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Abstract. An approximation result of the Hedberg type is established in the Orlicz—
Sobolev space W™ L, (R when the N-function A and its conjugate A satisfy the 4, condition
near infinity. Applications to the description of the action of some distributions in W™ mLi{R"
as well as to some strongly nonlinear elliptic boundary value problems are given.

1. Introduction. This paper is motivated by the study of the so-called
“strongly nonlinear” boundary value problems, i.e. boundary value problems
for equaticns of the form

(L1) A@+gx, w)=f.
Here A is a quasilinear elliptic differential operator in divergence form
(1.2) Aw= Y (D)D" A(x, u, Pu, ..., ")

|| <m

whose coefficients 4, satisfy conditions {including growth conditions) which
guarantee the solvability of the problem

(13) Aw) = f.

The function g satisfies a sign condition but has otherwise completely
unrestricted growth with respect to . One is interested in the solvability of
(1.1). ‘

Such problems were first considered by Browder [5] as an application of
the then newly developed theory of non-everywhere defined mappings of
monotone type. For m=1, ie. A of second order, their solvability under
fairly general and natural assumptions was proved by Hess [16]. The
treatment of the case m > 1 is more involved due to the lack of a simple
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truncation operation in higher order Sobolev spaces. Webb [24] observed
that a rather delicale approximation procedure introduced in nonlinear
potential theory by Hedberg [14] could be used in place of truncation. This
yielded the so'lvability of (1.1) for m > 1. Brézis and Browder [4] then used
this approximation procedure to solve a question which they had considered
earlier [3] about the action of some distributions. They also showed that
their result on the action of some distributions could itself be used in place of
truncation in the study of (1.1). For a related and recent approach to the
study of (1.1), by means of degree theory, see [6].

The functional setting in all the results mentioned above is that of the
usual Sobolev spaces W™?. Accordingly the functions A4, in (1.2) are suppo-
sed to satisfy polynomial growth conditions with respect to u and its
derivatives. When trying to relax this restriction on the AS’s, one is led to
replace W™ by a Sobolev space WL, built from an Orlicz space L,
instead of L7, Here the N-function 4 which defines L, is related to the actual
growth of the A4.’s. A solvability theory for (1.3) in this setting has been
developed in the last fifteen years (see [12] and the references therein).
Moreover, the strongly nonlinear problem (1.1) was studied in [11] in the
case m = 1.

It is our purpose in this paper to start the investigation in this setting of
Orlicz-Sobolev spaces of the harder higher order case m > 1. We consider
problem (1.1) as well as Hedberg's approximation theorem and Brézis—
Browder’s question on the action of some distributions. Qur results are
obtained under the assumption that both the N-function A4 and its conjugate
A satisfy the 4, condition near infinity. The role played by these conditions
is discussed at various places in the paper. We believe that the final result
relative to (1.1) (Theorem 5.3) holds true for general N-functions, but it is not
clear whether the present approach can be further adapted to get it (see in
particular the comments following Theorem 4.1).

A large part of the paper is concerned with the extension to the setting
of Orlicz spaces of results about the Riesz potential which are standard in 7.
The representation formula for a function in W”L, by means of this
potential plays a ceniral role (Theorem 3.9). Its proof uses a theorem by
O'Neil [19] on fractional integration in Orlicz spaces, an interpolation
_ theorem of Torchinsky [23] and the Calderdn-Zygmund theory of singular
integral operators [7]. Some connections between this Riesz potential and
the Orlicz—Sobolev imbedding theorem of Donaldson-Trudinger [8] are also
of importance for our purposes (Subsection 3.).

Section 2 contains some preliminaries, Section 3 the study of the Riesz
potential, Section 4 the proof of the approximation theorem and Section 5
the result on the action of some distributions and its application to (1.1).

2. Preliminaries. In this section we list briéﬂy some definitions and well-
known facts about Orlicz spaces and Orlicz-Sobolev spaces, Standard refe-
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rences are [1], [173, [18]. We also include some complements to be used
later (Subsection 2.).

2a. Let A: R* = R" be an N-function, ie. A is continuous, convex,
with A1) > 0 for 1 >0, A(r)fr -0 as t >0 and A{t)/t =+ as { = + 0.
Equivalently, 4 admits the representation

T
A = [a(m)dr,
0
where ¢: R* -+ R™ is nondecreasing, right-continuous, with al0) =0, a{t} >0
for 1 >0 and a(t) > 4+ as t - 4+ =,

The N-function A conjugate to A4 is defined by

At) = [a(ohde,

O e, =

where a: R* = R* is given by
a(r) =supis: a(s) <.

Clearly A = A and one has Young’s inequality: ts < A{)+A(s) for all t, s
= 0.
Replacing 4 by

-

B(f) = [(A(z)/7)dr,

=]

we get an N-function whose derivative is continuous and strictly increasing.
Moreover, A and B are equivalent on R™ in the sense of [17; p. 157, i.e. they
satisfy an inequality like

B(t/l) < A(r) < B(Ir)

for some positive constant /. For the problems to be considered in this paper,
we can always replace A by B and thus assume from the beginning that a
and & are continuous and strictly increasing: From now on, this will be
understood as a part of the definition of an N-function.

We will also extend these N-functions into even functions on all R.

Yr=0

2.b. The N-function A4 is said to satisfy the 4, condition if, for some k
(necessarily > 2),
(2.1)

AN < kAl) Viz 0.

Before stating our first lemma, it is worth observing that for any N-
function A4, A(t) <ta(t) for all t > 0.

Lemma 2.1. Let A be an WN-function. The following conditions are equiva-
lent: :
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(i} 4 satisfies the A, condition.

(il) For some a (necessarily > 1), ta(t) € ocA(z) Viz
(tir) For some B> 1, 1d() >,6A(r) Yiz

{iv) For some d >0, (A(/t) = da(/t Vr > 0.

Moareover, § in (ili) can be taken as the Holder conjugate of o in (i),

Proof. The equivalence of (i) and (ii) is proved in [16: p. 247 and that
of (ii} and (ili) in [17: p. 26]. A direct calculation shows that (ifi) implies (iv)
with d = 1—1/p. The converse implication is also obtained by direct
caleulation. =

We will denote by a{A) the smallest number « such that (i) holds.
Observe that (ii) implies

(22)  AM<ANE for =1, AW 2 ALE for 0<r<1

Similarly, (iii) implies

(2.3) ANz AWE for t21, A <A?
Remark 2.2. When (2.1) holds only for /> some t, >0 (resp. ! <

some 7, > Q) then A is said to satisfy the 4, condition for t near infinity (resp.

near zero). The equivalences of Lemma 2.1 are still valid in these cases

provided one requires the various inequalities to hold only for + large (resp. ¢
small).

for 0grg 1.

2.c. Let 2 be an open subset of R". The Orlicz space I.,() is defined as

the set of (equivalence classes of) real-valued measurable functions u on €
such that

[ A(u(x)/A)dx <o

ke

for some 4 >0. It is a Banach space under the norm

il = inf {2 > 0; [A{u(x/l)dx <1}
2

The closure in L, () of the bounded measurable functions with compact
support in Q is denoted by E((). The equality E {Q) = L,(£) holds if and
only if A salisfies the 4, condition, for all t or for i large according to
whether 2 has infinite measure or not.

The dual of E,(Q) can be identified with L;{Q) by means of the pairing
[ou(x)v(x}dx, and the dual norm on L3(£2) is equivalent to || ||;. The space
L4(£) is reflexive if and only if 4 and A satisfy the 4, condition, for all t or
for r large, according to whether 2 has infinite measure or mot.

2.d. Young’s classical theorem on the convolution of an L function with
an I function has been extended by O’Neil [19] to the setting of Orlicz
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spaces. The following particular case of this result will be sufficient for our
purposes.

Lemma 23 (cf. [19]). Let A be an N-function. Ler ueL {R") and
vel' (R™). Then the integral in the definition of (uxv)(x) is absolutely conve-
rgent for ae. x, uxv el (R") and

24) liae % vlla < [l 1Wli,,

We indicate a two-line proof of this lemma which, in addition, can be
used to show that u+veE,(RY if ucE,(R" and vel'(R").

Proof of Lemma 23. Take 1>0 such that [, A(u(x)/i)dx<1
Then, by Jensen's inequality,

Allw =v/lloll,1)/4) < [el/livll 2
a.e. in R", and the conclusion follows by integration. m

2.e. We now turn to the Orlicz-Sobolev spaces. W L, (Q) (resp. W™ E , (£2))
is the space of all functions » such that u and its distributional derivatives up
to order m lie in L,(Q) (resp. E;{€)). It is a Banach space under the norm

[lma = Y. I1D*ullq

lal€m
Thus W™ L ,(Q) and W™E,(2) can be identified with subspaces of the
product of a suitable number of copies of L,(€2). Denoting this product by
IT L4, we will use the weak topologies o([ L4, [T E;) and o(T] L [T La)-
The space WI'E, () is defined as the (norm) closure of () in
W™ E,(£) and the space WL, (Q) as the o] Ly, [[ Ez) closure of ()
in W"L,(£).
2f. We will have to estimate the norm of the intermediate derivatives of
a function in W™L,(R™ in terms of the norm of the function and of its
derivatives of order m. Such an estimate is implied by the following interpo-
lation inequality, whose [ version is classical. Let us write
= 2 [ID"ull4
el =7
LEmma 24. Let A be an N-function. There is a constant K = K (n, m)
such that for any e >0, 1 <j<m—1 and ueW™L,(R",

< Ke il g+ Ke ™D ] .

Aluf2) «

Jealj, 4
Proof. It is carried out in three steps.
First step. We start by calculating as in [1; p. 71] to find that for any
feCHR),

|0 <9 flf(f)ldf+ Hf”(f)ld‘f Viel0, 1].



236 A. Benkirane and J-P. Gossez

It then follows, by using the convexity of 4 and Jensen's inequality, that

1

1
A () < ${A(8F @) dr+} [A(Y" (D) de
0

0

Vi e[0, 1.

Integrating between 0 and 1 and applying the resulting inequality to the
function t — f((1—~t)a+1b){(b—a), where a <h, we obtain, after a change of
variables,

b b b
23 [AlO)d <3 {AQS O b~a)dt+%fA(2(b—a) " (0)dr.

Take ¢ > O and let p be the smallest integer in Z such that 277 <. Thus
27 < 2/e. Let ¢ be any positive integer. Using inequality (2.5) on each interval
in the sum below, we obtain

gj2? g—1 (i+1y2P

[AFOd =Y [ A @
—g/2b i=-~q 2
g2 a2’
<3 AQE (e)di+y | A(2e"(2))dr
~q/2P ~g/27

Letling g — + o0 yields

(2.6) \ A(f () dr < L[ A6f ()fe)de+% [ A (2" (D) dt.
R

|
R
In (2.6), as well as in similar inequalities below, -+ o0 is allowed as a value for
the left- or right-hand side.

Second step. Let ueW? L, (R" and denote by u; its mollification. We
can assume, for a subsequence, that D*u; —+D*u ae. for |¢| < 2. We apply
(2.6) to us, fixing all variables but x;, and then integrate with respect to the
n-—1 other variables. This gives

§ A (Buy/ x;) <3| AQ36uy/e)+5 [ A(260? uy/ 6x?)
R 4 A
<4 [ [A36u/e)ls+4 [ [A (260" u/0xP)]s
R R
where we have used Jensen's inequality, Letting & —0 and using Fatou's
lemma in the lefi-hand side, we obtain

2.7 §A(Bujox) < 5 [ AG6u/e)+3 | A28 uf dx}).
R R . R
Now we choose i >0 with A2 |||, p>0 with uz
apply (2.7) to the function w/(364/s+ 2&u). This gives
ou/ Ox; 36 u &% ufox?
Al L !
,-f,, (36l/s+2s;1) .L (c 36,1/4;)+"j |4 (28 20 )

ShHi=1,

|82/ xE||,. and
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which means that ||du/dx}l, < 364/e+ 2eu. Consequently,

100/ x| 4 <

and we conclude that

366" (|ull g+ 28 1107 1/ 8x71] 4

[uly,q < 36m8 7" [Jull + 26 e 5, 4.
This proves the lemma for m = 2.

Third step. Once (2.8) is proved, one can derive the mequahty of the
lemma by a double induction as in [1; p. 73). =

CoroLLARY 2.5. Let € be an open subset of R". Then the conclusion of
Lemma 2.4 holds for w in W{ L,(£2).

Proof. Extend u outside £ by zero and apply Lemma 24. u

Remark 2.6. Interpolation inequalities of the above type can also be
derived for u in W™ L, () under suvitable regularity assumptions on £ (cf.

[2]).

CoroLLary 2.7. Let A be an N-function. Let ueL,(R™ with D*ucL,(R")
for |o| =m. Then ueW™L,(R").

Proof Let u; = u=g; be the mollification of u. It is well known [9]
that us —u in L,(R" for o(L,, Ez) and that, for |a| =m, D%us; = D*u g,
— D*y in L, (R") for a(L,, Ez). For the intermediate derivatives Df u,; with 0
<|Bl<m, we have DPu;=uxDFg,eL,(R) by Lemma 23. Thus
u, €W™ L, (R"). Application of Lemma 24 then shows that D#y; remains
bounded in L,(R"M. Thus, for a subsequence, D’u; — g eL,(R") for
o(Ly, Ef). Clearly DPu=v;. n

3. Riesz potential. The main results in this section are the representation
formula for a function in W™ L, (R") by means of a Riesz potential (Theorem
3.9) and the differentiability properties of the Riesz potential (Proposition 3.5
and Lemma 3.7). The results in Subsection 3.e are also of importance for our -
purposes. We essentially show there that the largest integer m for which the
represeniation formula holds corresponds to the separating order in the
Orlicz-Sobolev imbedding theorem.

3.a. Let m satisfy 0 <m <n (not necessarily an integer for the moment).
The Riesz potential of order m of a function u on R” is defined by

(Ipu)(x) = . lj;"

where the constant y,, is given by
Ve = T2 2 T (/2T {(n—m)/2)

e~ yl" "

3 -~ Studia Mathematica
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(see e.g. [21]). We are interested here in the situation where weL,(R"). The
following lemma is a particular case of Q'Neil's theorem on fractional
integration in Orlicz spaces [19]. It can also be derived by interpolation
from standard I7 results, as was observed by Torchinsky [23]. We denote by
A™' R* = R" the reciprocal function of A.

Lemma 3.1 (ef. [19]). Let A be an N-function. Assume:

(3.1) A satisfies the 4, condition,
1

(3.2 [(A~ @)t *mimde < oo,
4]

(3.3) [A @yt rmde = + oo,

1

Defme an N-funciion An.: R >RT by

(3.4) A0 = f[(A‘

0

Lr)fet iy dr.

If ue L, (R"), then the integral in the definition of T,,u is absolutely convergent
for ae. x, Iyuel, (R") and

I 4], < K]

Jor some K = K (n, m, 4).

Remark 3.2, The conclusion of this lemma, as well as most of the
results in this section, remain true if (3.1) is replaced by the sl1ght1y weaker
condition:

1

(3.3) [(ax)/r)dr < cA (Bt

0

Y>>0

for some cclmstant ¢ > 0. The implication (3.1)=>(3.5) follows by integrating
the inequality in part (iv) of Lemma 2.1. Conversely, one can prove that if
(A@yt)a(r) has a limit as t—0 and as t — w0, then (3.5)=(3.1).

Remark 33. If
(_3.6) A satisfies the 4, condition with 1/a(A4) > m/n,

then (3.2) and (3.3) hold. Indeed, put o ==a(A4). Replacing ¢ by 4~
formula (i1) of Lemma 2.1, we obtain

A @Aty =
This gives, after integration, '

ATH < AT

L®) in
1/ext).

L)et  Yrelo, 17,
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-1 (E) = ~A—1 (1) tlja
which implies (3.2) and (3.3) since 1/x > m/n.

Vizl1,

Remark 3.4. It is easily seen that if {3.6) holds, then the integral in the
definition of I,,u is absolutely convergent for a.e. x. Indeed, denoting the
kernel 1/|x|"~™ by K (x) and the characteristic function of the unit ball in R”
by , we have xK eIl (R" and (1—y) K eL;(R™ (the latter follows from (2.3)
since (1 —y) K e[* (R™), where o is the Holder conjugate of o). Since

Iyu=(xK)«u-+{(1—xK)*u
the conclusion follows by applying Lemma 2.3 to the first term and Young's
inequality to the second.

From now on, we will often assume that A4 and A satisfy the 4,
condition. This will be used not only in the application of Lemma 3.1 but
also in connection with an interpolation lemma to be applied to the Riesz

~transform and to the maximal function (Lemma 3.5 below).

3.b. We now consider the differentiability properties of I, u.

ProrosiTioN 3.5. Let A be an N-function. Assume (3.1}3.3) and that A
has the A4, property. Let ueL(R". If Bl <m, then D (I,,,u)ELAm_m(R") and

(3.7) 1D? (L)l < €Ty gy ]
where ¢ =c(n, m, A). If |Bi =m, then D*(I,u) €L (R") and
(3.8) 1D (Il <

a.e. in R",

¢ |[ull.
where ¢ = ¢(n, m, A).

The following interpolation lemma will be needed in the proof. It can be
seen as a particular case of Theorem 2.3 in Torchinsky [23]. See [2] for a
direct simple proof.

LEMMA 3.6 (cf. [23]). Let A be an Nefunction such that A and A satisfy
the A, condition. Take p > a(A). Let T be a sublinear operator in the space of
measurable real-valued functions on R% with domain D(T) containing L' (R"
and IP(R™, and which is simultaneously of weak type I} and IP. Then D(T)
o LR", TueL (R™ i ueL{R", and

1Tedl4 < ellulla
with a constant ¢ independent of u.

Proof of Proposition 3.5. If |f| <m then, by differentiating under
the integral sign as in Lemma 4.1 of [25] and observing that

[D# U] < g,
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we obtain (3.7) for ue%(R"). Consequently, by Lemma 3.1,
D2 (Ul < el
for all e % (R", and the conclusion (3.7) follows by density.
7 To deal with the case 8| = m, we recall that
(3.9) . Ung) = Qulx)™"¢  VYoer (R
{cf. [21; p. 117]). Consequently, for @ e (RY,
(D (@) (%) = (= 2Zmix)? (2 [x)) ™" 5 )
= (= 1" )™ (/3P 6 ()
=(—=D"(R¥c...0RM" ) (x),
where R; denotes the Riesz transform:
(R;¥)" = (ix;/|x])

for ',.I’, say, in L*(R". Thus we see that the conclusion (3.8) will follow by
density from an estimate like

(3.10) IR; ¥lly <cll¥),  V¥es (R,

To prove (3.10) we use an equivalent definition of .
the Riesz tra
(ef. [21; p. 57)): 1esz transform

(R; ?)(x) = 8,im f —l"—‘l’(x—y)dy

e=0 iz V"7

Where the constant 8, depends only on n. This shows that R; is a singular
1nt§gra1 operator to which the Calderén-Zygmund theory [7]J applies. Thus
R; is of weak type I! and bounded in I? for any 1 <p < o, The estimate
(3.10) now follows from Lemma 3.6 by choosing p > «(4). =

_ W? will also use the following pointwise estimate for the lower order
derivatives of I, u. Its I? version is due to Hedberg [13].

LemMa 3.7 Let 4 be an Nefumction. Assume (3.1 3.3 "
Them o 181 | (3.113.3). Let ucE,(R".
IDP (L)) < (AMuaim (1, jupt=Wolim

where ¢ = c(n, m, A).

Here .#u denotes the maximal Junction of u:

(Mu)(x)r-sulgr‘“ Iolu(ldy < +o0.

|y~ x{<r

Proof of Lemma 3 7., Once (3 i) is obtained, the me i85 i 1
h : ) T ' 3 3 argu t -
cal to that in [13:] (Sﬂe also 14]) - g nt is identi
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3.e. The Bessel potential G, is defined for meR by
1 .
d+a e ?

for e ¥ (R". Clearly G, is one-to-one from %(R") onto itself, and’
Gml OGmZ = Gm1 +my -
For 0 <m <n, G, is related to I, by the formula

(3.11) G,=1,0T, on ¥R",
where T, is defined by

(Gm (P)A =

- Crix)™ .

(Tm (P) = (1+4ﬂ2|x|2)m1’2 @

for ¢ €% (R". Indeed, for m an even integer, (T,,¢) €% (R" and {3.11) then
follows directly from (3.9). For a general m, one has, by Lemma 3.8 below,
(T, @) = ¢+, @ where t,,eL! (R%; (3.11) can then be deduced from {3.9) by
approximating ¢, by smooth functions.

The following lemma will allow the extension to E,(R" of the connec-
tion (3.11) between the Riesz potential and the Bessel potential.

Lemma 3.8 (cf. [21]; Ch. V). Let m > 0. The inverse Fourier transform
of 1/(1+4n?|x|3™* is a real L' function, denoted by g,. The inverse Fourier
transforms of (2m|xy"/(1+4n? |x)™* and of (1+4n*|x/})/(1+(2x|x)™) are
measures of the form '

Dirac measure at 0+a real I} function,
which will be denoted respectively by So+1,, and 8o+ S,
We deduce from the first part of the lemma thaF for m > 0,
G =goxo Yoes R

Let now A be an N-function. The above formula combined with Lemma 2.3
allows us to extend G,, by density to a continuous linear mapping in E,(R").
Clearly the relation G, %G, = Gm +m, still holds on E,(R"). Similarly

T.@=@+t,x0 VocHF R,

This formula combined with Lemma 2.3 allows us to extend T,, by density to
a continuous linear mapping in E,(R". It then follows by density from
{3.11), by using Lemma 3.1, that if 0 < m < n.and if (3.1}+3.3) hold, then the
relation G, = I,,* T, still holds on E,(R"). '

-3d. The following representation formula plays a central role in the next
sections. .
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TaEOREM 3.9. Let m be an integer with 0 <m <n. Consider W™ L, (R").
Assume (3.1)3.3) and that A has the A, property. Then, for each
ueWmL,(R?), there exists f €L,(R") such that

u =Imf-

Moreover, the followiné estimate holds:

1£1La 5 cliullma

with a constant ¢ independent of u.

Proof. To prove the existence of f and the corresponding estimate, it
suffices to prove the existence of v €L,(R") such that u= G,v, with an
estimate like ||v||, < ¢[[4||m 4. Indeed, the conclusion then follows from the
discussion in Subsection 3.¢ by putting /' = T,,». The existence of v together
with the desired estimate will be proved by induction on m. The argument
here is adapted from [21; Ch. V].

Suppose first m = 1. We start by approximating u in W'L,(R") by a
sequence 1, €% (R"). Put

v = (Bo+5) % (e + Zﬂ'ﬁ R;(uy/ 0x;))

where 6,45, is the measure involved in Lemma 3.8 and R; is the Riesz
transform. Observe that u+Y ., R;(&/0x) and v, belong at least to

IZ(R"). We claim that
(3.12)

Gl Uk = Uy.

Indeed, using twice the formula which gives the Fourier transform of the
convolution of an I!' by an I? function (cf. eg. [22]), we obtain

(G, Uk)h =(g4 *Un)h = g1 B

= Gy (1+472 X2 1+ 2n x) ™ (e + Y, Ry (Ou/0x))
i=1

= (142 |x) ™ L (L4 2r | %)) 6, = Ty,

which yields (3.12).
We now deduce from Lemma 2.3 and the continuity of R; in L, (R") (cf.
the proof of Proposition 3.5) that v, converges in L,(R" to

0= (8p+s.) *(u+ i R;(8u/0x))).
=1

Thus, (3.12) . implies " G,v’'=u, and we clearly have

oy < cllad]y,a

the estimate
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Let us now assume that the desired property holds true for spaces up to
order m—1. Take ue W™ L, (R". Since u and du/dx; for j=1, ..., n belong
to Wn~! L, (R"), there exist w and w; in L,(R" such that u=G,_,w and

01,:/5)61 = Gm— 1 w] Wlth the eStin‘lateS ”W”A -~<.~ c ”u”m—l';i and ”w,]”A s
¢l B/ 0x |l m-1,4-

We claim that
(3.13) w; = Ow/dx;.

Indeed, we have, for ¢ e .%(R"),
[W; Gy @ = [Gpor (W) @ = [(80/0x)) @
= — fudp/dx; = — [ G-y (W) B/ Bx;
= — [WG- 1 (Bp/8x) = ~ [W(8/E%){Grm-1 @),

and consequently, since G,_, transforms %(R") onto itself,

[w; ¥ = ~[wd¥P/ox; Ve R,

which proves {3.13).
Thus weW?! L, (R"). This implies the existence of velL,(R" such that
w = G, v, with the estimate ||v||; < c|wll,,4. It now follows that

u= Gm—lw = Gm—l(Gl U) = vaa
with the desired estimate. m

Remark 3.10. The function f in Theorem 3.9 is unique. Indeed, if A
satisfies (3.1)+3.3) and if I, f = 0 with f €E(R™, then (T, 01,) f = 0. But it
is easily seen, by decomposing the kernel of I,, into its component near Zero
and its component near infinity, that T, 01, = I,0T, on #(R) and so, by
density, on E,(R". Thus G, f =0 and consequently

0= j(Gpf)o=[fGno)
for all ¢ e $”(R"), which implies f = 0.

Remark 3.11. The arguments in [21; Ch. V] can be adapted further to
show that if 4 and A satisfy the 4, condition, then G, is a one-to-one
continuous linear ‘mapping from L,(R™ onto W™ L, (R") (cf. [2]).

3. Theorem 3.9 will be applied in close connection with the Orlicz—
Soboley imbedding theorem of Donaldson-Trudinger [8]. Let us start by
recalling this theorem. _

Let C, be an N-function. Replacing if necessary C, by an N-function
equivalent to it near infinity, one can always assume _[;(Cg Lig)et T de
<. If [[(C5 (@)e* " Mdu = + o, then one defines a new N-function C,
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by the formula

t

Cit = {{Cq

[

1 (T)/’L'l + ”")d‘r,

Repeating this process, one obtains a finite sequence of N-functions C,,
Cyy.oons €4
t
CoH) = [(Cl (ryet i) e,
0

where g =¢q(Co, n}) is such that [f’(
[C(C; )z " Y)de < +o0. K _fl {(Co
4(Co,m =0

Observe that g < n since C;'{z) has at most linear growth at infinity.
Observe also that two N-functions which are equivalent near infinity lead to
the same value of ¢ and to corresponding N-functions Cy, ..., C, which are
equivalent near infinity. '

L)' T Wdt = +c0 but
'c/r“ UMdr <on, we put

Lemma 3.12 (cf, [8]). Let @ be a bounded open subset of R" with the cone

property. Let Co be an Nfunction. If m < q(Cy, n), then W™ L () < L (€2)

with continuous injection. If m > q(Cq, 1),
with continuous infection.

then W™ L¢, () < C(£) N L*(£2)

Remark 3.13. If &, satisfies the A, condition near infinity, then
q(Cy, n) < n. Indeed, we then have, by (2.3),

Colty 2 Co()F Vi1
for some f > 1, which implies
2L S{/CADM Vi1

~

Our purpose in this subsection is to compare, for a given N-function A4,
this number ¢(A, n) with the largest integer m for which Theorem 3.9 can be
applied. The latter depends on the behaviour of 4 near zero while g(A4, n)
does not. This will lead us to replace 4 by another N-function equivalent to
it near infinity and for which the conditions near zero in Theorem 3.9 are

automatically satisfied. The following simple lemma will prove useful for this
purpose.

Lemma 3.14. Let A be an N-function. Define, for r > 1,
AQ) = 4(@) for t >

t

B() = [(A{)/)de
L]

1, At for 0<t <1,
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Then B is an N-function which is equivalent to A near infinity. Moreover, B
ard B satisfy the A, condition near zero,

Proof. Since B'(f) = A(t)/t for ¢ > 1, the equivalence near infinity of A
and B follows easily from a lemma in [17; p. 17]. The 4, condition near zero
for B as well as for B is obvious. m

Consider now an N-function 4 such that A has the 4, property near
infinity. Take r with 1 < < n/(n—1) and consider the N-function B as given
by Lemma 3.14. Clearly g (B, n) = ¢g(4, n) and B has the 4, property on all
R™. Moreover, in the construction of the finite sequence Cq, Cy, ..., €y
which starts with C, = B, no modification of the N-functions near zero is
needed. This follows from the choice of r since, up to some multiplicative
constants,

Tl =007 for 01,

where i varies from 1 to q(B, n), which is <n by Remark 3.13.
Denote by p(B, n) the largest integer m for which

(3.14) (B=1(g)/r* ™M) dt < + oo,

i B Ot &

(3.15) (B~ {t)/t'"™Mdt = + 0.

[
The fulfilment of (3.15) implies, by the last inequality of Remark 3.13, that
p(B, n) € n—1. Moreover, by the choice of #, condition (3.14) automatically
holds for all m with m < n—1. Thus we see that condition (3.14) is not really
involved in the definition of p(B, n).

Lemma 3.15. p(B, n) = q(B, n). Moreover, if B, denotes the N-function
defined for m=1, ..., p(B, n) by

B.'(n=[(B~

0

(3.16) L (g)fet tmin) de,

and sz,,, denotes the N-functions of the finite sequence Co, ..., C, which starts
with Cy = B, then B, and C,, are equivalent on R for all m.

The following result will be needed in the proof of Lemma 3.15. It
implies that all the N-functions Cir...n Cpy By o , B, have the 4, property
on R*.

LEMMA 3.16. Let D be an N-function such that

1[(D“:‘(t}/t]“'"‘f")dt<oo and T(D'i(t)/rH’"/")dt:oo
) 1
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for some m with 0 <m <n (not necessarily an integer here). If D has the 4,
property on R™, then the N-function D, defined by

DY) = .I[(D' Yoyt i) de

0

is such that D,, also has the A, property on R'. More precisely, if D satisfies
(3.17) D (1) <(1/B)tD'(1) -
for some B> 1, then 1{f—minis >0 and D, satisfies

(3.18) D (1) < (1/—mjn) Dy (1)

Yiz0

Viz0.

Proof. The 4, property on R* for D means, by formula (iii) of Lemma
2.1, that (3.17) holds for some § > 1. Replacing in (3.17) t by D™'(1), we
easily deduce - :

© (D7) < (178 —myr) D™ (@)t
Integration and use of the fact that

liminf D~ (z)/z™" = 0

r—+0

Y>0.

(a consequence of the integrability of D~*(r)/z**™" near zero) give

(3.19) D@L (Y f—mim) DL ) YT > 0.

This implies 1/ —m/n > 0. Using the relation (D;; ') (x) = D™ ' (r)/r!*™" and
replacing T in (3.19) by D, (1), we obtain (3.18). m

Proof of Lemma 3.15 We will show by induction that for m
=0,1,..., g(B, n), one has

(3200 m<pB,n and CIlOA<BIN)SCI® Vi 0

for some positive constant I This clearly holds for m =0 and 1 since Cy
=By and C, = B;. Assume (3.20) for m =0, 1, ..., k—1 with k < ¢(B, n).
Since (3.20) implies that C,_, is equivalent on R* to B,., C, is equivalent
on R* to the N-function C defined by

1
C™Hty = [(Bedy (@) 1) de.
0
By using the definition of B;, in this expression and then permuting the
resulting integrals, we obtain

B2)  CT'@=n{B M) ds—n B () V> 0.
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Neglecting the last term in (3.21), we first deduce k < p(B, n) and then

C l)<nB () Viz=0.

On the other hand, denoting by f the constant associated with the 4,
property for B in formula (i) of Lemma 2.1 and applying (3.19) with
m == k;l to the N-function B, we deduce

B~ 1(g)rt bin g (%_E%E)Bfﬂl (r) V>0

Multiplication by 1/t**%/* and integration give

B (1) < (%—;—‘;—I)C"l(t) Viz0.

This concludes the proof of (3.20). Thus p(B, n) > ¢(B, n) and C,, and B, are
equivalent on R* for m=0, 1,..., g(B, n).

We claim that p(B,n) =g(B,n). Suppose, by contradiction,
p(B, n) > q(B, n). Put g(B, n) = ¢. A computation identical to the preceding
one leads to

11 () < (Y —g/n) {(By(aye ) de Ve 0.
h]

Since the above integral converges at zero, we deduce that

(B 1 (x)fx' H M) de = 0.

e g

Tin's equality implies a similar equality with B, replaced by C, since these
two N-functions are already known to be equivalent on R*. This contradicts
the definition of q(B, n). w

 3f, To conclude this section, we show how in the previous situation, the
Riesz potential of order m can be obtained by composition from the Riesz
potential of order 1.

Let A be an N-function such that A has the 4, property near infinity.
Take B as in Lemma 3.14, with 1 <r < n/(n—1). Assume ¢(B, n) > 2 and let
m be an integer with 2 <m < q(B, n). ‘

By Lemma 3.1, I, maps continuously Lg(R") into L¢,, where we take, as
above, C, = B. Lemma 3.16 implies that Lemma 3.1 can be applied again,
which yields that I, maps continuously Lg, (R") into Lc,(R"). After m steps

we get a continuous mapping
S, =10...0l: Ly(R) = Lc, (R").
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On the other hand, by Lemma 3.15, the Riesz potential of order m, I, can
also be considered. By Lemma 3.1, I, maps continuously Lg(R") into
Ly, (R". The mappings .7, and I,, coincide on /(R%) (cf. [21]; p. L18]).
Consequently, by density, .#,, and I, coincide on Ep(R").

4. Approximation theorem. Let u belong to W”L,(R"). If m =1, then,
combining truncation with the use of a smooth cut-off function, one easily
gets an approximation of u by bounded functions with compact supports
which, at a.e. point, have the same sign as w and are dominated by u (cf.
[117). It is precisely this type of approximation which is needed in the study
of (1.1} as well as in the work of Brézis—Browder on the action of some
distributions. We consider here the higher order case m > 1.

TueoreMm 4.1. Let A be an N-function such that A and A satisfy the 4,
condition near infinity. Let ueW™ L, (R"). Then there exists a sequence w, such
that: ’

@) w, eW" L (RYN L*(R") and suppu, is compact.
(i) [ (x)] < Ju(x)| and w, (x)u(x) = 0 ae in R"
(i) u, converges to u for the modular convergence in W™ L, (R".

If. in addition, A satisfies the A, property near zero, then (iil) can be
stremgthened to norm convergence. '

We recall that u, converges to u for the modular convergence in
W™ L,(RY if, for some A >0,

[ A((D*u—D"w)/2)dx =0
R’

for all |z < m. This implies convergence for o[ [ Ly, [ ] Lz). If 4 satisfies the
4, condition on R*, then modular convergence coincides with norm conve-
rgence.

Proof of Theorem 4.1. Some arguments are similar to those in
[4, 24] and we will only sketch them. Take {e@(R" with 0<{ <1, { =0
outside the unit ball and { =1 in a neighbourhood of zero. Put {,(x) = {{x/])
and define v, = uf,. Fix A >0 such that

[ A(4D"u/3) < o0
R

Then, using the convexity of 4, it is easily seen as in [10, p. 22] that

Yia) < m.

4.1 _ [ A(2(D*u—D*1)/A)»0. V| <m
R"

as | » oo, Thus v; converges to u for the modular convergence in W™ L, (R".
We distinguish two cases: either m > g(4, n) or m< g(A, n), where
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g(A, n) is the number arising in the Orlicz-Sobolev imbedding theorem (see
Subsection 3.¢). In the first case, this imbedding theorem implies that
v, € L*(R"), and consequently the sequence v; satisfies a]l the requirements of
the theorem. We now consider the second case. Let B be the N-function
associated with A4 as in Subsection 3e. Since B is equivalent to A near
infinity, v; e W™ Lg(R"). We will associate with each v, a sequence of functions
v, such that:

(iy v, eW" Lg{R") nL*(R") and suppuv,; =suppuo,.

(it ol < vy and v 0,20 ae. in R

(i)’ v, — v, in W™ Ly (R" as k — .
Let us admit the existence of such a sequence for a moment. The norm
convergence in (iii)’ implies that for any u >0,

(4.2) { B((D*0,~ D*v,,0/u) ~0
R
as k »oo. Moreover, for a subsequence,

Vigl €m

(4.3) Do, =Dy ae in R, Vg <

m.
By using the convexity of 4 and the inequality A(r) < B(2r) for r = 1, we
have

JA(D*u—Dv)/A) <% | AQ2(D*u—D"1)/2)

R" » )
+3 [ 4 (2(D%v;— D% v,/ ) e
%<t
+1 f B(4{D%v;— D" v, )/ A) (1 — x54).
[x]&¢

where xf, is the characteristic function of {xeR"; 2{D%*p (x)
~ D%y, (x)//4 < 1}. We deduce from this inequality, using (4.1)-(4.3), that for
any given ¢ > 0, a function v;, can be chosen such that

fA{(D u=D v )fl) <6 Vasm
Rt '
The proof of the theorem is then completed.
In order to construct this sequence vy,, we observe that Lemmas 3.14

‘and 3.15 imply, that Theorem 3.9 can be applied to v, W™ L, (R}:

vy = Im.ﬁ
for some f; e Ly (R, with |l fills < cllvdlns. Put
wy = L,(1f]) €Ly, (R"),
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take HeC®(R) such that 0< H<1 and H=1on [—~1/2, +1/2] and O
outside [—1, +1], and define for k = 1,2, ...

v (X = H(k_ Ty (x)) vy (x).
We claim that this sequence satisfies (1)'-(iiiy.
(iiy is obvious, as well as suppv,x < SUppt;. Moreover,
o, (X} < H (k— Ly () wy (),
which implies
(4.4) oy (x)] € k

Thus it only remains to prove that vy, eW"Ly(R") and that (iii) holds.
Clearly v, €Lg(R") and 2, —p, in Lg(R") as k —c. Consequently, by
Corollary 2.7 and Lemma 24, it suffices to prove that for |x| =m,
Deu,, eLg(RY and D*v, — D%y in Lg(RY). Using Leibniz' rule to compute
D"'i:l:k, we are reduced to proving that for ¢/ =m and 0 <f < a,

DF[H(k™'w)]D* Frelg(R) and —0in Ly(R".

ae. in R".

Some computation based on Lemma 3.7 shows that for 0 < B <

(4.5) \DP [H (k™' w)]| < c(fyPimk= i ae,
(4.6) DBy < c( A Plimpw tmle—flim ae,
and for f =a:

4. IDF[H (k™ tw)] < ck™* (. 4f,+ D w) ae.

The constant ¢ above depends only on n, m, B, H. Consider first the case 8
=a. By Lemma 42 below, .#ficlz(R"), and by Proposition 3.3,
D w,eLy(RY. Tt then follows from (4.7) that DEFH(wy/k) =0 in Lg(R").
Consider now the case 0 < § <a. Inequalities (4.5) and (4.6) imply

|Df[H (k™ w)] D™~ P v < c.f).
Moreover, by (4.5), the left-hand side converges to zero a.e. in R". It follows
from Lemma 4.2 below that it converges to zero in Ly(R"). w

Lemma 4.2, Suppose that A and A satisfy the 4, condition on R*. Then
AucL, (R if uel (R"). Moreover,

| Al 4 < clud] 4
with a constant ¢ independent of u.

Proof. It is well known that the maximal function operator is of weak
type I' and bounded in I? for any p with 1 <p< o (cf [2; p. 5]). The
conclusion then follows from Lemma 3.6 by choosing p > o(Ad). m
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Remark 43. The conclusion of Lemma 4.2 holds under the sole as-

sumption that A satisfies the 4, property on R*. This follows from an
interpolation result in [2],

Remark 44. The functions v,, constructed above satisfy
”Ul.k”m.ﬂ "<- C Hul”m..'i
with a constant ¢ depending only on n, m, B, H.

We observe that for m == 1, the result of Theorem 4.1 holds without any
restriction on the N-function 4 (cf. [11]). It is not clear whether the present
approach can be adapted to deal with general N-functiens. For instance, it
appears that Lthe conclusion of Lemma 4.2 is false in Llog L (cf. [21; p. 23],
[20]). We also observe thal Theorem 4.1 treats the approximation problem
on all R", not on an open sel Q as in [11] for m = 1. For a survey of the
situation relative to WjP{Q), see [15].

Remark 4.5. Typical examples of N-functions which do not satisfy the
4, condition near infinity are those which grow at infinity more rapidly than
any power. For such an N-function 4, the conclusion of Theorem 4.1
trivially holds, Indeed, one then has m > g(4, n) = Q, so that the sequence »,
constructed at the beginning of the proof of Theorem 4.1 yields the desired
approximation,

Remark 4.5 indicates that the main cases left open by our approach are
those of slowly increasing N-functions, for instance LlogL. It is worth
observing that in the solvability theory for (1.3), those cases also turned out
to be more delicate. The difficulty there was the absence of a priori bounds.

5. Applications

5.4, We first deal with the question considered by Brézis-Browder [3, 4]
about the action of some distributions.

Let W= L,(Q) (resp. W™ E;(£)) denote the space of distributions on
Q which can be wrilten as sums of derivatives up to order m of functions in
L; () {resp. E, (). Tt is a Banach space under the usual quotient norm. We
will assume that the open set £ has the segment property. This implies that
B(6) is dense inh WL, () for the modular convergence and thus for
o([1La [TLa) (cf. [9, 10]). Consequently, the action of a distribution
SeW=m L, () on an element u e Wg" L, (£2) is well defined. It will be denoted
by ¢S, u). '

Consider now the situation where the distribution S W ™™ Ly (Q) is also
a function, ie. Sell,.(@). It is then tempting to write (5§, u)> as
[aS(x)u(x)dx. This is not possible in general (cf. [3]). However, the following
is true, We first deal with the case 0 = R"
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THEOREM 5.1. Assume that A and A satisfy the 4, condition near infinity. .

Let ScW™"Li(R") nLL {RY and let ueW™L,(R"). Suppose that for some
hel’ (RY, S{x)u{x) = h(x) ae. on R". Then Suel'(R") and

[ S{xjulx)dx = (S, u}.
R
Proof The arguments are easily adapted from [4] by using Theorem

4.1 and the fact that the mollification of a function in L, (R") converges to
that function for o(L,, Lz) (cf. [9]). =

We now consider the case of an open set Q. Here S will be supposed to
be locally summable up to the boundary of £, i.e. Selk (D).

- TueoreM S5.2. Assume that A and A satisfy the 4, property near infinity
and that Q has the segment property. Let SeW ™" L; (@) I1.(Q) and
ueW' L,{Q). Suppose that for some heL'(£), S{(x)u(x) = h(x) ae. on Q.
Then Suell(Q) and

(5.1) [S{(x)ulx)dx = {8, u).
£
Proof. Some arguments are easily adapted from [4] and we will only

sketch them. Let {; be as in the proof of Theorem 4.1 and put v, = £, w. If we
can prove that Suv;el! (@) and that

{SGgu(xpdx = {8, v,
£2

then the conclusion follows as in [4] by letting [ —co. It follows that we can
assume from the beginning that u has compact support in Q. By multiplying
S by a function in @(R" which is equal to 1 on a neighbourhood of the
support of u, we see that we can also assume without loss of generality that
S has compact support in €.

Consider .frst the case m >g(4, n). Then uel®(Q). The proof of
Theorem 4 in [10] yields the existence of a sequence ¢; €% (€2} such that
@ ~ufor o{[|L,, [] Lz) as well as ae. in @, |¢,(x) € some constant a.e. in
Q and supp ¢, < a fixed compact set = £. Using this sequence, one easily
obtains (5.1).

Consider now the case m < g{4, n). We extend u by zero outside 2 and
denote by i the resulting function. As in the proof of Theorem 4.1, we
censider the associated N-function B and carry out the construction

d=1I,f withfel,(R), w=1I,(f,
e (x) = H(k™ w(x))ii(x).

Since u has compact support in €, u e W L, (§2), and there exists a sequence
@;€2($) such that ¢; »u in WJ' Ly () and a.e. in Q. For each j we perform
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the same construction:

(-ﬁj = Imj:i With fi.ELB (RI!)’ wj = Im ([fji)’

H (k™ w; () 7).

Since ;i eWT Lg(§) N L*(£2) has compact support in £ and since
S§eW™" Ly(€Q) (because § has compact support in ), a simple mollification
yields

0 (X) =

,j, S@ie= <8, Q>

Keeping & fixed and letting j — oo, we deduce by dominated convergence
that, for a subsequence,

(804 — [ Su
2 e

since [p;4| < k by (44) and ¢, =, ae. in Q (the latter follows from: f, — f
in Ly(R"), of. Theorem 3.9, and w; —»w in Ly (R"), cf. Lemma 3.1). On the
other hand, Remark 4.4 implies that ¢;, remains bounded in WJ Lg(Q)
independently of j and k. Consequently, for a subsequence, ¢;, —u, for
the o([]Ln, [] Es) topology of Wi Ly(Q). Thus <S, ¢, ,,)—*(S u,> since
SeW " Es(£), and we obtain
[Suk e, u,,)

Finally, letting k — o0, we conclude as in.[4] that Suel'($2) and that (5.1)
holds. w

5b. We now turn to the strongly nonlinear boundary value problems.

Let 2 be an open subset of R" with the segment property. The
quadruple (Wg' L, (@), W' E.(2); W™ Lg(), W™ E 3(Q)) will be denoted
by (¥, YuZ,2). It is a complcmcntary gystem in the sense of [9]

We consider a mapping T from D(T) <= Y into 2 whlch satisfies the
following conditions:

(i) (finite continuity) P(T) = ¥, and T is continuous from each finite-
dimensional subspace of ¥, into Z for o(Z, Yy).

(i) (pseudo-monotonicity) For any sequence u, eD(T) such that u, ~u
for o(Y, Zo), Tu, =y eZ for ¢(Z, Yy) and limsup {u,, Tit,> < u, x5, it fol-
lows that ueD(T), Tu=yx and Qu,, TU,> = u, ¥>.

- (ilf) T4 remains bounded in Z whenever u D (T) remains bounded inY
and <u, T#> remains bounded from above.

(iv) For any given f €Z4, U, Tu—f)> >0 when u €D (T) has sufficiently
large norm in Y.

4 ~ Sludia Muthematicn
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It is known that these properties imply that the range of T contains Z,.
Moreover, given an equation of the form

(3.2) Y o(=)HD* A (x, u, Py, ..., PMu) =,

|| €m
concrete analytical conditions on the coefficients 4, are known which
guarantee that the formula

Y Alx,u, Pu, ..., Pru)D*vdx = (Tu, v)

Qla|Em
gives rise to a (non-everywhere defined} mapping 7 from W L, () which
satisfies the above four properties. Existence theorems for the Dirichlet prob-
lem associated to equation (5.2) can thus be derived in this way, See [12] and
the references therein.

Let g: 2 xR — R be a Carathéodory function such that for each r > 0,

there exists h, el! (Q) with

(5.3) lg (x, w)| < A(x)
for ae. xe@Q and all ueR with |u| <r. Assume the sign condition
(5.4) gx, wyuz=0

for a.e. xef2 énd all ueR.

THEGREM 5.3. Assume that A and A have the A, property near infinity
and that & has the segment property. Let T: D(T) « W Ly (€) = W™ L 4(£2)
satisfy conditions ((-{iv). Let g: 2 x R —R be a Carathéodory function with
(5.3) and (5.9). Then, given f eW™™E 4(£), there exists ue W' L, () such that
g(x, u(x))e (@), g(x, u(x))u(x)e L' (2 and

(T, vy+ g (x, u(x)v(x)dx = <f, v}

for all veWF L, (N L*(2) and for v =u.

Proof. It is easily adapted from that given in [11] in the case m =1, by
using Theorem 52. =

Remark 5.4. As in [4, 11], one can show that if g is nondecreasing in

u and if 4, and u, are two solutions corresponding to f; and f, respectively,
then

<Tu1 - Tuz: Uy —u2>+ j(g (x: iy (x))—'g (X, [25) (X’)))(Hl (x)"' Uy (x))dx
o

= {fy —fo, thh—tiz).

Remark 55 Just as for Theorem 4.1, the conclusions of Theorems
5.1-5.3 hold for any N-function A if m > g(4, n).
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