i44 M., Valdivia

[4] Z. Frolik, On the descriptive theory of sets, Czechoslovak Math. J. 13 (88) (1963),
335-359.

[5]1 W. B. Johnson and J. Lindenstrauss, Some remarks on weakly compactly generated
spaces, Israel J. Math. 17 (1970), 219-230,

[6] C. A. Rogers, Analytic sets in Hausdorfl spaces, Mathematika 1] (1964), 1-8.

[7] H. P. Rosenthal, The heredity problem for weakly compactly generated Banach spaces,
Compositic Math. 28 (1974), 83-111.

f8] M. Talagrand, Sur une conjecture de H.H. Corson, Bull. Sci. Math. (2) 99 (1975), 211~
212.

[9] ~, Espaces de Bunach faihlement K-onglytiques, Ann. of Math. 110 (1979), 407-438.

[10] M. Vaidivia, Oa a class of Banach spaces, Studia Math. 60 {1977), 11-13.

[11] —, Banach spaces X with X** separable, Israel J. Math. 59 (1987), 107-111.

[12] L. Vasdc, On one generalization of weakly compactly generated Bonach spaces, Studia
Math, 70 (1980), 11-19.

FACULTAD DE MATEMATICAS
Dr. Moliner 50, Burjasot
46100 Valenela, Spain

Receijved September 7, 1987 {2360)

icm

STUDIA MATHEMATICA, T. XCIII (1989)

On the law of iterated logarithm for
Bloch functions *
by

FELIKS PRZYTYCKI (Warszawa)

Abstract, We present a proof of the law of jterated logarithm for Bloch holomorphic
functions on the upit disc I by approximating the sequence of sums of trigonometric
polynomials which are convolutions of a Bloch function with Fejér type kernels by a martingale
on 3D,

§ 1. Introduction. A holomorphic function b on the unit disc D = Ciscalled a
Bloch function if
(1.1) (16l = Ib(O))J+SUE(1-*IZIZ)Ib’(Z)I <.0.
Denote the class of all Bloch functions by .4.

The following theorem was recently proved by N.G. Makarov in [M].

Treorem 1 (Makarov). There exists a universal constant C,, > 0 such that if
be.# then

1
(1.2) limsup [b(tz)|/ log(l1 )logloglog(1 ) CM||b||fB

t=l—
Jor almost all z 8D,
For every holomorphic univalent function f on D with f'(0) = 1, the

function log f* is a Bloch function with ||log f”|ly < 6 (see [H], L. 174. 1) So
(1.2) yields for almost every z edD

If(t2)| € exp((ﬁC +o(1))\/log(1 )Iogloglog(ll )) as t—+1—,

This provides infortnation about the harmonic measures on the boundary of

/(D) (see [M]).

* Thisis a considerably revised version of the paper with the same title published as a preprint
of the University of Warwick, January 1986,

4 = Buudin Math, 93.2
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The aim of this paper is to show that Theorem 1 is equivalent to the upper
class part of the law of iterated logarithm (L.IL) for partial sums of some weakly
dependent random variables and to explain how a standard procedure [PhS]
reduces it to the LIL for martingales [S]. By the way we obtain the estimate (')

w < 16/ /log2.

Let us recall after Makarov that an important example of the Bloch function,
easy to cope with, is the lacunary series Z:; 0zz". The random variables to be
considered in this case are just Rez?", Imz®" on 8D. (In fact, to improve the

estimate of C,, the consideration of Re Z:'; Gazz" for an arbitrary «, |x| =1, is

useful.}

We will base on Makarov's description of the Bloch class in terms of
convolutions with the polynomial kernels W,, n > 0, where W, {z) = 1+z and
for n >0, W, is defined by

W2 =1,
_ W,=0 outside (2"7%, 2"t 1),
W, is linear on [2""%, 2"] and on [2% 2"*!]

( f (k) denotes the nth Fourier coefficient of the function f).
Makarov's characterization of the Bloch class is as follows: A holomorphic
function b on D is a Bloch function if and only if

151l = supllb « Wl < co.
n=0

In the Appendix we shall prove the “only if” part and give the estimate
sup|[Bll/||bll.a <8
bed

In several places we shall apply S. Bernstein's inequality (see [Z], Ch. X, Th.

3.13, 3.16): for every trigonometric polynomial §(z) = ZL _,tnz"on S ! = 8D, if

1 < p<oo then
1SN, < RIS,

We shall also use a kind of an opposite inequality in L® following from [Z], Ch.
V, Th. 1.5

Acknowledgements, 1 wish to thank P. Wojtaszezyk and A. Jakubowski
for helpful discussions. I am especially grateful to the anonymous referee of
the Warwick preprint version of the paper for the significant simplifications
of most of the proofs,

{*) Better estimates have appeared recently: Cnm €2 see [B], Cyy <1, see [Po]. On the
other hand, Cy > 0.685, [Po], (2.17).
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§ 2. Equivalence of LIL's, For a given be# set b, = b« W,. We shall
consider the sequences of random variables Reb, and Imb on 0D. They are
uniformly bounded and

[Reb,du= [Imb,du=0 for n>0
op oD

(y is the normalized length measure on 4D).

Proposition 1. For any Bloch function b, (1.2) is equivalent to the upper class
part of LIL for the sequences Reb, and Imb,:; more exactly, for every z €dD

(21)  limsup|)’ b;(z)l/\ nloglogn
nea j=0

log2hmsupfb(tz)|/\/log( )log log Iog( ! t)'
Proof. We shall estimate the quantity

4,(tz) = Z bi(z)— Z b;(tz)
J=0
for t,_ <t, where 1, =2"%"" zedD, n large enough.
Assume that [b]|;; < 1. We have b, =721 b; for some polynomials b;.
In consequence |5/, = Ibillo < 1 on @D, hence by the maximam principle
W6l <1 on D, so |b;(tz)) <%’ . We obtain for t <,

X @K oo
| ¥ bz < ¥ 2707 <1,
=nt+1

J=n

Now let us estimate ]Z (b;{2)—b;(xz))|. By S. Bernstein’s inequality
and the maximum principle We have

libills <271 lbfl, € 271 on D.

Se for t 2 t,.4

l_tfzzj-hl <2~n+12n+2 8

| 2 (b (2)—b;(t2))] <
ﬂ Jg

Therefore

4,(tz) <9  for ¢

Using for such t the estimate 27""' < 1—t <27"*! we casily obtain
21. m

n=1

<t<t,
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§ 3. LIL for Reb, (Imb,). We shall follow the way in which Philipp apd
Stout coped with the lacunary trigonometric series (in [PhS]) approximating

a subsequence of the sequence of partial sums by a martingale and estima- |

ting from above the conditional expectations of squares of the martingale
difference sequence.

For a Bloch function b with ||b]|; < 1 consider the sequence of random
variables

&k -”:Rebsk (k>0)

(similarly one considers the sequences Rebg ., Rebs..,). Let F, be the
o-field on §' = 8D generated by the arcs

Uy = {exp 2riv: o e[v27'®, (v+1)27®)F
for v=0,1,..., 2% —1 where r(k) = 3k+2+2log kflog 2.
For every [ with 0 < [ <k, S. Bernstein’s inequality yields the following:
3. Wk - = E sl Fllo < 21U ) Ikl o
£ 227 R PEDL o e m 2073

Now we shall estimate ||E{£,.| Z ). (to apply it for m much exceeding
n). Clearly

IEE] F e < max(2nu(UV,n))_1U_f Enl(@)d(2mp) (7)

it

<2072 2 -

We consider here the function £, on 8D such that d jdv =&, (the real
derivative in the direction'tangent to oD). If

&, =Rebs, =Re(Y ¢ 3m2')
7
=3 Rec; 3,008 2mjx ~} " Im¢; 3, sin 2mjx,
J J
for z = ¢*™* we take
En(e®™) =Y jTIRec; 5, sin 2mix+ Y j~  Im; 3., COS 27X
: i i
=Im(Yj e am2)).
7

Denote ZJ, i7" ¢;am2’ by by, As this is a polynomial vanishing to order
“1=2%"1 at 0, we have

(3.2) ‘ 1B3mllc < 273X [Ib31l -
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This follows from the fact that b, =b,, «(z'g) where g= E;:f_ L
+ [k)™1 2%, As the sequence (t+k)", k=0, 1, ..., is convex, by [Z], Ch. V,
Th. 1.5, we have gelL', g 20 and |ig|l, =g(0) = ¢~ 1.

We conclude that
(3.3) WE Gl F ol < (2m)~ " 2707 2. 27 3m 41

— 24- (21.[)“ 1, 2= 3(m—n— Llogn)/(3log 2))_

We shall now define (analogously te [PhS]) random variables Vs Zp
which are sums of progressively longer blocks of the ¢,’s. Define the blocks
of positive integers I, inductively by requiring that 1 ; contains [j*] consecu-

tive integers and there are no gaps between consecutive blocks {for some
small a > (). Write ‘

In = Z gv: Zy = Z é\l-

velay, velgg gy

We shall concentrate on the y,'s; the procedure for the z,’s is similar. Write

Yu - E(yu] "Fv")—E(ynl F

¥n—1

), where
v, =max v vel,,!.
It is clear that the sequence (Z;z'l Y, #, )i, forms a martingale.
In view of (3.3) and (3,1) we have the estimate
Y= allo S NEGl #o, W+ NE Wl Fo Y= Yollao
< Y IEGI#F, et T NEE | #)=Elo

velgy, vely,
< Z 24 (2:":)—1 2—3(v~—v,,_1"—2(logvn.. 1)/(3log 2))
vely,

+mv; 2277 <274 2mn 2 for n large enough.

So the series 3" |Y,—y,| is convergent in L*.
To check the upper class part of LIL we shall make use of the following
Turorem 2 (Stout [S]). Let (3, ¥;, 8,07y be a martingale, E(Y)) = 0.
Let . :

n
sp= 3 E(YA 8-y, t,=./2oglogs? for n>1.
j=1

Suppose

(i) s2 — oo almost surely, and
(i) Y, < K,s,/t, as. for every n> 1 and some positive numbers K, -0
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Then
limsup Z Y/(s,t) < as.

n=w j=1

Let us g0 back to our sequences Y, .#, . For every positive integer M,

set Ny =3 " Cardl,,. We shall prove that
(34 s € Npyg+0(Ny)
It is clear that for every j, E(Y?] Fo s
IZ(J{??’JFVJ 1) =

Aj=2 Y EQSolF ),

AN EIlJ.
ey

B;= T E@I7, )

vsIzj

as. as M ~»co.
EG}1#,
A;+ B, where

_,)- We write now

Let us consider an arbitrary 4;. On éD
gv év' = Re b3v Re b3v'

=4 (ba, bay + bs, by + b, bay + b3, B3,
= (W +Wo+ W + W)
W; and W, are polynomials vanishing to order 23*~!42%v =1 W, and W,

are polynomials (provided we replace Z by z~!) vanishing to order 2*'~!
.___23v+1 = 23min12j_

To estimate E(fvaf|3°_v1_1) we use [Z], Ch. V, Th. 15, for every
summand W, or its conjugate, similarly to the proof of (3.3). We obtain
1B, &0 < (@n) 1 2UTH- 2. Sy < 07 F,

So 4; < 2j**27, hence the series Z A; is convergent.
Fmally,

oy M <

1Bl < 2 HEM e < (2
VEI!]
This proves the estimate (3.4).
The assertion of Theorem 2 yields

(3.5 hm sup Z ¥/\/2N loglog Ny < as.
. M —eo J_

One need not bother about assumptions (i), (i): if necessary, just
consider the random variabtes ¥;+(2j)*{;, where ({;) is a Bernoulli process

(independent of all Y) w1th an arbitrarily small variance. Then (i) and (i) are
satisfied. :
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By the convergence of } |¥,—y, in L™ we can replace (3.5) by

(3.6) lim qupz (Re b3k/\/2NM loglogN,, <1 as,
M -rou
where the summation is over kel i, I,;.
In fact, we can consider lim sup here over all N. This is so because the
blocks I,; are short, so breaking into them does not change the estimate.
Applying the whole procedure o z, =}:v__12 i ¢, and to the sequences
= N

Rebyey, Rebyy,, we obtain the LIL estimate from above for the sequence
Reh,.

§ 4. Estimate for C,,, other remarks and questions, (a) We can now
estimate the Makarov universal constant C,, (see § I).

First observe that in the division of the sequence Rebs, (similarly
Rebyy 4p, T = 1, 2) into blocks y;, z; we could assume that each z, is short, say
CardI,, =, Card I, =j7, K arbitrarily large. So Ny, in the analog of
(3.6) for (z,), are small compared with maxI,,,..,, hence z, is negligible in the
estimates, We could also divide b, into only two sequences b, and b,y if
instead of b, = b« W, we considered the convolutions with the modified
kernels:

",f/;‘! = on [2}1,“2("-1)(1-1)’ 2n+2n(1—n)],
W";”r =0 outside (zn-" 1 o 2{n~ 11 --s)’ 2n+ 1. 2n(1 —c)),

W/ is linear on the complementary intervals (including their ends).
So

limsup 5 (Reb))/\/2nloglogn < /2  as.
[t 1) Jn()
We could prove the same estimate for the sequence Z oRe(xby) for any
o with |x| = 1. We choose a countable set of o’s, dense m oD, and then
the estimate holds almost surely for all «'s. We conclude that

hmbup|§: b,\/\/niog ogn <2 a8 on ap

H ot

provided |b|ly < 1.
Hence, because of the estimate from the Appendix and because of

Proposition 1
< 16/ /log 2.

(b} The question arises whether the assertion of Theorem 1 bolds for a
holomorphic function b on D with the sequence ||k W,j|, bounded (for
p # o0, p sufficiently large). To get (3.3) and the estimate of A4; in Lf one can
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use the Strong Marcinkiewicz Multiplier Theorem (see e.g. [EG]). To get
almost sure estimates one makes use of the Borel-Cantelli Lemma (see the
Warwick preprint version of the paper). So the unique place where our proof
does not go through for an arbitrary (large) p is the estimate for B;. The
question is: does a strong law of large numbers for the sequence (Bj) hold?

{c) An easy case of Theorem 1 is the case of the lacunary series
i)=Y ,,2*" Then Rel(z)=o{g’(z)), where g’=go...og (j.times),

g(z} = 2z* and @(z) = Rez. So the sequence of random variables Rel; on D is
stationary; one can refer to a more classical version of LIL.

In [PUZ] we considered the case of a univalent function R on P such
that f = RogoR™! extends holomorphically beyond #R (D). Then for zeD

log R'(2) = log R’ (0)+ lim log (g ™Y (R(2))

=log R'(0)+ f log(g' (¢" @) (Rog"(2)).

a=0

This is a Bloch function of the form of a series

4.1) 2 e
n#=0
for ¢ =]o_g_(g’/f 'oR). (In [PUZ] we consider LIL for the partial sums

Z;;  Red(z ) on 8D rather than Zj oReb; where ¢ denotes the radial
limit of ¢ ae)

Is it possible to characterize the Bloch functions of the form (4.1) (i.e. the
univalent mappings R with f extending holomorphically beyond R (D))?

(d) One would like to be able to decide for any individual b € % whether

'(4.2) Limsup (b (tz)|/ log(1 loglog log (~— ! =0 as,
tawl — 1 1 t

or not. .
It is not hard to see that if becd,, ie. if

| Ilim (1=[21) 16" (2)) ~0,
z] ~+1~

then [|b* W1, —0, so (4.2) holds.
On the other hand, if we set b = Z"; oz" I conjecture that if

limsup( Y. a})/logn >0
nem =1

then (4.2) does not hold.
~ In the case where f = RogoR™! extends holomorphlcally beyond R(Dy
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a dichotomy happens: Either (4.2) is not true or GR(D) is a real-analytic

-curve (see [PUZ] and [Zd]).

Appendix. We shall estimate sup,.,|lbll/|/bli,- To this end it is enough
to estimate from above, for every n =0,
1

IWlls = ([ W (t2){ dp(z))dt
c D
by a constant independent of » and use the inequality
(b W) =) < 26l 1V
{This inequality is easily computable, see for eg. [ACPo]). We have
' W, =22 F .y +42¥ 27 F
where ¥, (z) denotes the mth Fejér kernel:

F 1

m+lj el

for every z with |z] €1
2Ly ?

Foz) = for m>0.

2?1"1..

Set A, =z ' Fan-1.,. By S. Bernstein’s inequality

J'lAuldué(Z" 2)§|An|d# 2"“2

(since [apFndp =1 for every m2 0 and F,, > 0 on 6D) By Hardy's Convexi-

ty Theorem (see [D]), for 0t <1
§ 14, (2) dul2)

wn

[ 4, @) du(z) < [ |Aa(2)] dpa(2).
[ ] [l /]

= (22" 't 1 442" ) 4,, we obtain

i + 1
2(2"+ 1)

The conclusion is that for every be.4

1bll/110l0 < 8

l 145 ()] du(2),

T )IIA;ldu<%+-§«_~4.

1Wls <3 [ 14, le-(
ip
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On the Hausdorff dimension of some fractal sets
by
F. PRZYTYCKI (Warszawa) and M, URBANSKI {Torus)

Dedicated to the memory of M. Irwin

Abstract. We describe a method of estimating from below the Hausdorff dimension of
some fractal sets. These include compact connected subsets of tori with nondense orbit under a
hygerbolic toral automorphism, graphs of Weierstﬁlss nowhere differentiable functions, e
Enmoﬂ.”sin?’x, /2 <A<, and also graphs of chl"r", r, the nth Rademacher function.
On the other hand, we prove that for A~ a Pisot-Vijayaraghavan number, the latter graph has
Hauvsdorfl dimension less than 2—logi™'/log 2.

1. Introduction. This paper concerns the Hausdorff dimension and limit
capacity of three types of related fractal sets. Our estimates of Hausdorff
dimension from below rely on a fact formulated in § 2 as Lemma 1. Here it
is as applied to the plane R%

Lemma 0. Let K be a Borel subset of the x, y plane R* whose projection
to the x axis has positive 1-dimensional Lebesgue measure. Assume that there
exist constants Cy, C5 >0, 0 <a <1 such that for every horizontal interval
[xy, o] % {p) there exist a,,a, with x; < a; <a, < x; such that a;—a,
= C,(x;—x,) and the rectangle

[a;, a3] x[y =4 C3 00 —%4), ¥4 Cy(xy— %))
is disjoint from K. Then the Hausdorff dimension HD(K) satisfies
(V)] HD(K)= Ce, Cy) > 1
where C(x, C,) Is a constant depending only on o and Cy.

We recall some definitions: For a metric space (X, g), 4 < X, r>0 we
denote by N (A4, r) the minimum number of balls in X with radii <r, needed
to cover A. The lower and upper capacities of A are defined as

I e L O O T . log N(4,r)
- et Cap A = limsup —————.
Cap 4 h],]l]onf ~log" p e p “logr



