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Metrizable [pormable] (LF)-spaces
and two classical problems in
Fréchet [Banach] spaces

by

STEPHEN A, SAXON (Gainesville, Fla) and
P. P. NARAYANASWAMI™* (5t. John's, N.F)

Abstract, It is well known that no strict (LF)-space is metrizable. Also, no (generalized)
(LB)-space is metrizable ([17], [18]). In the early 1970, isolated examples of metrizable and/or
normable {LF})-spaces were given by Roelcke.[23; p. 265 f.], De Wilde [5; p. 84], and Saxon
[13]. This paper gives a construction for an abundance of metrizable and normable (LF)-spaces:
a Fréchet space F has a dense subspace which is an (LF)-space if either

(i) F splits into infinitely many parts each of which has a separable quotient, or

(i) F has a separable quotient which splits into infinitely many parts.

Note that (i) is satisfied by every non-Banach Fréchet space, from a result of Eidelheit [4]. Thus
every non-Banmach Fréchet space is the completion of some (LF)-space (Valdivia and Pérez
Carreras [22]), and the same is true for every (irifinite-dimensional) Banach space provided the
splitting and separable quotiefit problems have affirmative solutions,

No (LF)-space is both complete and metrizable, since by the Open
Mapping Theorem, none is Baire, nor even a (db)space [17]. In {11},
Robertson, Twaddle and Yeomans introduced (db)-spaces, observing (with no
distinguishing examples) that

unordered Baire-like = (db) = Baire-like.

An (LF)-spacé is metrizable if and only if it is Baire-like [18]. Hence,
metrizable (LF)-spaces are precisley those (LF)-spaces which distinguish
between Baire-like and {db)-spaces.

Eidelheit [4] showed that every non-Banach Fréchet space E has a
quotient which is isomorphic to the (separable) space w of all scalar
sequences. [Choose a sequence {f; bAs m E' satisfying Bemerkung 3, p. 144, s0
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that by Satz 2 of [4], the continuous linear operator x ~+(f;(x)) from E into
@ (=(s) in [4]) is surjective.] Whether. every infinite-dimensional Banach
space has a (Hausdorff, infinite-dimensional) separable quotient is a long-
standing classical problem, tonsidered e.g. in Rosenthal [12], Lacey [9] and
Saxon and Wilansky [19]. Likely, it has been considered since 1932. (In [[17],
p. 77, we proved that every (LF)-space has a scparable quotient.) Here, we
show that a given Banach space has a separable quotient if and only if it has
a dense subspace which, with a topology finer that the relative topology, is a
normable (LF)-space.

Several resuits pertaining to the quotients of Fréchet and (LF)-spaces
are obtained. The paper concludes with a discussion of a number of open
questions.

1. Definitions and preliminary resnlés. In general, we assume the termino-
logy and notations in Horvath [7]. We recall from [11], [15], [17], [19] and
[21] that @ denotes a fixed ¥Ny-dimensional (real or complex) vector space
endowed with the finest locally convex topology and that.a locally convex
space E is '

1) Baire if E is not the union of a sequence of nowhere dense sets;

2) unordered Baire-like if E is not the union of a sequence of
nowhere dense absolutely convex sets (cf. [10], [21]);

3} a (db)-space if E is not the union of an increasing sequence of
subspaces none of which is both dense and barrelled;

4) Baire-like if E is not the union of an mcreasmg sequence of nowhere
dense absolutely convex sets;

5) quasi-Baire if E is barrelled, and is not the union of an increasing
sequence of nowhere dense subspaces;

6) an S,-space if it is the union of a strictly i 1ncreasmg sequence of closed
subspaces.

Clearly,

Baire = unordered Baire-like = (db) = Baire-like = quasi-Baire,

quasi-Baire = barrelled,

quasi-Baire = not §,.

(Note: none of these implication arrows is reversible)

By a.Fréchet space we always mean a complete metrizable locally
convex space. We shall often use the following special form of Ptdk’s open
mapping theorem (p. 299, Proposition 2 in Horvdth [7]):

A continuous linear map from a Fréchet space onto a barrelled space is
open.
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If G is a subspace of a locally convex space (E, 1), 7|g denotes the
relative topology on G. For a subset A < E, sp(A4) will denote the linear span
of A. A continuous linear map P from E into E such that P(P(x)) = P(x)

_ (xcE) is a projection on E. A sequence {P;} of projections on E is an

orthogonal sequence of projections if Py(P;(x)) =0 for all i j. A Fréchet
space E splits if there exist infinite-dimensional closed subspaces M and N
such that M n N = {0} and M+ N = E. We denote this situation by writing
E = M@®N. We say that E splits into infinitely many parts {M,} (n=1,2, ..)
if there exist sequences {M,}, {N,} in E such that .
E=M1®N1, N1=M2®N2, N2$M3®N3,...

ProrosimioN 1. .A Fréchet space E splits into infinitely many parts if and
only if there exists a sequence of orthogonal projections with infinite-dimen-
sional ranges.

Proof. Given {M,} and {N,}, define the projections {P,} on E by
letting P; be the identity on M; and zero on N; and M; (1 < < i) for each i.
The reverse implication is obvious. w

A topological space X is said to be continuously included in a topologi-
cal space ¥ provided X < Y and the identity map on X to Y is continuous;
ie., the topology on X is finer than the topology induced by Y.

The next two lemmas can be viewed as special cases of the general result
on completeness of inverse limits ([7], Proposition 2.11.3, p. 153). We
gratefully accept the referee’s very elegant and concise proof. '

Lemma 1. Let (F, Y) and (G, 1) be Frécher spaces and Q be a contimious
linear map from F into G. Further, suppose that (G, t,) is a Fréchet space’
continuously included in (G, 7). Then Fy = Q™' [G,] is a Fréchet space under
the ropology Y, having as a base of neighborhoods of 0 the set
{UAQ™Y[V]: U and ¥V are neighborhoods of 0 in (F,Y) and (Gy,14)
respectively}.

Proof (Fi, Yoo (F, Y) x(Gy, T,) is 2 topologlcal 1somorph1sm onto
a closed subspace. m

Lemma 2. Let (F,, Y,) be a sequence of Fréchet spaces, each of which is
continuously included in some Hausdorff space (F, Y). Then Fo = [\nei Fn is a
Fréchet space given the topology Y, with a subbase of neighborhoods of O the
set

Z=lFonU: Uisa Tn-neiéhborhood of 0 for some n}.
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Proof. Again,

(FOsYG HFmT

is a topological isomorphism onto a closed subspace. w

2. Some basic properties of (LF)-spaces. Let (E, 1) be a locally convex
Hausdorff space. If there exists a strictly increasing sequence {(E,, 7,)}%, of
Fréchet spaces such that E = | )2, E,, each (E,, 1,) is continuously included
in (E,+1, Tu+s) and 7 is the finest locally convex Hausdorif topology for
which (E,, t,) is continuously included in (E, 7} for each n, then (E, t) is said
to be an (LF)-space, {(E,, 7,)}s2y is an inductive sequence which defines the
(LF)-space (E, 1) and we write

(Es T) = li_mr{Em Tn)'

Dieudonné, Schwartz, Grothendieck and Kéthe pioneered the study of
(LF)-spaces (cf. [3], [6], [8]). Note that an absolutely convex set U in E is a
t-neighborhood of 0 if and only if U N E,, is a t,-neighborhood of O for each
n, and a linear function f from (E, t) into a locally convex space F is
continuows if and only if flg, i continuous for each n. If the inclusion

mappings are bicontinuous.onto their images (i.c., Tprle, = 'c for each n), we
say that {(E,, 1:,,)} 1 18 a strict inductive sequence and (E 7) is a strict (LF)-
space. If each E, is a Banach space, (E, t) is an (LB)-space (a strict (LB)-space
if further {(E,, z,)},%, is strict). Two inductive sequences {(EL, t{)}%=
ED, ©i)12 1 in E (defining two possibly different Hausdorff topologies on
E) are said to be equivalent if each member of either sequence is continuously
included in some member of the other; ie., if ie{l, 2} and n is arbitrary,
there is some k such that E9 < E3~9 and 1{*~ UPOES 1“’ One easily sees that

equivalent inductive sequences define the same (LF)-space (E, 7).
Treorem 1 (Grothendieck’s Equivalence -Theorem). Let (B, 70) =
lim (E®, 1®) for i =1, 2 The following statements are equivalent:
@ {(EW, t9)\2 | s equivalent to {(E®, e,
{b) o = (2
(©) The infimum of vV and ¥ is Hausdorff,

Proof. Clearly (a) = (b) = (c).

Now (c) = (b) by Grothendlcck [6: p. 17, Thm. B 2] and (b) = (a) i
essentially Cor. 3 to Thm. A, loc. cit. =

Note. One easily proves (c} = (a) directly by using Lemma 2, the fact
that every Fréchet space is (db), and Ptdk’s open mapping theorem.

' CoroLLARY 1. Let (E, ) be a Hausdorff locally conwex space. Then there
is at most one topology on E finer than t which makes E an (LF)-space.
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ExampLE 1. There exists a strict (LB)-space E with a nonstrict inductive
sequence of non-Barach spaces which defines E.

Let (s) denote the nonnormable nuclear Fréchet space of all rapidly
decreasing sequences. Clearly (s) 1s continuously included in the Banach
space [,. Let

| E, =1l x...xly x{0} x{0} x...,

n factors

Fo=1; x...xly x{s} x{0} x {0} x...

n factors

and let Y, and 7, be the preduct topologies on E,, F, respectively, Now, E
is continuously included in F and F, is continuously included in E,,; so
that {(E,, T)}2, and {(F,, T}, are equivalent inductive sequences in the
strict (LB)-space (E, 7) = hi’(E,,, Y,)= Hﬂ)(F »» Tn), With the former a strict
inductive sequence of Banach spaces, the latter a nonstrict inductive sequence
of non-Banach spaces. =

Exampie 2. One can easily modify Example 1 (e.g. replace [; by I, and
{s) by 1,) to obtain a strict (LB)-space with a nomstrict inductive sequence of
Banach spaces. m )

CoroLLARY 2. If (E, 1) = Iim (E,,, ty) is a strict (LF)-space and also an

(LB)-space, then (E, 7) is a strict (LB)-space In fact, if YE,, 1)}, is a strict
inductive sequence, then each (E,, t,) is a Banach space (n=1, 2, ..).

Proof. By hypothesis, there exists a (necessarily equivalent) defining
sequence {(B,, Y,)}:=, of Banach spaces so that for any n, there exist
k and p with E, < By cE, where 1,5 <Y, and Y, <7, yielding

1,l5, € Yilg, < 7, But by strictness, 7|5, = t, and therefore , is the norm

topology TkiE

It is well known that all (LF)-spaces are barrelled, and we make the
observation that no (LF)-space is a (db)-space. For, no E, can be both dense
and barrelled in (E, 1) by Ptdk’s open mapping theorem applied to the
identity map from (E,, ,) onto {E,, TIEn)’ since E, % E,., for each n. By a
similar argument, no (LB)-space is Baire-like; consider an increasing se-
quence of multiples of the unit balls of {E,} ;. Every strict (LF)-space is S,
and thus not guasi-Baire.

In [18)], we partitioned the class of all (LF)-spaces into three mutually
disjoint nonempty classes: '

An (LF)-space (E, 7) is of type (i) or simply an {LF)-space if it satisfies
the ‘condition (i) below (i =1, 2, 3):

(1) (E, ) has a defining sequence none of whose members is dense in
(E,7);
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2 (E, 1) is nonmetrizable and has a defining sequence each of whose
members is dense in (E, 1)

(3y (E, 1) is metrizable,

2

In [18] we have also shown that the (LF)-space (E, 7) is of

type (1) 1f and only if it contains a complemented copy of o,
if and only if it contains a closed N,-codimensional subspace,
if and only if it is not quasi-Baire;

type (2} if and only if it cont.ains ¢ but not ¢ complemented,
if and only if it is quasi-Baire but not Baire-like:

type (3) -if and only if it does not contain o,
if and only if it is Baire-like (but not (db)).

Hence we see that |

(LF),-spaces are precisely the class of (LF)-spaces which distinguish
between barrelled and quasi-Baire spaces;

(LF),-spaces are precisely the class of (LF)-spaces which distinguish
b\etwecn quasi-Baire and Baire-like spaces;

(LF);-spaces are precisely the class of (LF)-spaces which distinguish
between Baire-like and (db)-spaces.

. We note that each of these distinguishing classes of (LF)-spaces is indeed
rich: every strict (LF)-space is of type (1); every (LB)-space with a defining
sequence of dense subspaces, e.g., the space | _ of Example 4 below is of type
(2); in Section 4, we achieve a primary purppose of this paper by constructing

a large class of metrizable (and normable) (LF)-spaces We gi i
2 aree class . ) (LF)-spaces. We give here a quick

ExampLE 3. Let o denote the Fréchet space of all scalar sequences with

the product topology. The Banach space 7. (p > 1) is d )
. S . :
ly included in o. Let pace ; (p > 1) is densely and continuous

E,,mwx..,xjoxlpxlpx‘.. n=1,2..)
n factors »

Then given the product topolog : : . L
; v, E, is a strictly increa
Fréchet s " A sing sequence of

het spaces, with E, continuously included in E, ;1. One easily sees that E
= Un=1 E, is a dense subspace of the Fréchet space F = w x¢ x... which
with the relative topology, is a (metrizable) (LF)-space. Hence « contains aa
dense (LF)-subspace, since o is isomorphic to F. » . |

On the one hand, we establish in this paper the abundance of metrizable

(LF)-spaces while, on the other hand, (LB)-spaces and strict - (L¥)-spaces are

Metrizable {LF)-spaces 7

always nonmetrizable. We now give the promised Example 4, including a
nonmetrizable (LF)-space which is neither an (LB)-space nor a strict (LF)-

© space.

ExaMpLE 4. Let p > 1 and choose N such that p—1/(N+1) > 1. Let [ _
denote the {LB)-space

. '
11:1:1 = LHN+n)-.

(Note that [ _ is independent of the choice of N). The (LF)-space @ x Ip_ has
(0 %!y~ v+ min=1 as a defining sequence. Since it contains a copy of Ip_ , it is

" not metrizable, and is, in fact, an (LF),- space. Thus, it is not an (LF),-space,

and is not a strict (LF)-space. Since there is no Hausdorff vector topology on
@ strictly coarser than the product topology, there is no coarser norm
topology on . Thus by Theorem 1, o xlp_ is not an (LB)-space. =

In [18], we show that qaxlp_ is an (LB)-space which is a nonstrict
{LF),-space.

TueoreM 2. Let (E, Y) =lim (E,, Y,} be an (LF)-space (1 <i < 3) with
a closed subspace M. If E,+M = E for some n, then the quotient space E/M
is a Fréchet space; otherwise, E/M is an (LF);-space for some j 2 i.

Proof. Case 1. Suppose for some n, E,+M = E. Then if Q is the
(continuous) quotient map from E onto E/M, we have Q[E,] = E/M. Since
Ylg, < Y, Qlg, is a continuous surjection from the Fréchet space (E,, Y,)
onto the barrelled space E/M; therefore by Ptdk’s open mapping theorem,
E/M is a Fréchet space.

Case 2. Suppose E,+ M & E for each n. Then Q[E,] & E/M for each n.
Thus for some subsequence {(F,, 7,0}, of {E 2y, if G,=Q[F,] for
p=1,2,..., then {G,} is a strictly increasing sequence. If ¢ denotes the
quiotient topology on E/M, and 1, the quotient topology of 7, on G, then Q],.-p

" is continuous from (F,, n,) onto (G, 1lg ) and therefore tlg , < 7,

Let (E/M, ) =1lm (G, 1,). Since (E, Y)=1lm (F, #,) and since
Qle,n, IS continuous onto (G,,7,), it is continuous onto (Gps Slg,)» P
=1, 2, ... Thus we see that Q is continuous from (E, Y) onto (E/M, {). Also
the mapping is clearly open for ¢ Therefore, ¢ = 1, since there is only one
topology on E/M that makes ( continuous and open; ie, the quotient space
E/M is an (LF);-space for some j, 1 <j < 3.1f F, is dense in E, then so is G, in
E/M, by continuity and surjectivity of @, and E/M is metrizable whenever E
1. Thus j=i. m .

By relaxing the requirement that inductive sequences must be strictly
increasing, one could regard Fréchet spaces as the remaining class of (LF)-
spaces of type (4), in respect of the above theorem. Every (LF)-space of types
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(1), (2) or (3) has a (Hausdorff, infinite-dimensional) separable quotient [17];
in [18] we prove that every (LF)-space of type (3) has a quotient which is a
separable infinite-dimensional Fréchet space. Also in [187], we prove that the
cartesian product of an (LF);space with an (LF)-space is an (LF)-space
where k = min(i, j}; an infinite product of (LF)-spaces is never an (LF)-space;
the Hausdorff inductive limit of an increasing sequence of (LF)-spaces is an
(LF)-space; a countable-codimensional subspace of an (LF)-space is an (LF)-
space if and only if it is closed, and not contained in any member of the
defining sequence.

CoroLLary 3 (K&the's Open Mapping Theorem [7; vol. 11, p. 437), If f..

F =G is a continuous linear surjection from an (LF)-space F onto an (LF)-
space G, then f is open.

Proof. Let f denote the (continuous) associated injection from F/M
onto G, where M = f~'[0]. Note that f is open if and only if fis an
isomorphism. Since G is a non-Fréchet barrelled space, F/M cannot be a
Fréchet space by Ptdk’s open mapping theorem. Thus, F/M is an (LF)-space
by Theorem 2. Since £ is continuous, it carries a finer (LF)-topology onto G
so that by Corollary 1, the two topologies on G coincide. Te., fis an
isomorphism, and fis open. =

Note. i G is not an (LF)-space, the conclusion can fail, even under the
hypothesis that F is an (LF);-space, and G is metrizable and barrelled, by
Example 2 of [17].

The following is an alternative version of Theorem 2.

Tueorem 2A. Let {(F,, Y,)},2, be a defining sequence for an (LF)-space
(Fo, Yo) and let M be a closed subspace of Fo with M S F,. Then Gy, Tg) Is
an (LF)-space defined by the sequence |(G,, 1,)}2.,, where G; = (F,, T)/M and
7, is the quotient topology, i=0,1, 2, ... o

CoroLLary 4. If Fy is a metrizable (LF)-space and M is a complete
subspace, then the quotient Fy/M is a metrizable (LF)-space.

Proof Let (F;, Y, be as in Theorem 2A. The Fréchet space M is a
(db)-space. That is to say, one of the covering spaces M N Fy = Ey is both
dense and barrelled in M. Clearly, Tnlg, is finer than Yolg, so that

(Exs Ywlg,) is a Fréchet space (by Lemma 2) mapped continuously énto
{Ex; Yoley), a dense barrelled subspace of M. Hence by Pidk’s open mapping

theorerp, the spaces are isomorphic so that Ey is a dense complete subspace
of M; ie, M <Fy. Since {(F,, Y,)},>y is 2 defining sequence for Fo: Yo,
the theorem applies. m ' -

CoroLLARY 5. No metrizable (LF)-space is complete.
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Proof. If Fy, is Fréchet, then by Corollary 4, F,/F, is an (LF)-space

'contradicting the fact that the -defining sequences are strictly increasing. m

Remark. Some nonmetrizable (e.g., all strict) (LF)-spaces are complete
(Kéthe [8: vol. I, p. 2257).

3. Constructing metrizable (LF)-spaces. We use the following theorem, of
independent interest, in the main resuit, A former Banach space version
appeared in [19]. For a non-Banach Fréchet space E the stated equivalence
merely says that conditions (i}-(v} hold, since by the result of Eidelheit [4]. E
has a quotient isomorphic to .

Trueorem 3 (see Corollary 8). Let (E, Y) be a Fréchet space. The follo-
wing statements are equivalent: :

() E has a separable (infinite-dimensional) quotient (by a closed subspace).
(i) E has a dense S,-subspace.
(iif) E has a dense nonbarrelled subspace.
(iv) E has a dense non{db)-subspace.
(v) E densely, properly and continuously includes a Fréchet space
M (M can be chosen so as to contain any specified countable subset of E).

Note. The equivalence of (iii) and (v) is essentially due to Bennett and
Kalton [2; p. 512, Prop. 1].

Proof, (i)=-(ii). If M is a closed subspace of E and E/M is infinite-
dimensional and separable, then there exists a linearly independent sequence
{x,} in E such that M nsp{{x,}) = {0} and M+sp({x,}) is dense in E. Then
{Jpm1 [M+sp({x;, ..., x,})] is a dense §,-subspace of E.

(i} = (iil). This is clear since by [1] or [14], metrizable barrelled spaces
are Baire-like (cf Section 1). .

Trivially (iii) = (iv). :

(iv) = (iii). Suppose M is a dense subspace and M is the union of an
increasing sequence {M,} of subspaces none of which is both dense in M and
barrelled. Then if M is nonbarrelled, we are through. If M is barrelled, then
M is quasi-Baire by [14], so that some M, is dense in M, hence dense and
nonbarrelled in E. ‘

Thus (iil) and {iv} are equivalent, :

(ifi) = (v). Suppose N is any dense nonbarrelled subspace of E, and let C
be any countable subset of E. Then sp(N u C) is nonbarrelled (see [16]) so
there exists a closed absolutely convex set ¥ such that M =sp(V) 2 Nu
and ¥ is not a Y|,-neighborhood of Q. The collection (k™' ¥V nU: k is a
positive integer and U is a closed neighborhood of 0 in (E, Y)} forms a base
of YT-complete neighbothoods of 0 for a metrizable topology T, on M. By
[7; Prop. 5, p. 207], (M, Y,) is complete, and thus is a Fréchet space
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continuously included in E. M is a dense proper subspace, since it contains
N and since ¥ is not a peighborhood of 0 on the barrelled space E.
Clearly, (v)=(iii) by the Open Mapping Theorem. - ‘
(iii) = (i). If E is Banach, the implication is given by Saxon and Wilansky

[1%]; if E is non-Banach, (i) holds by Eidelheit [4], since w is separable, a

We note without proof the following elementary lemma,

Lemma 3. Let G be a dense subset of a topological vector space E and let
U be a closed absolutely convex neighborhood of 0 in E. Then UG = U.

THeOREM 4 (MAN ResuLt). Ler (F, Y) be a Fréchet space with a se-
quence | P, |2 ; of orthogonal profections such that each of the (necessarily closed)
subspaces P,[F] has a separable (Hausdorff, infinite-dimensional) quotient.
Then F conrains a dense subspace F, which, with the relative topology, is a
metrizable (LF)-space.

(In short, a Frécher space has.a dense (LF)-subspace if it splits into
infinitely many parts, each of which has a separable quotient)

Proof. By (i) = (v) of Theorem 3, for each n, there exists a dense proper
subspace G, of P,[F] which, with a topology t, finer than the relativization
of Y, is a Fréchet space. Set F, = Py 1[G,] and let B, = ()5, F, for all n, k.
Then by Lemmas 1 and 2, each E, is a Fréchet space with the topology Y,

having a base of neighborhoods of 0 {E, U NMe=i Py [V1): p=k Uis
a neighborhood of 0 in (F, Y) and ¥, is a 7,-neighborhood of 0 in G, for
k< n<p}). Clearly, E, SE,,, and Y+ induces on E, a topology coarser
than Y. .

Now, there exists x € P, [F]\G, and since the projections P, are ortho-
gonal, xeE,, \E;: E, is properly contained in E 1. To see that E, is
dense in F, let {U,} 2., be a neighborhood base of 0 for Y such that each U,
is absolutely convex and closed, and U,+U, SU,_y for p22 and let
xeF. For an arbitrary positive integer k, choose x,€G, such that
Lx,—P,(x)] el,, for p= 1. Set

yzx+z [:xi—Pi(x)]- ‘
‘ =1 ,

The series converges to a member of Uy, by a standard argument. Also for
each mj., Pi(y) = Pi(x)4x;—P;(x) = x;€G;, by orthogonality, so that
¥€(Yj=1 P7 ' [G{] = E;. Therefore, (x+ U,) NE; # @, and since x and k are
arbitrary, E, is dense in F. :

Let Y, be the finest locally convex topology on Ey = {Jp= E, which
induces, for each %, a topology coarser than Y. Then E, is a dense subspace
of F and (E,, Y,) is an (LF)-space. Clearly, Y; is finer than Yg,-

To see the reverse, let ¥ be an absolutely convex closed neighborhood
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of 0in (Ey, Yo). Let ko be fixed, Now, VNE, isa Y, -neighborhood of 0 so
that there exist po 2 ko and a neighborhood U, of 0 in (F, Y) such that

L

Ey,nUgn( (N P[0 = V.

n=kg
Choose k; > py. Now, V " E, is a T, -neighborhood of 0 so that there exist
pi =k, and a Y-neighborhood U, of 0 such that

Py

E,nUin{ N PI[0]) =V.

r=kyq

One easily sees that

P=(3 Pl

n=kg

is a Y-continuous projection of E, into E, .
[By orthogonality, P is idemponent. For each n, kq < 1 < pg,

PolEi) = Po( 1) P7HG) < P[Py [G]] = Gy = B
i=k0
so that P[Eko:l gEkO']

Furthermore, P~ '[0]= 42, Py ' [0]nE,; by orthogonality. Theg
UynP~'[0] €V and since E,, < E, and k; > po,

Pt
UynP[E,] & E,nU, (N PIO)) SV

m=ky

Since P™'[0] and P[E, ] are topological complements in (Ey;, Ylg, ),

W =4 (Ugn PTLON+5U N PLED
is a 'T[Eko-neighborhood of 0 and W =4 ¥+3V = V. Hence, Ylg, = Yolg, for

k=1,2,.., since k, was arbitrary, .
Again, fixing ko, let U be an absolutely convex closed nelghborhoqd of 0
in (F, Y) such that U nE, & ¥ By Lemma 3, then, for each p = ko, UNE,

is the closure of U Ey in (E,, Yig,) since By is dense in (E,, Ylg,), an.d
thus UnE, is the closure of UnE, in (Ep. Yolg,) so that UNE, Is
contained in the Yg-closed set V. Therefore,

UnEy=Un(l) E)&V

pEky i .
and Vis a T|,,«0Qneighborhood of 0;ie, Ylg, = To- The ,conclusmn‘ pf the

theorem follows, setting Fo = Ep.- m
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CoroLLARY 6. The familiar Banach spaces I, (1 € p € o), ¢, C[0, 1] and
L,[0,1] {p = 1) and the familiar (nuclear) Fréchet spaces (s) and w all have
dense subspaces which, with relative topology, are (LF)-spaces. Indeed so do all
Fréchet spaces with an unconditional basis. (See Corollary 8.)

Proof If {xi}iﬁl is an unconditional basis for a Fréchet space E, then
letting {8, }iZ ; be any partition of {1, 2, ...} into infinite disjoint sets and, for
each k, defining

g

P ax)= ) ax

i=1 JeSy
for each x = Y2, a,x in E, we see that {P,}2%, is a sequence of orthogonal
projections, and each infinite-dimensional subspace P, [E] admits a separable
quotient (by the trivial subspace {0}). Hence Theorem 4 applies,

Exactly the same technique yields the result for /., since each P, [!,.] is
isomorphic to [, which is known to have a separable quotient (see [19; Sec.
2.1-2.5]).

For C[9, 1], ¢hoose an infinite sequence {[a,, b,1}72, of disjoint nonde-
generate subintervals of [0, 1] and choose {[¢,, 4]} such that q, <,
<d, <b, for each n. Define projections P,: C[0, 1] —C[0, 1] by

for c, <t <d,,

f@
(Pa(M)@) = {0 for 1 ¢(a,, by,

linear on [a,, ¢,] and [d,, b,]. =

Each P,[C[0, 1]] is isomorphic to C[0, 1], thus is infinite-dimensional and
separable, and ||P,}| = 1. Theorem 4 applies. [Note. C[0, 1] has a basis, but
not an unconditional basis (Singer [20]).]

For L,[0, 1] (p > 1), the projections as in the above paragraph yield the
result. m

It

CoroLLARY 7. There are lots of nonisomorphic normable (LF)-spaces.

4. More on quotients. The next theorem, in conjunction with Theorem 4
(Main result), shows that if a Fréchet space F has a separable quotient which

splits into infinitely many parts, then F has a dense subspace which is an
(LF)-space.

Tueorem 5. Let Q: F —G be a continuous linear surjection of a Fréchet
space (F, X) onto a Fréchet space (G, ). G has a dense subspace G, which,
with the relative.topology, is an (LF)-space if and only if F has a dense
subspace Fo which, with the relative topology, is an (LF)-space containing

Q' [0].

Proof. Suppose F, is a dense subspace of F such that (F,, Ylr,) is an
(LF)-space with F; 2 Q7 '[0]. Let M = Q! [0], and G, = Q[F,]. Then M
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is a subspace of F,, so that the quotient topology of Fo/M is induced by
that of F/M. Since by the Open Mapping Theorem, Q: F/M — G defined by
Q(x+M) = Q(x), xeF, is an isomorphism, its restrictions are also, showing
that (Go, 7lg,) is isomorphic to Fo/M, an (LF)-space by Corollary 4. Now,
F, is dense in F so Q[Fy] = G, is dense in Q[F] = G, completing the “if”
part of the proof,

Conversely, suppose G has a dense subspace G, such that (Go, tlg,)
= lim {(G,, T2, (where (G,,t,) are Fréchet spaces, n =1, 2, ..)). Define
F,,:—é" 1[G,] and give the topology Y, on F, as in Lemma 1 with a base of
neighborhoods of 0 the set {Q !'[V]nU: Vand U are neighborhoods of 0
in (G,,t,) and (F, Y) respectively}. Then {(F,, Y)};2, is a sequence of
Fréchet spaces strictly increasing since {G,}=%; is.

Let (Fg, Y) =!i—rL(F’=’ Y,). Since

ot ket o
FO = Uan = Ul Q_1 [Gn] = qu[Ul Gn] =Q‘I [GO]:v
nN= n= n=
F, is dense in F, trivially, for @ is open and G, is dense in G.
Now, Y| is clearly coarser than Y, for each n, so Ylg is coarser than T,.
On the other hand, let W be an absolutely convex Y,y-neighborhood of 0 in
F,. For each n, WnF, is a Y,neighborhood of 0, therefore contains
U,nQ~[V,] for some absolutely convex neighborhoods U,, ¥, of 0 in F,
(G,, 7,), respectively. Then we easily check that

QW] =20[U,nQ ' [K]] =Q[U. NV,

and this set is a neighborhood of 0 in (G,, 7,) since Q is open and 7|g, 18
coarser than t,. Since the absolutely convex set Q1_:W] ix_ltersects with eacfh
G, in a t,neighborhood of 0, Q[W] = Q[W]1nG,is a nelghbt_)rhood of 0 in
the inductive limit topology, hence by hypothesis is a TlGO-nelghborhood of
0. Since Q is continuous, Q™ *[@[W]] is a Yip -neighborhood of 0. Now,
@ '[Q[W]1] =0 '[0]+W and, for any tixed n, U,nQ '[V,] =W im-
plies that W2 U,n Q™' [0] (0€V,) so that we have

() 2 =WtW : .

2(U, Q7 [0D+W 23U, n[Q ™ [0]+(W U]

as is easily shown. {Let y be in the right-hand side, where y = z+w, y etl,,
zeQ"'[0] and weWnilU, Then z=y—weéU,,-—%U,,fU,, 80
zeU,nQ~1[0] and y=z+we(U,nQ '[0]}+W=left-hand side.] But
W AU, is a Y,-neighborhood of 0 in Fy, so the preceding argument shows
that '

O QIW U] = (W niU)+Q 7" [0]
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is a Yl|p,~neighborhood of 0: therefore, so is its intersection with 3U,. Thus

(_*) shows that 2W, and therefore W, is a Y|y -neighborhood of 0. That is, Y,
=Yg, completing the proof. m ‘ ‘

CoroLLARY 8 (Eidelheit [4], Valdivia and Pérez Carreras [22], Saxon
and Narayanaswami). If E is a non-Banach Fréchet space, then conditions (i)~(v)
of Theorem 3 hold, and moreover E has a dense (LF)-subspace.

Proof By Eidelheit [4], E has a quotient isomorphic to w, so (i)~(v)
hold by Theorem 3. Also « has a dense (LF)-subspace by either Example 3
or Corollary 6. Thus, so dees E by Theorem 5. w

THEOREM 6. Let (E, Y) be a Banach space. Conditions ()~(v) of Theorem 3
are equivalent te the following condition:

' (vi) There exists a dense subspace E, and a topology Y, on E, finer than
Ylg, such that (Eq, Yy) is a normable (LF)-space.

. Pr(?of. {vi) = [(()«v)]. Suppose (Eg, T,) exists as in {vi). Then there is a
stnctclny increasing sequence (E,, Y,)}7%, of Fréchet spaces such that E,
= Un=1 £, where each Y, is finer than Y|y, hence finer than Yz . Thus,
either ().~ E, is a dense S,-subspace of E [(i)] or one of the Fréch‘e;I spaces
(E., Y,) is a dense (and necessarily proper) subspace of E [(v)].

(i) =(vi). Assume M is a closed subspace of E such that E/M is a
separable {infinite-dimensional) Banach space. One readily sees that E/M
must densely and continuously include a copy of the Banach space /,. [Let
:‘.xi, fi}iZ1 be any biorthogonal sequence such that sp(lx;}) is dense in E/M:;
identify the unit vectors in [; with small multiples of the x;s.] ‘
- LetgQ be the quotient map of E onto E/M. By Lemma 1, F = Q~1[},]
is a‘Banach space with a topology u finer than Y[p, such that Q| is pu-
continuous onto l;. Also, F is dense in E, trivially, since [, is dense in E/M

and Q i‘s open. By Corollary 6, /; has a dense (LF)-subspace G,. The desired
conclusion follows from Thecrem 5. w ‘ |

5{. Sotpe related open questions. We conclude by relating some open
questions in Banz.wh spaces. If E is an arbitrary infinite-dimensional Banach
space, the following statements may or may not be true:

(S1): E has a separable gquotient.
. (82): Every separable space splits.

(83): E has a dense subspace which, with the relative topology, is a
(normable) (LF)-space.
E ha.ts a dense subspa_,ce which, with a topology finer than the
relatn_:e topology, is a normable (LF)space. '
(S3): If E is separable, (S3) holds.
(86): (S1) holds if and only if (83) holds.

(S4):
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It is a venerable, long-outstanding open question as to whether (S1)
and/or {82) is valid ({17}, {19]). We have shown that (S3) holds for many
Banach spaces. By Theorem 6, (S3) implies (S1), so half of (36) is always
valid. Also (S1)<>(S4) (Theorem 6). Obviously (S3) = (54). Also (82) = (85),
for if E is separable, then E splits infinitely often via (S2) and Theorem 4
applies. Moreover, by Theorems 4 and 5, (52) = (S6). It is now apparent that
[(S1) and (52)]=(S3). If (S5) holds for all E, then so does (S6) by Theorems
5 and 6.

The authors thank the referee, K. Floret and P. Pérez Carreras for
helpfu!l communications.
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Homogeneous Besov spaces
on locally compact Vilenkin groups

by
C. W. ONNEWEER (Albuguerque, N.M.) and SUU WEIYI* (Nanjing)

Abstract. In this paper we shall show the equivalence of various characterizations of the
homogeneous Besov spaces defined on certain topological groups G that are the locally compact
analogue of the compact groups introduced by Vilenkin in 1947. We then apply some of the
results to study the regular extension to G xZ of the distributions belonging to such Besov
spaces.

1. Introduction. For a > 0 and O < p, g < oo there exist a large number
of equivalent characterizations of the Besov or generalized Lipschitz spaces
B%, on R". For carly results, subject to the restrictions 2 >0 and 1<p,
q < < co, see the papers by Besov [2] and Taibleson [13]-[15]. For additional
results, see [11] or [20], whereas for the atomic decomposition of Besov
spaces on R”, see [6]. In [12] Ricci and Taibleson considered the harmonic
extension to the upper half-plane R% of functions belonging to certain Besov
spaces on R. They introduced a class of function spaces, called A7,, on Rz
and showed that the boundary values of the functions in A%, can be
identified as linear functionals on certain Besov spaces. In [3] Bui extended
their results to R™. These papers were the motivation for the present paper in
which we consider this circle of ideas in the context of a certain class of
topological groups instead of R or-R".

We now summarize the content of this paper. In the remainder of t}ns
section we describe the topological groups G that will be considered here and
we give a brief outline of the distribution theory on these groups. In Section
2 we introduce the inhomogeneous and homogeneous Besov spaces on G.
We present several equivalént (quasi-) norms for these spaces and state a
duality theorem. In that section we also compare the inhomogeneous and the

1980 Mathematics Subject Classification: 43A15, 43A70, 26Al6.

Key words and phrases: locally compact Vilenkin groups, homogencous Besov spaces,
mean oscillation spaces, atomic decomposition, regularization, regular extension.
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