given a B-valued simple function f, there exist a family of cubes
Q%) and a family of simple functions {a}} such that each df is supported in Qf
and

() [ dx =0,
@ f=1d,
K J
(3) Ids (ks < Co 2230 for all J.
@ UQ;C =0, = {x: Mf(x) > 2%,
j

where Mf stands for the Hardy—Littlewood maximal function of f.
THEOREM A, Let 1 <p <o, 0 <0 <1 'and 1)g=1—-0+48/p. Then
) £H1116: 151]() = Lqﬂga - By = [Bq, Bile-

Proof. Since Hp, & L}, the classical results about interpolation ob-
viously imply

where

[H}ios LI}}}_]() = [L’lﬂog L%l:la == L%ﬂ

Consider now a Bjvalued simple function f Using the lemma write

f=3Ya, where a is also a Byvalued simple function which can be
expressed as

n(j,k)
R LV
aj = Z me xEJ'vk$
m= 1 m

the x* being elements in B, and (), EL* = Q%

icm
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Let Q= {zeC: 0 <Rez <1}. Given ¢ >0 we choose continuous func-
tions fi*: £ —By+B;, holomorphic in @ and satisfying

£ = ¥, (Rl < (L) beilng

fEs (2 - i)le, < (1+8)xfHls, for all teR.
Defining
i)
Fiz)= Y, [ (@) apix
m=1 m

we get conlinuous functions Fj: 2 — 5, 0D+ LE, (Q%) which are holomor-
phic in @ and satisfy

(6) ' F4(0) = aj,
0 P ity (Xl < (1481165 (s,
@) IF% (1 + iy (2)lz, < (1+6)llaj (x)ls,

Let us consider

for all xeQf teR,

for all xe@}, teR.

9 G(z) = Fi(z)—(12517" Q.LF?(Z)(X) dx)xaﬂy
Setting r(z) = g{l—z+z/p)—1 we define
(10) F(z) =3 (29 64()-

From (2) and (6) we clearly have F {#) = . Now we want to prove that

sup [IF (i)l 5y 1F (L + My} < ClLfllgmp-

To check the norm ||F{1+itlll,5, we first observe that
IIF(1+i (s, < cy, 2Mae= 0\ GE (1 + i) {9)ls,
k,

and according to (8) and (3) we can write
IF (1410 (0)lg, € C(L+8)3, 257" D (llaf (3 my + 1251} Xo ()
ko

< C(L+8) Y 297y, ().
kg

J
Hence we get
IF (1+it)ll,8, < C{LHE Y, Mg <C +8)§2"‘* [€2]
kJ

< L+ IMfll, < CA+a) | fllosy
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icm

;[‘?1 compute [|F(it)lly5, let us write 2% =Co(l-+e)2**!(Q% and b
= (71 GX(ir). From (9), (7), and (3) the bt are B,-atoms and we have
F(it) = ¥ 260 28 b,
k.
therefore

IF (i)l p, < CY 247V |2 = C(1+2) ) 2404
¥ i

and the above computation shows that WF ()15, <€ CLEFE Sy,

Since ¢ can be chosen arbitrarily small we have just proved that for any

simple function ||fll < C||fll,z, and the proof is completed by a simple
density argument.

. Now we want to deduce some interpolation result for BMQy, and some
minor conditions have to be imposed on the Banach spaces B, and B,
in order to be able to apply duality interpolation results [1]:

(%) By, mB, is dense in both B, and B,
(+x} By nBY is dense in both B¥ and B?.

CorovLrary 1. Suppose B, and B, satisfy (%) and (x+) and let 0 <@ < 1,
| <p<oo and /g =(1—0/p. Then

(11) [ BMOg Jy = L .53,

1'3roo_f. Since Lfg, &BMOg,, where Lg.s, is the closure of the simple
functions in Lg,, we already have
quﬂ = [U}’so’ ?)?,m]a & [Ufao: BMOnl]o-

Recall- now the dualities E(L‘;ﬁ)*, I/p+1/p' =1, and BMOy,, E(Hfl?'i)*'
Applying Theorem A and the duality interpolation theorem we can write
(Lo BMOy, Jo < (0%, (H ¥ To == [(HA)% (51)*]; -

—TH! LI
[HBY Lﬁ;a]l“ﬁ - (L{B‘ISBMI-‘G)*
= (L[BO-Bﬂb)
where 1/r =1—-0+08/p, ie. r=g'.

To finish the proof it suffices to realize that if a function Sin L} bel
J ongs
to (LL,)* then f has to belong to [§. ’ ¢

*
1

) Our next corollary will use Wolff's reiteration theorem [157; let us recall
it for the sake of clarity:

THE(?REM B ([15]). Let Ay, A,, A;, A, be Banach spaces such that
Ay Ay is dense in both A, and A,. Let 0 <0, 0 <1 and [A,, Ade, = As
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and [Al, A3:|52 = Az. Then

91 62

12 A Ay, = A4s, =_— |
(12 {4, 4], 2 ] 1-6,4 6, 6,

where

With this result and denoting by L s the closure of the simple functions in L,
we have the following corollary:

CoroLLaRY 2. Let 0 <@ <1 and 1/p=1-0. Then

{13) CH} o LGs, 1o = Lisgp, 6
If By and B, satisfy (%) and (*%) we also have
(14 [L};Oa BMOBI]B = [H}ro, BMOB,]B = B['BU,.BI]G-

Proof. Here we only present the proof of (13), leaving {14) as an
exercise. Consider p, = p++/p(p—1). This value is chosen to satisfy
(15) (Po—1)p = po(po—1)-

Take 8, = 1—p/po, 6 = pi/p’- Then it is easy to show that (15) implies that
n# in Theorem B coincides with §. Choosing

Al = Hég? A2 = L%B! A3 = Lf;?,s A4 = L%),Bls
where » = (1 —6,)+8,, we can easily check all of the assumptions of Theorem B
and then we get (13).

It is very well known that once the complex interpolation is obtained then the
real interpolation can also be got by using the following theorem:

Tueorem C ([1]). Let 0 <8, <0, <1,0<n <1, 0 <p< co. Then for
6=(1—-n0;+nd, we get
(16) (AD1 Al)ﬁ‘,p = {I:AOs Al]ﬂl’ ‘[A(}a Al]ﬂz)q,p'

From this last theorem and the above results it is an easy exercise to
derive the following corollary:

CoROLLARY 3. Let 0 <8 <1, 1 <p<g o, 1/p=1—0+0/p. Then

(17 (Hh Dhylog = Lopnpgg |
If By and B, satisfy (x) and (%), and 0 <0 <1, 1 < p < o0, then
(18) (L BMOg o, = Lnoayy,:  1/a =10},

(19) (Hjgp BMOg o, = Lagnyyy, 14 =1-06

Remark. Finally, we would like to mention that in the case By = B,
= B we can do real interpolation not only for a fixed value of g, as in the
above corollary, but for ail values ¢ < r < oo, and it can be shown, either by
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using similar arguments to Corollary 3 or with an analogous proof to that

given in [14], that for 1 <« p< oo, 0 <r< o, and /g = 1~0-+0/p,
(Hé: L%)H.r = L‘?’;,

where I¥ stands for a Lorentz space.
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Sequence space representations for zero-solutions
of convolution equations on ultradifferentiable
functions of Roumien type ’

by

REINHOLD MEISE {(Disseldorf)

Abstract. Let ¢, (R) denote the space of all w-uitradifferentiable functions of Rourmieu
type on R and let T, be a convolution operator on & R) which admits a fundamental solution
in 7. (R). We prove that the space ker T, of all zero-solutions of 7, has an absolute basis of
exponential solutions, hence it is isomorphic to a K&the sequence space A(P(w) if it is infinite-
dimensional. The K&the matrix P(} is computed explicitly in terms of @ and the zeros of the
Fourier-Laplace transform of . This result is a consequence of a sequence space representation
for quotients of certain weighted (LF)-algebras of entire functions medule slowly decreasing
localized ideals.

Classes of non-quasianalytic functions, like the Gevrey classes, were used
by Roumieu [20] to extend the notion of a distribution. Then Chou [7]
studied convolution equations in these classes, using ideas of Ehrenpreis [9]
and Fourier analysis. Recently Braun, Meise and Taylor [5] combined the
approaches of Roumieu [20] and Beurling-Bjorck [2], [4] to introduce
classes aﬁ"{m,(RN) of non-quasianalytic functions which are particularly adapted
to the application of Fourier analysis.

In the present paper we show that for each ped,,(R) which admits a
fundamental solution ker T, the space of zero-solutions of the convolution
operator

Tt &R = £ (B), T2 x> Gty [ (x50,

has an absolute Schauder basis consisting of exponential solutions. More-
over, we show that for dimcker T, = c0 we have a linear topological isomor-
phism between ker T, and the sequence space A(, B) which is defined in the
following way:

Ao, B) = {xeCVim,(x):= i |} J’jekaj <

=1

for each keN and each yeA,},



