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Abstract. The class of all power series spaces A . (s) is characterized, for which there exists
a function §{-) such that every continuous linear operator 4: A (&) — A4, (o) satisfies for large k
continuity estimates ||Ax|} < Cy[[x|lspy. It turns out that then, in terms of the canonical norms,
there is a number @, depending only on «, such that every A satisfies even estimates of the form
o) [|Ax] € Culixllaxsss b depending on A. If A, (e} is in this class then every complemented
subspace of A, (x) has a basis. This follows from an analysis of the matrix of a projection and
also from the fact, proved in § 3, that in any nuclear infinite type power series space the range of
any operator satisfying continuity estimates () adrmits an absolute basis.

In this paper we introduce a new property-of Fréchet spaces which turns
out to be useful e.g. for investigations regarding the problem of existence of
bases in complemented subspaces of nuclear Fréchet spaces.

Recall that the topology in a Fréchet space (see, e.g., [3], [7] and [11]
for elementary properties of such spaces and all other unexplained ideas in
this paper) can be defined by an increasing sequence of seminorms (|| [|o-

If E is a Banach space, || || its norm, then the continuity of a linear
operator A: E —E is characterized by the relation

ldxi < ClIxll  (x€E).

Here C is some constant,
If E is a Fréchet space which is not a Banach space then no such
relation is possible and instead we have the characterization

sl € Cill¥llogy  (x€E, k=1,2,..).

Here ¢: N — N is some function on the positive integers. In this case there
are examples which show that in general ¢ (k) cannot be taken equal to k
and it would seem that there is no possibility of putting limits on the growth
of o. . .
It turns out, however, that in certain cases rather severe limits can be
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72 E. Dubinsky and D, Vogt
put on o. If, for instance, E = A, () is a power series space of finite type
equipped with the norms defined by

N =3 e g2
J

then from [14], 5.1, or [4], Thm. 5, we see ecasily thal ¢ can always be
chosen as a(k) = ak, acN. The linear operator A = ({;,); for (&) e, (o),
with o; = j, shows that these are in general the best possible functions o.

Motivated by this, we put, for a fixed fundamental system of seminorms
1 <M1z <... and any continuous linear operator A,

oy (k) = inf{oeN: sup |Ax]|, < +o0]

Jhall g=1
and call o, the characreristic of comtinuity {or generalized loss of derivatives
function) of A. A Fréchet space E is called tame if there exists an increasing
function §: N — N such that for any operator A we have (k) < S(k) for
large k, or equivalently, if there exist increasing functions S,, e« =1, 2, ...,
such that for any operator A there is an z with o, < §,.

It is easily seen that this definition is independent of the choice of a
fundamental system of seminorms. Power series spaces of finite type are
always tame. If the norms are chosen as above, then we can choose S, (k)
=gk, a €N. '

We will show that there are also tame power series spaces of infinite
type and give a precise characterization of this class. Then we will show by
means of a method of compact modification of mairices that all spaces in
this class have the property that any complemented subspace has a basis.
They share this property with the power series spaces of finite type (see
Mityagin [8]; of. also [10], [3]).

It turns out that in any tame power series space of infinite type with
respect to the norms defined by

€12 = 3 ™ |2

S

the functions S, can be chosen as S,(k) = ak+o with suitable a. @ can be
made | by an equivalent change of (x)),. Hence every operator in such a
space is tame in the sense (cf. [6], [13]) that its characteristic of continuity
with respect to the above system of norms is majorized by a linear function
(after some equivalent change of (x;); even a parallel of the diagonal). This
means that every operator, in particular every projection, satisfies estimates
which imply for a projection in any power series space of infinite type that
the range space has a basis. This is shown (at least in the nuclear cage) in
Section 3 by use of a generalization of the procf in Mityagin—Henkin [10]
(cf. [14]). Different proofs can be found in [16] and [17].
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The results of the present paper have been announced in [3].

Notation, Throughout this paper for any nondecreasing sequence o
=(;, %3, ...5 of positive real numbers tending to infinity we put

Agfo) = & = (), &) lEIE =T ™ )5 )2 < + o0 for all k).
i

Equipped with the norms || ||, k= 0,1, 2, ..., this is a Fréchet space. It
is called a power series spuce of infinite type. Such a space is nuclear if and
only if

loga
sup -~
n “Pi

< o,

which we do not assume unless it is explicitly stated. A, (o) is called shifi-
stable if
lim supet,., /o, < +o0.
n

This is equivalenl to the existence of an isomorphism A (@) = A, (@) DK,
where K is the scalar field. A non-ghift-stable space cannot be isomorphic to
any of its subspaces or quotient spaces.

Two spaces A, {o) and A, (& are isomorphic (equal) if and only if there
is a constant C > (0 such that

C~!°°ri < ~il < C“n-

In this case the sequences o and & are called eguivalent,

A step space of A,lw) is a space Ay (x), where o =(a,), is a
shbsequence of w. It is in a natural way a complemented subspace of A, ().

Two Fréchet spaces E and F are nearly isomorphic il there is a
Fredholm operator from E to F, ie. a continuous linear operator with
{closed) finile-codimensional range and finite-dimensional kernel. In this case
either E is isomorphic to a finite-codimensional subspace of F, or F is
isomorphic ta a finite-codimensional subspace of E. ‘

I. Let E and F be Fréchet spaces with fixed fundamental systems of
seminorms || ||, < i |l; €... and let S,(*): N—N be nondecreasing func-
tions for ¢ =1, 2, ... We define :

Ly(E, F) = {AeL(E, F): Vi 3C Vx: ||Ax]), € Clixlls,0}-

If we put _
|Alhwn = sup |l A
llps1

= "
then
Lo(E, F) = {AcL(E, F): |\ Allys 0 < oo for all k}
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and L {E, F) is a Fréchet space by the (not necessarily increasing) system of
seminorms || {5, k=1, 2.

The next proposmon isa generahzat:on of [15], Satz 1.1, where the case
S, (k} = o was treated, which means that | ), L, (E, F) = LB{E, F), the class of
all bounded linear operators from E to F.

1.1. Prorosition. The following are equivalent:

(1) U. L, (E, F)=L(E, F).
(2) For every sequence K(n) of positive integers tending to infinity there
exists an o such that for every k we have ny ard C with

nsng

”.A”k,sz(k c Sup 1AL, 0y

for all AeLl(E, F).

Proof. The implication {2) = (1) is clear. (1) = (2) is proved by means of
Grothendieck’s factorization theorem, applied as in [15], Satz 1.1.

For E=F = A, () we derive from the nontrivial part of Prop. 1.1

1.2. CorOLLARY. If Uy Ly (A (0, Au(®) = L(A 4 (@), Ay (@) then for eve-
ry sequence K(n) of positive integers tending to infinity there exists a f such
that for every k we have ng and C with

—a, Sy (k) < C+ sup (o n—a, K (n))
nEng
Jor all j and v.
Proof We apply Prop. 1.1(2) to A=¢,®f,, where e; and f, are

canonical basis vectors in A,(x) and A, (x) respectwc]y, and then take
logarithms.

We can now prove the main result of this section.

1.3. Tueorem. The following are equivalent:

(1) A, () is tame. .

{2) The set of finite limit points of Q = {a;/a,), ,un is bounded.

(3) Up to equivalence o has the following form: there exist strictly
increasing sequences k(v)eN with k(1) =1 and §, > 0 such that

(@ lim f.../B, = + o0,

L aad® s}

(b) o;=4, for k(v €J <k(v+1).

(4) There exists a constant a such that Jor every comtinuous linear
operator A: A () A () there is a constant b and a sequence of constants

Tume power series spaces 15

(Cy) such that for all k we have
Al € Cpllxllar+s  (x €A (@)

where the norms are as explained above,

Prool. (I)={2). Since A,(x) is tame there exist functions Sz(-), B
=1,2, ..., such that Uy Ly(A @), Aq (@) = L(Ag @), A, @)

We choose a continuously differentiable strictly increasing function f on
(0, +ec) with f(1) = 1, such that f' is strictly increasing to infinity and f” (1)
=1, We put A =(f")"1. We assume that

lm 3 (k-+ 1/ () =

for all B and define K(n =[f(n]+1.
On account of Cor. 1,2 there exists a § such that for every k we have ng
and C with

b C r
L8, (k) € —+ sup (-f-n—f(n))
oy v nSpg v
for all j and v. For any finite limit point 4 = 1 of @ this gives
Ak—S; (k) < sup (An—1 ().

nE ng
Hence we obtain for every k
Al —8y (k) < sng(Ar--f(t)) = Ah(A)—f (h(A4))
>

and therefore Ak +f (h(A)) < AR{A)+ S, (k). Putting k = [h(4)]+1 we obtain
F(h(A) < 8 (Th(]+1).

This shows that there cannot be any sequence (4,) of finite limit peints of Q,
tending to infinity. This is assertion (2).
To prove the next implications we put for fixed § >0

J) = min {j: o, f < ay).
Clearly j(v) depends on f.
1.4. Limma. (2) is equivalent to (2): There exists >0 such that
limv Ot_,(v)/u:\. = "+' o

Proof. (2)=(2). If (2) is not true, then we have for every f >0 a
subsequence of (o)/x,) converging to a finite limit. Hence there is a finite
limit point of @ which is > f.

(2) = (2). From (2) it follows that there is no finite limit point of Q
which is > f. :
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We continue now with the proof of Thm. 1.3:

(2) = (3). We choose B > 1 according to (2') in Lemma 1.4 and define
j(v) as above. We put k(1) =1, k(v+1) =jk(») for v=1,2,... and B,
= oy, Then we have by 1.4

lim f,4+./B8, = lim E’c}'(kv))/(xk(\l) = +@0.
vk oo v+ o0

We put & =f, for k(y<j<k(v+1), Then we have by definition
& <a;. By definition of j(v) we have wy,f >o; for j<jk(v) =k(v+1),
which implies o; < fd;.

(3)=(4). Let & be the equivalent sequence existing by assumption and
I |l the norms in A, (& (= A, («). For A eL(A (@}, 4, (@) there exist a(-)
and (C.), such that ||4x||; < G |l|xll 7 for all x and k.

We use the decomposition A = A°+ A" described at the beginning of
Section 2. From the proof of Lemma 2.1 we obtain constants D, such that

4% 2l < Dy lixllai0r+ 2
for all k. By use of the estimates (*) in Section 2 we have

-~ kf {k+a(0) 8
I4°xlle < e Al lixd < Co e "l i
v ¥

< Co(Ze ) Il oo 1
Hence we obtain (4) with constants &, =D, +Cq (Zve_w")m and b
= o{0)+2 for the norms || (I If a)/f < &; < fo; for all j we get the assertion
with a = 2 and b = f8b.
The implication (4) =(1} is trivial.

Remark. It should be explicitly mentioned that 1.3(4) means that if
A (o) is tame, then with respect to the norms described under Notation the
8§, can be chosen as §,(k) = ak+b, or after going to an equivalent sequence
d, even as S§,(k) = k+b. This means that in A_ (&) every continuous linear
operator is tame in the sense of [6] or [13].

From Thm. 1.3(3) one derives easily:

1.5. Cororrary. (1) If « is shift-stable then A, () Is not tame.
(2) If o is strongly unstable in the sense that
lima, /2, = +w

then A, (a)} is tame.

In the proof of (1) one has to notice that shift-stability is invariant
under equivalence.

The converse of (1) is not true. An example of a space A, () which is
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not tame and not shift-stable is the following:
o= (j—2"" - 1)2"
Obviously O = [0, + ) and

for "' j<2"and n=1,2, ...

lima,/o,_, =1im2"*? = +co,
n n

2 . .
Moreover, a; = 2" 2= j. Hence A, (¢) is even nuclear.

2. We will now first use the description of the tame spaces A {») given
in Thm. 1.3(3) to derive another characteristic property of continuous linear
operators in these spaces, sjmilar to the one given by Dragilev and Konda-
kov [1] for strongly unstable spaces A, (). This will show by a method of
compact modification that any complemented subspace in a tame space
Ay () has a basis, For another proof for that, based on Thm. 1.3(4), and
hence also on Lemma 2.1 below, sée Section 3.

We assume {throughout this section that the exponent ssquence o has the
form described in Thm. 1.3(3). We put r(v) = k(v+1)—k(»). Then

Am(a‘) = {(xln X2, ) EH lz (H(V)):
%1 = T llx,|* " < +oo for all k}

where ||x,|| denotes the I;(n{v))}-norm.
A map Ael{d,{x), A, () is described by a matrix (4;,)jven of 2()
x n(v)-matrices, such that for every k there is a o (k) and a constant C, with

k ¥
(%) 14,1 < € ™

for all j,v. [|4,,|| is the L{l,(n(¥), L (n(j)))-operator norm, _
We define A° = (8;, A;);yen and A* = A—4°. Clearly 4° and A" are in
L(A (@), Ay (@)). The following result is a generalization of [1].

2.1. Limma. A" is compact.

Proof Let k be given. For sufficiently large j, = jo(k) we have the
following estimates:

. o (o
I. For v>j 2 j, we conclude from ||4;,]| € Coe” ™

I ki : a0 +k“ {er( 00 kﬂﬂ‘ﬂp-}- W
II i‘V” IJ (){-' o ¥ / s<.:._ Coe 1

o+ 1),
C{) e(a" ) ﬁv.

A A

2 . o2k
2, For v <, j = j, we conclude from [{4; e b € Cye” Y that

(260, (a(2k) = kP jiB - 1)B
) € < Cppd™™ M < Cye” P < Gy
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3. For j <j,
kb j k6 gy 08
I 4; 0 e < fldylle < (Coe e
We apply these estimates to k+ 1 instead of k and obtain for all &
kB
14 xlle < 3 lidglle™ x|
J#Fy
Ut Dotk 1), gn = Bj= by (0(0)+ 2)B
<(Coe T )T e e *llxll
gy
< Dyixllagoy + 2-
This proves the assertion.

We apply the previous results now to & projection P in the tame space
A (@). It follows that P = P9+ P* and P! is compact. Therefore (P92 — P° is
also compact. From the results of Prada [12], Thm. 6, we see that there is a
projection Q in A, () with Q;, =0 for j # v such that P°—Q is compact.
That follows because the construction of the projection in [12] is by means
of a resolvent integral. Hence we have:

2.2. ProrositioN. Under the assumption of this section for every projec-

tion P in A (o) there is a projection Q with Q;, = 0 for j + v such that P—Q
is compact.

According to [12], Thm. 2, im P and imQ are nearly isomorphic spaces,
ie. there is a Fredholm map from im P to im Q. But clearly

imQ = {(x;, X, .. ) €[[ E,: anvﬂze"e" < 4o for all ¢}
v v

where E, =imQ,, = [;(m(v)) isometrically, m(v) =dimE,. Hence im(Q is
isomorphic to a step space in A, (x). We proved:

2.3, Tueorem. In a tame space A, (x) every complemented subspace has
a basis.

By means of the proof of Bessaga’s conjecture for infinite type power
series spaces of Mityagin [9] (see also [2] for the strongly unstable case),
Thm. 2.3 is equivalent to the following stronger formulation, However, in our
case it follows quite casily from the information on @ and the fact that the
tame spaces A, (x) are not shifi-stable (Cor. 1.5).

23. THeoreEM. In a tame space A, (x) every complemented subspace is
isomorphic to a step space,

Proof. We have imQ = A, (x), where o is a subsequence of n. Either
im P is isomorphic to a finite (m-) codimensional subspace E of A, (x). Then
we obtain, by eliminating m appropriate terms of ', a subsequence a” such
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that the “restriction map” E — A, (") is an isomorphism. Or A,(@) is
isomorphic to a finite-codimensional subspace F of im P. If the codimension
of Ay (@) in Ay (x) is larger than or equal to the codimension of F in im P
again we are through. But otherwise we would obtain an igomorphism
imbedding A, (%) as a proper subspace of im P < A, (). Since A () is not
shift-stable, this is impossible.

3. We will denote by (| |x=o,1,2,... the sequence of Hilbert norms in (s)
given by

E2 =Y /14 (€ =) e,
|
A continuous linear operator A in (s} will be called linear-tame if there
are a, beN such that
|48l < Cy [Elarcre

with constants C, and k=0,1, 2, ...

(350)

If Ec(s) is a subspace, then by E, we denote the Hilbert space
(E: & Ik) "

3.1. TuroreM. If A is a linear-tame operator in (s) and E the range of A4,
then there exists a complete orthonormal system (e,), in Eq consisting of
elements of E and an equicontinuous sequence (y,), in (s) such that for every k
there is an | with

Y1t leds < + 00,
Ax =T y.(xe, (xe().

Proof, The proof will be in two parts. First we establish the conclusion
under the assumption that there exist a function f [1, oo) =[1, o) and
B, o eN such that:

(1) f is strictly increasing.
(2) For every k there is an n(k) such that

for n 2z n{k). N
(3) ||48]l, < ClI€|l, (£ &(s) where C is some positive number and

IE1E =Y (SO 1 1815 = ;(f(i"))ZIfffiz.
]

(4) |Afl, € C ¥, (£ &(s)) where C is some positive number.
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For the first part of the proof we will use nothing about 4 except (1)}+4).
The second part of the procf consists of a construction of f and choice of
B, o to satisfy (1)}-(4).

So let us begin by assuming that we have f and f,¢. From (3) it
follows that B, = {£: JJ¢|, <1} (i=1,2) is a bounded subset of (s). The
norms | [, || | have their duals | ¥, || || k=0,1,..;i=1,2) on () and
on E' respectively. We use the same notation for the dual norms and
distinguish them only by the vectors to which they are applied.

For the first step of the argument we derive two inequalities which we
need later. First we note that for &£ e(s) and m = n{k)

Z]%!‘f 2< ZJZkI‘EJIZ"'" Z JZkIé:iZ

J=m-+1
(m+1)%
< m2k|§|2+——_’—2ll'£|l
)
so for any & <(s) and m = n(k) we have
. {m+ 1)
) IS < m Iflo+f( H)Ilfilh

Turning to the second inequality we obtain for ne(s), k >¢ and
mz= nik)

% "
n(k) 1}
<3 P+ 5 U (”) N z ml 3y

= n(k)

£ IB) o 1
%[f((n(k))p)"' n}:’j ] I|ﬂ.|lzz+W:;;lﬂ|?2-

Hence we have for ne(s)’ and any m with appropriate C,

f ) 1
6 F<C ¥ ol
(6} Il < Cy - {ElEs +(m+1),,_,,fnla
Now let H, be the continuously imbedded Hilbert subspace of (s)
generated by the bounded Hilbert ball B, = {£e(s): [|€)l, < 1!, ie. H,
=L{(f(n")). Let A,: H,, —~E, be the map generated by A. It is compact
because the space (5) is nuclear and its range is dense because H , is dense in

(s).

Therefore we may apply the spectral theorem to A4, to obtain an
orthonormal system (h,) in H,, a complete orthonormal system (e,) in E,
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and a decreasing null sequence (a,) of positive scalars such that

] Ax = f e X, M,  (x€H)

n=1

with the understanding that this series converges in E,. Here ¢ , ), denotes
the scalar product in H,,.
Since Ah, = a,e, the vecior e, is in E. We put for x &(s)

yn(x) = {dx, e, >0

where ¢, %, is the scalar product in E, and obtain, because of (7), an
equicontinuous sequence in (s) with

Ax = Z Yalxbe, (x€(s)

n=1

again with the understanding that the series converges in E,. We have to
show the convergence required in the theorem.
We have because of (3) and (7)

(8 ledo =1, lleylls = (Ya)lldhl, < Cfa,. _
Moreover, (4) gives |y,(X)] < |Axjo < Clx|, and (7) vyields y,(x)

= g, X, Do, for xeH,. Hence

9 vals €, IIyallf = an.

Since A, can be written as A, =BoJ where J: H, = 1,({{(f ("))
—1,((n%),) is the identity map, and, because of (4), ||B|| < C, it follows from
standard facts about diagonal operators on Hilbert spaces (see [11] for
details) that

{10) ‘ a, < Cn"ff (n”)l

for large n.
Because of (2) which implies convergence to zero we can for fixed n large
enough find an m, such that

(11) a, f (mi)/mi < € < a, f {(ma+ 1) )iom, + 1)".

Then (10) implies m, = n
For k> o we apply (S to { = ¢, and m = (m,+1)f—1. We obtain by use
of (8) and (11)

(m+1)*

Fim+1) a
< 1+ 29 mpk.

For I > o (instead of k) we apply (6) to n =y, and m = m,. We obtain

1
leae < M +C — & mt+(m,+ 177

6 ~ Stodis Mulhematica 93.1
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by use of (9) and (11) _
f () c
%
Iynll S CI m1 an+(m+1

We put ! = fk+o+2 and obtain for large n, and M, = (142 C(C,+1)

: 1
= < CCH D =

"

Zlynlllenlk Mkzm < M, Zn2<+oo

n=ng n= "0 n= ng
which proves the assertion under assumptions (1)~4).

Now we turn to the second half of the proof in which (since the
existence of o satisfying (4) is a simple consequence of continuity) we have to
construct f and f to satisfy {1)-(3).

For £e(s) we write AL = (3, t;,5,);€(s). From the continuity and the
assumption of tameness we have a€N, beN B =2 (take any B > 2a) and
constants Cj, C; such that for keN, neN

[ 7 < A < CilSalagsr = Cpn™ ¥ < C 02,

Here, §, = (8,); is the usual basis vector in (s).
We choose a sequence (m)2, strictly increasing to infinity such that

mo=1, m2Cpy k=12
We put

k
Mk:Hml, k=0,1,...,
i=0

and define for t = 1
f@) = sup t/M,.

Moreover, we define for t > 1 a number g =g(f) by m; <t <m. . q(t) is
well defined, nondecreasing and lim, ., g () = co.
Since for any t =1 and k21 and keN

tk—] Ik

<
]y e =y
i S = mS)

the sup in the definition of S always occurs at g(t).
Now f is obviously strictly increasing. To obtain (2) we write g = g{n), p
=gq(n+1), so p=q and we have m, < n+1. So

M
E" =M,y ..My SMETIE (N4 1)P79

q
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Hence, if g >k then
(n+1) M, < M M, n*

4 q

FAD) ) S D E S T

so it suffices for {2} to take n{k) sufficiently large that g(n) > k for r = n{k).
Finally, (3) follows from the following estimate:

|t 2O )2
my f(j) IZ tj'"c I J?m4 (Z Mq(ﬁ Mg

"™

5 i (x e pfa+ iz N2
< Q)0 &l
n Map-1

j?

j3m4
) 0 a2 plali+ 2)/27\2 2
(X SUPZ('M— [l
y=1 Jz2my wp—1

TC4
<3 DU 15
36 |
In the last inequality we used the fact that ﬂ(q (N+2)2 < B(g(j)—1) for
g(j) = 4, which is the case for j = m,.

Remark. In the second part of the previous proof we derived assump«‘
tions (1)~(4) from the continuity and tameness of A, On the other hand, in
the first part of this proof from (1)+{4) the following is derived, with | = Bk
+{o+2) and C =Y, |nifleh < +o0:

|Ax, < Z]yn (M lede < (Z |yal lenlk)lxll Clxlpk s (o4 23
Hence the existence of f, § and o satisfying (1})+(4) is equivalent to the
tameness of A. .
An eagsy consequence of Thm. 3.1 is the following result:
3.2. Tueorem. The range of a tame operator in (s) has an absolute basis.

Proof. Any x = A in the range of 4 has an expansion
x=Y i,e,
H

with 4, =y, (£). Since A, can be calculated as A, = {x, e, Where ¢ , b, is
the scalar product in Eg, the expansion is unique.

The basis is absolute since on account of the estimate in the previous
remark we have

Z]A‘nl |enlk < +0c0.
"
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Remark. The basis need not be equicontinuous since the estimate says
only

S ey < Clélpto+
n

and there is not necessarily a £ such'that the norm of £ can be estimated by
a norm of x. If, however, 4 has closed range, then this follows from the open
mapping theorem. So we have the following consequence of Thm. 3.2.

3.3. TueoreM. The range of a tame operator in {8) with closed range iy
isomorphic to a power series space of infinite type.

Proof With the help of the previous remark and eg. {117, 10.14, we
see that the range E is isomorphic to a nuclear K&the space, which is
isomorphic to a quotient and to a subspace of (5). Hence it is a power series
space of infinite type.

Since (s) contains all nuclear power series spaces of infinite type as step
spaces, any tame operator in such a space can be considered as a tame
operator in (s). A consequence is:

3.4. Turorem. In a tame nuclear power series space of infinite type the
range of any continuous linear operator has an absolute basis.
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