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On the Hausdorff dimension of some fractal sets
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Dedicated to the memory of M. Irwin

Abstract. We describe a method of estimating from below the Hausdorff dimension of
some fractal sets. These include compact connected subsets of tori with nondense orbit under a
hygerbolic toral automorphism, graphs of Weierstﬁlss nowhere differentiable functions, e
Enmoﬂ.”sin?’x, /2 <A<, and also graphs of chl"r", r, the nth Rademacher function.
On the other hand, we prove that for A~ a Pisot-Vijayaraghavan number, the latter graph has
Hauvsdorfl dimension less than 2—logi™'/log 2.

1. Introduction. This paper concerns the Hausdorff dimension and limit
capacity of three types of related fractal sets. Our estimates of Hausdorff
dimension from below rely on a fact formulated in § 2 as Lemma 1. Here it
is as applied to the plane R%

Lemma 0. Let K be a Borel subset of the x, y plane R* whose projection
to the x axis has positive 1-dimensional Lebesgue measure. Assume that there
exist constants Cy, C5 >0, 0 <a <1 such that for every horizontal interval
[xy, o] % {p) there exist a,,a, with x; < a; <a, < x; such that a;—a,
= C,(x;—x,) and the rectangle

[a;, a3] x[y =4 C3 00 —%4), ¥4 Cy(xy— %))
is disjoint from K. Then the Hausdorff dimension HD(K) satisfies
(V)] HD(K)= Ce, Cy) > 1
where C(x, C,) Is a constant depending only on o and Cy.

We recall some definitions: For a metric space (X, g), 4 < X, r>0 we
denote by N (A4, r) the minimum number of balls in X with radii <r, needed
to cover A. The lower and upper capacities of A are defined as

I e L O O T . log N(4,r)
- et Cap A = limsup —————.
Cap 4 h],]l]onf ~log" p e p “logr
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For every s> (0 we define the (outer) s-Hausdorfi measure of A by

A(4) = lim inf S (diam U ),

r-+0 =0
the infimum being taken over all countable covers {U;! of A by balls in X of
radii <r.

The Hoausdorff dimension HD(A) is the parameter s, such that ,(A4)
=00 for 5 <sg, A,(4} =0 for s > s,.

For a measure n on X we define the Havusdorff dimension of the
measure y as HD({y) = inf |HD(4): n(X\A) = 0}.

In fact, in L.emmas O and 1 we shall estimate from below the Hausdorff
dimension of a measure u on K which projected to the x axis is the length
measure (restricted to the image of K under the projection),

" In the case where K is the graph of a continuous function f: [0, 17— R
and the assumptions of Lemma 0 are satisfied, it is easy to see that Cap K
= 2—a. So the question arises whether HD(K) 2 2—a. To our knowledge
there are only some partial results in this direction and we do not think that
the answer is affirmative in such a genmerality (1),

In § 5 we concentrate on continuous functions satisfying the conditions

L ()= (x2))) < Cy|x;— %50
sup {|f(a1) —fla)l: xy < ay % a; €%z} 2 Cylx;—x,f

for some constants C;, C4 >0, 0 <a <1 and all x4, x, e(0, 11.
In Theorem 4 we prove that these conditions imply the hypotheses of
. Lemma 0 for K = graph f, hence HD (graph f) > 1.

A famous example of a function satisfying (1) is the Weierstrass nowhere
differentiable function

(1)

) W)= f A"cos frx
=0 .

for 271, B, AB > 1. The property (1) for % was proved by Hardy [H]. (Here
a = —log A/log ) Thus HD(graph #) > 1.

To our knowledge it is still not known whether HD (graph %) = 2—a.

Let us mention that (1) is true (so the conclusions apply) not only for %
defined with the help of the cosine function, but also with an arbitrary C?
almost periodic function provided # is not C*! (see [KMY]). In § 5 we
describe some other classes of functions satisfying (1).

Let us remark that Besicovitch and Ursell [BUT] studied the series (2)
with cosine replaced by g(x) = dist (x, Z) and the summation in (2) only over

(') The answer is negative, See Note at the ‘end of the paper,

iom
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a special set of integers. They proved then that HD(graph #) = 2—a. For
this result and historical notes we refer the reader to the book [Fall.
Adapting the method of [BU] Mauldin and Williams [MW] recently gave
an estimate of the Hausdorff dimension for a larger class of functions. Our
Theorems 5, 5a, 5b are related to their result,

The second type of fractal set under discussion is a continuum K (a
compact conected set) in a torus 7" which contains more than one point and
which is “pre-invariant™, ie. the closure of its orbit under some hyperbolic
toral automorphism [ does not contain any coset of a toral subgroup
invariant under a power of f. _

The existence of such a set and a description from the point of view of
the topological dimension of K and of cll),., f"(K) was done in [Bo],
[Han) and [P]. One reason for the importance of such sets is that they
necessarily appear in the boundaries of cells of some Markov partitions (cf.
[Bo] and [Be]).

In the case where K is a curve J. Franks [F] and R, Mafié [M] proved
respectively that K is not C? and is not rectifiable. Finally, M. Irwin
[1,], [1,] and the second author [U] exhibited its fractal nature by studying
respectively the Holder continuity exponent (estimated from above by a

_number <1) and capacity {estimated from below by a number > 1). Examp-

leg were also constructed (in [U7] including K’s of higher topological dimen-
sions) showing that the estimates are best possible.

In this paper (§3) we give estimates from below for the I—Iausc.lorﬂ‘
dimension of X by a number > 1, The idea is as follows. Let K be contained
in, say, a two-dimensional unstable manifold E* with f"(K) ‘disjoint from a
family of uniformly scatiered squares (in EY) of a fixed size. Then K is
disjoint from their f™-preimages, which are little parallelogram§ strf:tched
along the weaker expansion direction in E'. We arrive at the situation of
Lemmas 0 and 1. In § 3 we also prove that HD (K) > dim,,,(K) for K of any
topological dimension, under suitable assumptions. ' ‘

In § 4 we estimate from below the capacity of K of arbitrary topolqglcai
dimension. The estimate is best possible because of the examples mentioned
above (this fills a gap in [U)). _ _

The third type of “fractal” set considered in the paper (§ 6) is the graph
of the function

(3) Si= ﬁ Ay, on the interval [0, 1},

e @

for ¥ < A < 1, where r, is the ath Rademacher function: r,(x) = R(2"x) where
R(x) = ~1 or +1 for xe[0, H+2 and x&[}, )+2 respectively. .
We shall call f, a limit Rademacher function. Tt seems to be easier to

handle such a function than that given by the formula (2). That
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HD({graph f;) > 1 follows again from Lemmas 0 and 1. However, we can rely
on Erdds’s result [E,] that for almost every i close enough to 1, the
probability distribution v given by the random variable f; is absolutely
continuous with respect to the Lebesgue measure ;. We deduce that HD (y)
= HD({graph f;) = 2—x, for « = —log A/log 2, and the measures u and A,_,
on graph f; are equivalent. The case of some exceptional 1’s, the so-called
Pisot-Vijayaraghavan numbers, is very exciting. Then v L/, (see [E,], [G,]
and [G,]). In fact, HD (v) <1 [AY]. We conclude that for the measure x on
graph f;, HD(u) < 2—a. Moreover, we prove that HD(graph f;) < 2—a.

Notation. If W is an affine k-dimensional space over the field R and if
the corresponding linear space W is equipped with a scalar product ¢, -
and an orthonormal basis (e, ..., ) in W is chosen, then the tripie
(W, &, >, (e1, ..., &) is called a euctidean space with basis.

Sometimes, for simplicity, we will omit in such triples the symbols of the
scalar product or basis.

We will denote the Lebesgue measure on W by my,.

A k-dimensional closed parallelepiped R = W is said to be canonical if
all its edges are parallel to vectors from the basis (e, ..., €.

If xeWand r > 0, then R{x, r} or Ry (x, r} denotes the canonical cube
with centre at x and edges of length r. If the centre is not specified we call
such a cube an {r, W)-cube.

For V' = W an affine subspace of W, my: W — I denotes the orthogonal
projection onto ¥,

If (W, ¢ (e, ooon @) (W, €y o, (€stsoees e,) are two eucli-
dean spaces with bases then the Cartesian product W, xW, becomes in a
natural way a euclidean space with the corresponding linear space W, @ W,
and with the basis (e, ..., ¢,).

Every linear space w1th a scalar product and an orthonormal basis is
regarded in an obvious way as a euclidean space with basis.

In estimating the Hausdorff dimension of an arbitrary Borel o-finite

measure € on a euclidean space we shall always rely on the following well-
known fact:

FrostMans LEMMA, If for f-ge. x,

51 < liminflo_gg_%“ﬂ)_

<6
r—Q logr 2

then &,
cubes.

< HD(6) € 8;. The same is true if balls are replaced by canonical

This fact follows easily from the definition of Hausdorff dimension with
the use of the Vitali or Besicovitch covering theorems (se¢ e.g. [Fal], p. 19,

icm
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Ex. 1.8, or [PUZ], proof of Th. 1). We have named it “Frostman’s lemma”
because it pencralizes a fact whose discovery is attributed to Frostman (cf.
(K1)
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§ 2. Basic lemmas

Lemma L Let (Wi, (ey, ..., &), (Was (€na 14 -- -, €w41) be euclidean spaces
with bases and let W = W, xW,. Assume that for a Borel set K =« W the
Sfollowing two conditions are satisfied:

1° iy, (my, (K)) > 0.

2° There exist constants Cy, C; >0 and 0 <a <t such that for every
(b, Wy)-cube R (see notations in § 1) with b > O sufficiently small and for every
yeW, there exists a (C1b, Wi)-cube R’ c:R such that the parallelepiped R’
xR{y, C,b% is disjoint from K.

Then HD(K) 2 C(x, Cy, m).> dim W, = m. Here C(x, Cy, m) is a con-
stant depending only on o, C and m.

Proof. Consider a Borel measure p on K such that (m), (1)
= My, |z, k) Here m, stands for ny, . For K compact u exists by the Hahn-
Banach and Riesz theorems. For an arbiirary Borel set the existence of u
easily follows from the von Neumann theorem on the existence of a
measurable selector (see eg. [KM], Ch. XIII, Sec. 1, Th. 3).

Fix an (r, W)-cube Q = R xR (y, r) with r > 0 not greater than b dis-
cussed in 2° ‘

As we have already mentioned in the introduction we shall estimate
HD (). We shall do it relying on Frostman’s lemma, by estimating u(Q m K)
from above.

For every integer jz 0 consider the partition #; of R into equal
(r/M,  Wi)-cubes where M = E(2/C,)+1 and E(x) is the integer part of x.
Let & = {Ped®;: PxR(y,NnK =0}, By the definition of M, C, r/ M
= 2r/M’* 4, Therefore it follows from 2° that, as long as C, (/MY =7, every
cube in #; (in particular, in #,\#) contains at least one cube in Piir
Consequently,

+ . i .
(1) iy (B U (U0 € QM (R (U9
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Now let g be the largest integer for whach C, (r/M%* = r. In particular,
this implies that C,(r/M?*"1)* < and consequently

—(l—a)logr+logC,
alog M '

(2) g+1z
By the construction of &, we have
g+1 N
m(KnQ e R\U U2
So by the deﬁnitior; of p and by (1),
WK Q) < my (m (K@) < (1=M"™" my (R)={1—-M"")"tm,
Thus in view of (2),

logu (K nQ) < (g+ D log{l~M™™ +mlogr

<' c—1log(l—-M™") o rmlogC;]og(l—«M'"‘)
\(m+ P 10 M & alog M )

By the Frostman lemma (§ 1) we conclude that

a—1 log(l-M )

(3) HD(K) > HD (1) > og 31

Remark 1. The estimate (3) is rather crude and in many cases it is
possible to improve it. It may be that under some suitable geometric
assumptions C(x, C,, m) does not depend on C,. On the other hand, the
example of f; with 1! a Pisot-Vijayaraghavan number shows that the
expected estimate by m-1—x is faIse in generai.

Lemma I implies the following simple corollary:

Lemva 2. Let (W, (es, ..., e}, (Wa, (Cmats ---» em+t)) be euclidean
spaces with bases. Let W = W, x W, and V = @%_, Re;, (1 <i;<m). Assume

that for a Borel set K = W the following two conditions are satisfied:

1° my (nw1 (K)) > 0. _

2° There exist constants Cy, C, >0 and 0 <o <1 such that for every
xeW,, every (b, x+V)-cube R with b sufficiently small, and every y €W, there
exists a (Cy b, x-+ V)-eube R' < R such that the parallelepiped R' x R(y, C,b%)
is disjoint from K.

Then HD(K) = C(x, Cy, k)+(m—k) > m = dim W,.

Proof. Partition W, into affine spaces parallel to V] apply Lemma 1 to
each of them separately and use Fubinis theorem.
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§ 3. Tora] pre-invariant sets: Hausdorff dimension. In this section we
apply Lemmas 1 and 2 to the case of continua with nondense orbits under
hyperbolic toral automorphisms.

Let f: T* - T* be a hyperbolic toral automorphism, / R* — R* its linear
covering mapping and n: R*—T* the corresponding projection. We also
make the following technical assumptions:

1° All the eigenvalues of f are real and positive. _
2° There exists a linear basis le;}%., of R* consisting of eigenvectors of f;

In fact, weaker assumptions are sufficient, In every case the reader will
gasily guess them.

Let 2y <. €4 <1<l <...< Ay, be the cigenvalues of F let
E'= @i Rei, B' = @1 Re,..; be the stable and unstable subspaces of R*
and set '

So =Tl BB, f, =flws: B —E".

There exists a unique scalar product ¢, > on R* with respect to which
the basis (e, ..., ¢) is orthonormal and the triple (R*, < S, (eg, .., e,,))_
becomcs d euchdedn space with basis. We write n,=#,: R* ~E* and =,

Tyt R =+ E' In this section we will consider the norrn and metric on R"

induced by this scalar product. In particular, the torus T* = R%/Z* will be
considered with the projection of this metric.

- The following lemma permits us to consider some problems about the
dynamics of f by looking at the mappings f, and f, separitely.

LEMMA 3. IfK < R* is a compact set, then clJ®- _ , f™ (7 (K)) contains a
coset of a toral subgroup invariant under f if and only if the same is true of
Um0 f™(mon,(K)) or el Ui=o /™" (m om,(K)).

Proof. Recall some standard definitions, For g: X —~X a homeomor-
phism of a metric space X and Y= X we define

w(Y, g) = {xeX: there exist a sequence of points x,e¥ and
integers k, —co as n — o0, such that g""(x‘,,) —+x},
2(Y, g) = w (¥, g7%).
Observe that
{0) w(w(Y,g) co(Y, g, «@(Y,g9) call,g).

If cl{ oo o f™(n(K)) contains a coset a+S of a toral subgroup §
invariant under /' then by the Baire theorem at least one of the intersections

o((K), ) n@+8), 2@ ®).f)n@+S),  EE) @) o

contains a nonempty set U open in a+S.

5 = Studia Malh, 932
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Suppose first that for some meZ, f™(n(K)) n(a+8) > U. Since f|s: §
—§ is also a hyperbolic toral automorphism, it is topologically mixing, so
sup,.s dist (x, f"(U—a)) tends to 0 as n— to0. Hence

1) w(r(K), f}ooU,f)>b+8 for every bew(ia}, f).
Similarly )
{19 a{n(K), f)> b+S for every bea(lal,f).

If e (n (K), f)(a+S) > U then (1) holds by the same argument and by
(0). Similarly, if #(m(K), f)\(a+8) = U then (1) holds.

We conclude that ¢l _ . /™ {n{K)) contains a coset of a toral f-
invariant - subgroup iff @ (n(K), f) or a(n(K), f) does. But since X is bounded,
by the hyperbolic effect we have

o(n(K),f) =w(ron,K), f), «#K),f)=a(zox(K),f)

Since a(ron,(K),f} =w{ron(K), )= =), w(ton, (K),f) contains
a coset of a toral finvariant subgroup iff cl(Ji.o f™(ron,(K)) does and
similarly for n (X). The lemma is proved. =

Notation, For any set K in R* or in T* we denote its orbit {J%= ., fY(K),
or |2 - f/(K) respectively, by O(K).

DerintTion 1. A set K < T* is called pre-invariant if ¢l O(K) does not
contain any coset of a toral subgroup invariant under a power of f.

Under our special assumptions on the eigenvalues this is equivalent to
the formally weaker condition that clO(K) contains no coset of a toral
subgroup invariant under f. Observe that in the case of an irreducible f (ie. if
there is no nontrivial toral subgroup invariant under a power of f) K ¢ T*
is pre-invariant iff O(K) is not dense in T

A set K < R*is called pre-invariant if its projection m(K) < T* is pre-
invariant.

Now we shall state a simple but important geometric lemma. It was
essentially proved in [U], p. 41, but for the reader’s convenience we shall
prove it here again. (In [U] the proof was a little bit obscure.)

Lemma 4. For every pre-invariant set K < R* and an f-invariant iinear
subspace V < R*, V# |0}, there exist r, | > 0 such that for every x eR* there
exists xeV for which ||X|| € ! and

(2) OK)nR(x+X%, 1) = 0.

Proof. Since cln(V) is a toral subgroup invariant under f, for every
xeR* there exist X&)V and r(x) > 0 such that

O(m(K)) nm(R(x+X, r(x)) = @.

icm
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Choose x;, ..., X, €R* for* which {JI_, B(m(x,), §7(x)) = T™ Therefore,
for every x e R® there exists 1 < i < m such that dist (r(x), 7 (x;)) <4r(x) and
consequently dist (m(x+%), 7(x+ %)) <4r(x). Thus taking X=1% and
r=3min(r(xy), ..., r(x,) we get

O(r(K) nn(R(x+%, 1)) =0

for every xeR¥ hence {2).
Finally, take I = max{||%[], ..., |[[X.]). =

Remark 2. Of course this lemma holds for every hyperbolic toral
automorphism without our special assumptions on the eigenvalues.

LemMa 5. Given a sequence s+1<i, <

iy sk, let A ”/11,,, and
define

W, = @ {Reij: =2}, Wy=@ {Re;j: iy <A
If K < E* is a pre-invariant subset, then for every ac<E", assumption 2° of
Lemma 1 is satisfied for the euclidean space W= (a+ W) x{a+ W} and for the
set K nW.

The constants C;, C, depend on | and v from the preceding lemma, but not
on the point a, and o = logy/log’ where n = max {AU: Ay < Al

Proof. Let r, | be given by Lemma 4 applied to the pre-invariant set K
and the fdnvariant linear subspace W;. We can assume that | > r/2. Fix an
(e, a+W))-cube R = K(z, ). Fix yea+ W,. Let g = 0 be the least integer for
which

(3) Agf2 =2l
(In fact, ¢ > 0 if & is small enough.) This in particular implies
4) Aled <2l

Denote the point f#((z, ¥))+f#((z, )} by t, {see Lemma 4 for the meaning of
the bar here). We have fE((z, ) W, and || fE{(z, W}l < 1.
By Lemma 4 we have for fi(a) = a,,

(5) flq(K)mRaq-l-W(tqs r)mQ)‘

We have R,,q+w(z‘q, =Ry iw, {ty, r)><R,,q+W2(tq, r) and by (3) and [
=r/2,
(6) ff(Rx{y})DRaq+W1(rqs r)'

Let @ = fi (R, 4wty 1) = R' xR". By (6), R < R and by (4) the edge
of R’ is not shorter than re/(44]), so R’ contains an (r¢/(44), a+ W,)-cube R'.
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The edges of R” are not shorter than

W= r(ﬂuq)i“g"ﬂogj' =T (a%) == 7"(4/1[)_'28“.
By (5}, (R” xRV K = ¢ so condition 2° of Lemma 1'is satisfied for C,
=r/4l) and C, =r{4A)™" =

Remark 3. Of course, this lemma remains true for K < E°.

Derinttion 2. If K < R* then we denote by W (K) the linear Ffinvariant
subspace of R* of minimal dimension such that for some xeR', K <
x+W(K). Of course, W(K) is unique.

TuroreM 1. If all the eigenvalues of 2 R* —R* are distinet, then every
pre-invariant nontrivial continuum K < T* (a compact connected set containing
more than one point) has Hausdorlf dimension greater than 1.

Proof. Let K = R* be a continuum such that n(K) = K. By Lemma 3,
7,(K) and = (K) are pre-invariant. Since K is a fiontrivial continuum, so is
either 7, (K) or n,(K), say = (K). Hence W = W (n(K)) = @T, Re; | where m
2 1, {{}7=, is an increasing sequence, s+ 1< i; <k and m,(K) = x+ W, In
fact, dim W 2 2, for ctherwise n, (K) would be an interval in the line x+Re,,
and so would not be pre-invariant, Take

m—1

W '=x+Rei,-n, W,=x+ & Reij.
i=1

As my (K) is not one point, it contains an interval. Hence my, (K) > 0.
Because of Lemma 5 the assumptions of Lemma 1 are satisfied for the set
w, (K) n (W, x W,). Hence
HD(K) = HD(K) > HD (n,(K)) > dim W, = 1.
-

Tueorem 2. If K < E" is a compact pre-invariant set such that dim W (K)
= V'+dim,,,(K), W(K) = ®-, Re,-j where \ij}i_, is an increasing sequence, s
+1<h <k and 4y, > 4, then HD (n(K)} > dim,,, (K).

iy

Proof Let K < x4+ W(K). Using the notation of Lemma 2 (§ 2) take

3

P
[’Vi = x"l"j@ Reij, VVZ = X+Refl, V-'-"'— @{Reij: ’lij = )hfp}.
=2

It foliows from Lemma 5 (with V playing. the role of W, there} that
assumption 2° of Lemma 2 is satisfied. Therefore to use Lemma 2 we only
have to show that

(N - myy (mw, (K)) > 0.
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If (7) were false then dirnlw(m:1 (K)) <dim W, = dim,,,(K) (m, = ny); see
[Eng]. Since =, |x: K —7; (K} is a closed map, the theorem on dimension
lowering mappings (see [Eng], Th. 1.10.4) would imply that there exists
yemn (K) such that dim, (K n7z7"'(y) =1 and hence that K N(y+Re; ) is
an open nonempty interval. This contradicts the assumption that K is a pre-
invariant set. =

Of course, an analogous result for K < E* is also true.

Remark 4. Analogous results are true for algebraic expanding maps on
T* with assumptions on the eigenvalues as at the beginning of this section.

§ 4. Toral pre-invariant sets: Capacity. In this section we shall generalize
Theorem 1 from [U] (the estimate of capacity from below) to higher
dimensions. Let us start with another definition of capacity, valid for
bounded subsets of a euclidean space W. For every ¢ > 0 let P, be a partition
of Winto canonical cubes with edges of length s. For any bounded subset 4
of W let P.(A4) denote the family of those elements of P, which have
nonempty intersection with 4. We have

LEMMA 6.
. . JogCard P (A e . log Card P, (A4
Cap A= llﬁtnffé«g—lrzjg?(—l, Cap A = liril_'sé.lpﬂgi)—-g—a—(—).

Proof. This is straightferward from the definitions of lower and upper
capacities (§ 1). m

The following simple lemma about capacity, analogous to Lemma 1,
holds:

Lemma 7. Let (W, (&1, ..., € (Wa, (€nw1s +.-» €mss)) be euclidean spaces
with bases und let W= W, xW,. Assume that K = W is the graph of a
continuous function ¢: Q W, where Q is a canonical (r, W,)-cube, Assume
that there exist constants C >0, 0 <o <1 such that for every (b, Wi)-cube R
with b > 0 sufficiently small and for every y W, there exists x €Q such that
the cube |x} xR(y, Cb% is disjoint from K. Then

(1) Cap K zm+1—a.

Proof. Set ny =ny , n, =ny,. For an arbitrary small ¢ >0, for

every (¢, Wy)-cube R = Q and for every (x, y)en; *(R)nK thete is (x, ¥)
&(nyt (R nK)\n3 ' (R(y, Ce%). By the continuity of ¢ there exists a con-
tinuous curve v in K n=y!(R) joining (x, y) with (x), y). So to cover 3, in
particular to cover m;*{R) nK with (s, W)-cubes we need at least Ce* of
them.
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To estimate Cag‘ K we shall use the definition from Lemma 6. Assume

that R belongs to the partition m, (P,) and the cubes covering y discussed
above belong to P,. Since we may assume they are contained in m; 1(R), they
do not repeat for different R’s (R emn, (P,). So

Card P,(K) = Ce* {r/e—2)" 2 2~

for 2 small enough. (We subtracted 2 in the brackets since we can consider
only those Remn, (P,) which are fully contained in @) So

—logCard P, (K)/loge = m+1—a—log(2™" Cr/loge,

!

] Crmaa—lwm

which for & -+Q gives (1). m

As a corollary we obtain the main result of this section (correspondmg
to Theorem 2 in § 3):

TueoreM 3. If K < E' is a pre-invariant set, if W(K) = W, x W, with
' m I
Wi= @& Re, W, =@ Re,,
=1 J =1 . J

where (i)}7.y, {5;)i=, are increasing sequences, s+1 < i, s;<k and i, > s,
and if K can be expressed as the graph of a continuous function ¢: Q = W;,
with Q a canonical cube in W, then

Cap K> m+1-logi,/flog4; .
Proof. If 4, = 4, then the theorem is obvious. If not, let V
=® {Reij: A, =1,} By Lemma 5 (with ¥ playing the role of W, there) the
assumptions of Lemma 7 are satisfied and our theorem follows. w
Remark 5 An analogous theorem is true if we replace E" by E'.

Remark 6. In the proof of Lemma 7 we used Darboux’s property for ¢
restricted to subcubes of Q. It is an interesting question whether this
assumption can be omitted, i.e. whether Theorem 3 holds for ¢ an arbitrary
function of Baire class.

Remark 7. The estimate given in Theorem 3 is best possible. Namely,

improving the construction from the proof of Th. 2(ii) in [U] or from Th. 6

in [I,] one can easily obtain in W, x W, (assume dim W, = 1) a set X which
is the graph of ¢: W, — W, where ¢ is Hilder continuous with exponent
exactly « =logi,/log/; .

ensure dim,,(cl U2 - o f"(K)) = dim,,, (K) = m)

Remark 8. A resuit analogous to Theorem 3 holds for f an algebraic ;

expanding mapping of T*.

This implies -éHgEK £ m+1~a {One can even
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§ 5. Graphs of real, continuous, nowhere differentiable functions. Let us
start with the following general result:

THEOREM 4. Suppose that 0 <a < 1, I is a compact nontrivial interval and
@: I — R is a continuous function which satisfies the following two conditions:

1° There exists a constant Cy >0 such that for all x, yel

lo(x)— @) < Cylx—y|*

2° There exists C, > 0 such that for every subinterval J < I

sup | (33— (¥ = CulJ°

xyef
where |J| denotes the length of J.

Then
(1) HD (graph ¢) = D(x, C,/C;) > 1

where D{(-, ) is a constant depending only on x and C,/Cs.

Prool. We want to use Lemma 1 for the set K = graph ¢. To this end
we take for W the plane R? containing K, with the standard scalar product
and basis. For W, W, we take the lines R containing the domaln and range
of ¢ respectively.

We will check condition 2° of Lemma 1. Let J be a subinterval of I of
length b and yeW,. By 2° above there exists x&J such that |o(x)—y
>4 C,b" We look for the maximal possible d such that for evgry zef[x—d,
x+d]nJ, ¢y >%C2 b* (of course, we look for C, as well). For this it
is enough to have

o) =@ (X)) <3Cab*—3C, 0%
But by 1° we have |p(z)—¢(x)| € C3d* So it is enough to have
Cyd* <4 C b —4C, b
For this it is enough to take an arbitrary d satisfying C,d* <3C,b*
provided we decide to fix C, > 0 sufficiently small, Hence we can take for d
any number less than (C4/(2C3))"**b. We conclude that (1) is true with

Cla, (C4/(2C3))'™). w

Remark 9. Observe that to have Cap(graph¢) > 2~ it is sufficient to
assume 2° only (cf. kemma 7, § 4). L

If we assume 1° only we easily obtain Cap (graph ¢)
get more:

(%) D, CyfCy) =

& 2—a. In fact, we
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Prorosimion 1. If @: I =R is a Holder continuous function, ie. for all
x, yel, le(x)— @) < Cs|x—yI% then for the Hausdorfi’ measure A,., we
have A;_,(graph@) < oo, and moreover for every Borel set E < graphg,
Ay (B) < 2C, p(E).

Proef. Cover the set ny (E) with intervals J;, i =1, 2, ..., of lengths »;
such that 3 7 < omy, (my, (E)l) = ou(E) for ¢ > 1 arbitrarily close to 1. (Here
my  is the Lebesgue measure on I —'W,.) Every set (J; xR) ngraph ¢ has
height at most Cyr? so it can be covered with Csr¢~! balls of diameters
/2r;. Thus

Az o(B) S T C3r M (/2r)*7* < 26 Y1 < 2C; op(E). m
i i

Applications of Theorem 4 to nowhere differentiable Weierstrass func-
tions were already described in the introduction. We shall close this section
with theorems about larger and other classes of functions satisfying the
assumptions of Theorem 4.

But first let us make a remark about the higher dimensional case.

Remark 10. Theorem 4 also holds for @: W, - W,, with W, W, of
arbitrary dimensions m > 1, {2 1. I and J are then canonical cubes in W,

and it is convenient to write the inequalities in assumptions 1° and 2° in the
form ‘

Gl 2 SU%II¢(X)—€0(Y)i| 2 Cy|J1"
X ye

(Here [J] is the length of the edge of J)
The result is

HD(graph ¢) = Dix, C,/Cs, ) > m,
D, t, m) = C(, (/2" m),
analogously to (2).

In the case dim W, = 1 this result can be applied to the Kaplan-Mallet-

Paret-Yorke attracting fractal torus (see [KKMY7). This example will also be
discussed in Remark 14 at the end of the paper.

Let us return to graphs of real functions,

TueorReM 5. Fix 0 <o <1 and let ¢: R-R be a Lipschirz continuous
function of period 1. Assume that there exists a compact interval 4

= [a, b] © R such that q|, is monotone and g(a) # q(b). Then for fi>1
sufficiently large the function f: R - R, '

fG)= iﬂ-“"q(ﬁ"an),
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where 04, 01, ... are arbitrary phdses, satisfies conditions 1°,2° of Theorem 4
and in consequence MDD (graphf) > 1.

Proof. Checkihg 19 is easy so we leave it to the reader. We shall prove
Multiplying ¢ by — 1 if necessary, we can suppose that g|, is increasing
(not necessarily strictly). Assume also that f satisfies

3) Bld| = 1+|4]
(|4} denotes the length of 4). . .
In order to prove 2° we shall show the following claim:

If a and k=0 are arbitrary integers and @o, @y, ..., Px €R then there
exists an interval J, < [n, n+2] (which depends also on ¢, s @) o_)f length
B*|A| such that for every 0 < j < k, g restricted to BiJ+ @ is increasing and
B+ @ = 4(mod 1), ie. there is meZ such that B+, = m+ 4.

We fix neZ and proceed inductively with respect to k. As g is of period
i we find ap interval 4’ = 4(mod 1) contained in [n, n+2]+@, and there-
fore we can take 4°'— g, for Jo. .

Suppose now that J, has already been constructed. By (.3), et T
4 @uat] = ] = pid] 2 14+]4| and so there exists an interval 4
= A(mod 1) contained in "1 J,+ @y . Since ¢|, is increasing, we can take

Jowr = B0 F ) @ Jy = [, n+2]

Thus the claim is proved.
Now, take B so large that

M
@ Fol s t(qb)—q(@)
where M = supxl_xzu[o“|q(x1)——q(x2)| and let k = k() be the smallest inte-
ger = 1 for which

(5) ﬁfl.;_li_g:!:i‘ B—a(w'k(ﬂ)lu) < iﬁ“a(s k() (q h—q (a))

where L is the Lipschitz constant of 4. : _
Let J = [0, 1] be a closed interval and 52 O the smallest integer for

which

(6) B =4
In particular, this definition implies that
7 i <4,
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Hence there exists an integer n such that [#, r+2] < f°J. Let [x, y] = f7%J,
where J, —[n, n+2] is the interval given by our claim with ¢, =0,

@y =041, ..., ¢ =10,4,. So [x, y] =J and we shall estimate |f{(y)—f(x)|
from below.,

To simplify the writing set 4,, = 7% |g(f"y+8,)—a(f"x+6,)|. Since
|7l = B~¥|4| we have by (5)

s—1 s—1 ﬁ mu)s__l
(®) D Ay S LT T e = LI S
=0

(1
m m=0 Blua_l
LlAI —xs o bt 1F.
Smﬁ Tk LB (g () —a(a)).

By (4) we get

(9) § Am < M f“ ﬁ-n:m - Mﬁ-c:(s+k+1)/(1 _B—a)

m=s+k+1 m=s+k+1

= MB™*TV/(B*~1) <37 (g (b) - q(a)).

In view of the claim and the definition of [x, y] we have

s+k

(10) 2 A= 7T (g (b) - q(a).

M= 8

Now (8), (9) and (10) give

f(}’)_f(x) = i A, = -%(q(b)_q(a))ﬂ—m(s'bk)
m=0
and by (7)

o _ab—q@
=109 2 St U,
which finishes the proof. u

Changing this proof a little, it is easy to see that the following theorems
are also true.

THEOREM 'Sa. Fix 0 <a <1 and let q: R —R be a Lipschitz continuous
fum:tton of period 1. If qlyg 172 is monotone and q(0) # g(1/2), then for every
integer p =z 2 the function

oo

fx)=3 p™"q(p"x)

n=0
satisﬁes_conditions 1°, 2° of Theorem 4.,

THEOREM 5b. If 0 <a <1, g: R =R is Lipschitz continuous of period 1
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and q is monotone on the interval {0, 1/4], q(0) # q(1/4) and q(0) = q(1/2),
then the assertion of Theorem 5a remains true.

The point here is that under the hypotheses of Theorems 5a and 5b the
sets J, can be so chosen that the series (9) vanishes.

In the case of Theorem 5a this observation remains true even if we add
noninteger phases 8,, #,, ..., as in Theorem 5. Then, however, we need to
assume that p =3 to be able to construct the sets J, (cf. (3)).

Observe that Theorems 5a and 5b work for the classical examples:

q(x) =dist (x, Z+ 1/2),
g(x) = dist (x, Z)

(Th. 5a for the first two examples, Th. 5b for the latter ones).

Let us mention that the essence of our proof of Theorem 5 is the same
as in [KMY] (in particular, a weak dependence of the random variables
q(B' x) and g(p’x) for i # j). Nevertheless our proof is purely geometric. We
need not use Fourier analysis because our function g is periodic rather than
almost periodic as in [KMY]. Unfortunately, we do not succeed with f close
to 1.

There is also a relation with [BU] and [MW, Th. 8, as we have already
mentioned in the introduction. Mauldin and Williams assume more about g
and g than we do. Then they get the estimate

HD (graph f) = 2—a —(C/log f)

for a constant C > 0, which approaches 2—u as f§ —w,
" Qur approach through Theorem 4 and Lemma 1 is much more general,
s0 we get a weaker estimate,

g(x) = cos 2nx,

q(x) = sin 2mx,

§ 6. Graphs of limit Rademacher functions. As we did not know how to
cope with the conjecture HD(graph #) = 2—« for %' a Weierstrass nowhere
differentiable function given by, say, the formula (2) from the introduction,
we decided to study a function which seems simpler, with cos x replaced by

"g(x) where g(x) =1 for x&[0,4), g(x) = —1 for xe[}, 1). We obtain the

function given by the formula (3) from the introduction:

(1) B ACE WL

n=0

Here r, is the nth Rademacher function, r,(x) = g(2"x(mod 1), and A is
arbitrary such that $ <1 <1,
We shall call such a function a limit Rademacher function.
Fbr any integer k>0 we write f, =2";;i{"r,,. We still write o =
—log /log 2.
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Prorosrmion 2.
Cap (graph f;) = Cap (graph f}) = 2—a.

Moreover (as in Prop. 1 in § 5), for every Borel set E < graph f,,

4
A3-a(B) < 75 (E).

Proof. Consider an interval J=Jg, =[/27%{+1)27%, k>0,
0<i<2—1. By (1),

R 2
i‘i?mx)—ﬂf filx) < Ek l"—ngk( —A) = 7

hence Cap (graph f;) < 2—a.
Since for any 13, 1) and k= 0,

e Y o -y Y

n=kd1 ES T
every ].im'it Bademacher function f; has Darboux’s property on every interval
et (th:_s is in fact well known, see e.g. [E,]). Consequently, the proof of the
inequality Cap (graph f;) > 2—« from Lemma 7 (§ 4) applies.
The estimate for A,_,(E) can be proved similarly to Prop. 1 in §5. u

Now we pass to estimates of the Hausdorff dimension.

THEOREM 6. For every <1 <1, HD({graph f}) > 1.

Proof We want to use Lemma 1. As in the

_ : . proof of Theorem 4 we
consider K =graph f; in the (x, )) euclidean plane R*=W = W, x W,
_where f,: [0, 1) W, [0, 1) = W,. ’

Fix an integer N such that

2 AN<f  (say N=E(@@ Y)+1, a = ~logi/log?2).

Take in W, an arbitrary interval J,,=[/27% (I+1)27%) where k
= 9, 0 <1< 2*~1.In J,, there exist two subintervals Jeins and Ji o on
which », = +1 for every n=k, ..., k+N-1 and, r, == ~1 for eve:y n
=k, ..., k+N—1, respectively. So for any X pins X €piny,

k+N-1 1N
| frksn (%) ~faxrn (XY =2 Z At = 21"1—"1—,
n=k h
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hence
- 1—AN ]
£ (0 =f2 ()] = 24 T Y A () =y (x)
- n=k+AN
1—AN 1 1 —24%
2 k(. aN__ — k .
24 (lm,l A 1—&) : 24 T >0 by (2
So for every yeW, and for either x or x', say for x,
1—-24% 121V
z) — > k = - ko .
=32 e = 7Y

An arbitrary inierval J < W, contains some J,; such that |J] > |7, (']
means length). All this gives condition 2° of Lemma 1 with constants e,

3) Cy=2"M1= o ETh+2)

(since |J,c+1N,_y|/|J| = (s wsl/Ved)  (F /) 2 277271 and €y =2 7%(1—24%)
x(1=4)"" = .

Now we plan to prove that for almost every A, HD(graphf)=2-a
and that for some A’s, HD () < 2—¢. We shall rely on Erdds’s resuits so we
need to be able to compare the measure u =y, the lift of the length
measure my, to the graph of f,, with the probability distribution on W,

given by f;.
Consider now the mapping F;: [0, 1} xR [0, 1) xR defined as fol-

lows:
Fa(x, y) = (2x(mod 1), A™* (y —q(x))}.

Observe that graphf, is invariant for F,, ie F;(graphf)
= F[}(graph f;) = graph f;. The projection @, =, : R* =R =W, restrict-
ed to graph f, is a measure preserving conjugacy between F; on graph f;
with measure y, and the “baker’s transformation” b: x -»2x{mod 1) on the
interval [0, 1) with measure my . Both dynamical systems are ergodic, with

measure-theoretic Jacobian equal to log2 and entropy also equal to log2
(maximal possible for invariant measures).

The probability distribution v; on R = W, is defined to be the factor
measure of j;, v; = (T5) (1), for 7y = my,: R* = R = W, (unfortunately, the
mapping F; |ypns, 1 N0t constant on the fibers of x, so its factor does not
exist). :

Often we shall omit the index A in f, F, u and v if 1 is fixed.

In this section we shall compare = u or v with the Hausdorff (in
particular, Lebesgue) measures A,. We say a Borel measure 8 is absolutely
continuous with respect to 4, if for every Borel set 4, A,(4) = 0 implies a(A)
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= 0. We use the notation 8 < A,. If § <€ A is not true we write 8 & 1,. We

say 0 is singular with respect to A, if there exists a set A of full f-measure

such that A,(4) = 0. We use the notation & |. A,.

Let us staté a technical lemma relying on the dynamics of F and the
Frostman lemma from the introduction.

Lemma 8. 1° For p-almost every z ={x, y)egraphf,

o
@) L(e) = liminf —C’%—_;(;)) ~ HD ()

where Q(2) = J,.(x) xB(y, 27%" 1y and J, is the interval of the form [127%,
(I+1)27%) containing x. .

2° For v-ae. yeW,,

(5) liminf 287 (B0 1))

r =0 lgr

= HD (v).

1° and 2° remain true if iminf is replaced by limsup.
Proof. Observe that L(z) is ae. constant. Indeed,
1(Qu-1 (F @) 2 slJi—1,,(ns (F @) xB(na (F(2)), 27471271
= 2u(Q:(2)).

We conclude that for every z egraph f, L(F(2)} < L(z). In view of the ergodi-
city of F this implies L is constant almost everywhere.
If we considered the balls B(z, 27%) instead of the squares Q(z)

we could deduce the equality (4) from the Frostman lemma. Of course, for
every z, ’

1 B ~k
(6) L(z) = ]iminfM
' k- —klog?2

since Qy(z) <B(z, 27**Y). So L(z) > HD ().
To prove L(z) € HD{w) for ae. z we have two methods:

‘ 1. We can simp]y prove the inequality opposite to (6) for a.e. z, using a
trick which is standard in smooth dynamics with singularities. For arbitrary
B >0 and every k=1 let

App = U {[R275 =270k kg o=UWHmb 12, 1, ..., 29 A0, 1).

- We have my (Ag i} = 27"%% so by Borel-Cantelli’s lemma myy, -almost
every x €W, does not belong to any Ay, for k large enough. Hence for p-a.e.
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z and k large enough Q,(2) > B(z, 271'*M%, so

: . logu(B(z, 27 +M)
<1
(M L{z) <( +ﬂ)ll;rlglf Tt kios2
As § >0 can be chosen arbitrarily small we obtain what we wanted.
2. By Bgorov’s Theorem there exists a Borel set § — graphf, with
1(8) > 0 such that

log 4£(Qi ()
—~klog?2

converges to L(z) = L uniformly, in particular for every ¢ > 0 there exists kg
such that (log u(Q,(2))/(—klog2) = L—s¢ for all z€8§, k = ko. We write this
i the form p(Q,(z)) < 2749,

Consider fi, the restriction of u to S. Denote by Q' the square Q, (x
+27% y) or Qu(x—27% y) for z = (x, y) according as xe[I27% (I+1)27%) is
closer to (I+1)27% or I27% Then Bz, 2"*~') = @, (z) v Q'. Suppose z €S, so
G(0.(2) <2779 We have either f(Q)=0 if Q'nS=0, or E(Q)
< H(Q-1 () < 27®~DED i there exists z' €Q' N S. In both cases

lim inf

,Ei(B(z, Z—k—l)) < 2,2—(k—1)(b—z)
50
log fi{B{z, 27 %" "))—log 2

> L—¢
~(k—D)log2 ¢

and we conclude, as from (7), that L< HD (@) (of course, HD () < HD (4)).

In the proof of 22 we rely on the
v(B(z; F (2), 7)) < 2v(B(y, 4r)) which follows from .
u(nz® B(rs F(2), r)) = 2u([0, 4 x B(y, /1))

< 2u(my ' B(y, Ar)
(If x&[4, 1), we replace [0, ) by [3, 1) in the above) The remainder of the
argument is the same as in the proof of 1° except that we do. not need the

considerations under 1 or 2 above,
The case of Hmsup is handled similarly. w

inequality

if xe[0,4).

Remark 11. Similarly to 2° we can easily prove the well-known fact
[JW] that if v % my, then v L my,. Indeed, if there exists § with v(S) >0

and my, (S) = 0 then for v-almost every y&eS

(8) timsupv(B(y, Nyr = co.
r-0
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Otherwise, for a set § =S with v(S) > 0 we have v(B(y, r)) < Cr for all yeS
and r 2 r, for some constants ro, C >0, hence my, (S) > 0 by the definition

of the (outer) Lebesgue measure. . .
As in the proof of Lemma 8, by the ergodicity of F|,,,,,, we obtain (8)
for v-ae. y, and then Besicovitch’s covering theorem yields v ,mel.

Tueorem 7. For every ieih, 1) we have:
1° HD{u;) = 1 +HD (v,) (1 —0).
2 If Jor vi-ae yeW,,

. IOg Vﬂ. (B (y7 ."))
limsup —————~=1
-0 logr

then HD () < 1+t(1 —a)

Remark 12. It appears to follow from [LYg] that HD(w) =1
+HD (v;)(1 —a). However, it is not necessary to rely on the complicated
machinery of [LYg] to obtain the main results of this section. (We shall
develop this remark at the end of this paper.)

Proof of Theorem 7. For all zeR? and k> 0 we have
%) #(Q @)} = 27% u(F*(Q, (@) = 27y (B(my F*(z), 27k "1 A4,
since F*(Q,(z)) is a full horizontal strip from x =0 to 1. So

log i(Qule)} _, , logv(B(r F*(@), 271 17H)

(10) —klog2 —klog?2

By Egorov’s Theorem there exists a compact set § < Ws, v(5) > 0, with

the uniform behaviour of liminf and limsup, ie. such that there exists a
continuous function &(r): R* — R*, £(0) =0, for which

(B, )

HD () —&{r) < tog

£t+e(r)
logr

for all r >0, yeS.
By the Birkhoff Ergodic Theorem for F, for u-ae. zegraph f, there
exists a sequence of integers n; — oo satisfying

F(z)ens ' ()
So for every k =0, if n; < k< nyyy we have applying (10)
logu(Qy(2) _ logu(Qu,(2) 1

nir/n; 1 and

for j=1,2,...

—klog2 —n;log2 My
_ (1+logv(B(n2 F'(z), 2771 7)) _1og(2“"»f‘1/1‘"”1)) n,
log (277147 —-nlog2  Jngy
=(1+X,Y)Z,
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We have X; = HD(W)—s(2 "' 27", also Y, tends to 1 —a and Z; tends
to 1 as k — . This proves 1°,
To prove 2° we proceed similarly,. We write

log u(Qy(2) _ log (@), () ny,

NG ik YA
Thilog2 (I+X0 Y ) Z;

—klog2
and use X,y S/{+6(-). =
Cororrary 1. HD({graph f3) = | + HD(v,) (1 — o).

CoroLLARY 2. If v, <y, then

Proof, The HD (1) < HD (graph f;) < Cap (graph f})

< TCEE(graphﬁ) < 2—o follow from Proposition 2. Since v, < Mgy »
HD(v;) = 1. Therefore by Theorem 7, HD () > 2—a. a

inequalities

Remark 13, If we assume additionally

(1) dv,/dmy , EL" (my)
then 4, (Qx(z)) < €277 for a constant € >0 and all z, k (see (9). We
concfude that u, € A;_,. So in view of Proposition 2, p, is equivalent to
Ay, on graph f;.

If (11) does not hold then with the use of (9) and Besicovitch’s covering
theorem it is not hard to prove p, L A, ,. It is quite possible that v, < g,
implies (11) automatically.

Now for every ae(}, 1) let Z(a) denote the set of those Ag(a, 1) f:)r
which v; € my,. P. Erdés proved in [E;] that there exists age(d, 1) such
that Iy (Z (ag)) = 0 (I, denotes the Lebesgue measure). In fact, his method
gives lim, .; HD(Z (a)) = ¢. Thus we get:

CoroLLary 3. For every a(ag, 1) there exists a set Z(a) < (a, 1) such
that for every 2 ela, W\Z (),

HD (graph ;) = HD(;) = 2~2, limHD(Z({a)} = 0.
@l

Erdds’s theorem, and hence Corollary 3, remain true if Z {a) denotes the
larger set consisting of those 1&(0, 1) for which dvy/dmy, -is not of a given
degree of smoothness (or does not exist). Under this convention
A€(a, D\Z{d) implies, by Remark 13, that g, is equivalent to 4,_, on
graph f;. I

Erdds’s method of studying v, is to consider the characteristic function

6 — Studin Math, ¥3.2
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(Fourier transform) of v, which is ¢(x, 4) = H" cos A" x. For fixed A, the
existence and continuity of the mth derivative of the distribution v, fellows
from o(x, ) =o(x|"*?) as x -rco, which roughly speaking is true if the
numbers from the sequence 4, A2, /13 . are often far from the integers.

A diametrically opposite situation ocours if o (x, 4) does not converge to
0 as x — oo. This happens if and only if 1 7' is a so-called Pisot-Vijayaragha-
van number (PV-number). (The “if” part was observed by Erdds [E,], the
“only i” part by Pisot and Salem, see eg. [C], Ch. VIII, 1, Th. II)

We recaltthe definition: a > 1 is a PVenumber if it is an algebraic integer
and all its conjugates have absolute values < 1.

Erdgs’s conclusion was that if 17! is a PV-nuinber, then v, Lmy,. We
can prove more:

Tueorem 8. If 271 is a PVeumber (3 <A < 1) then HD(v)) <1 and
HD (i) < 2—~a. Moreover, HD(graph f}) <2—=

The inequality HD(v) <1 is not new. Namely, relying on Garsia’s
papers [G,] and [G.], Alexander and Yorke proved in [AY] that R(v;) <1
where R is the upper Rényi dimension. (Alexander and Yorke used the term
“information dimension” and the notation d.) It follows from [Yg],
Proposition 4.3, part (2), that HD(v) € R(¥), hence HD(v;) < 1. {In fact, the
Volume Lemma yields HD(v) = R{v} = R (¥), of. Remark 14 and [Yg],
Theorem 44) By Theorem 7 this implies HD () < 2—a.

Our aim is to prove HD({graph f,} < 2—a. However, for the reader’s
convenience and to prepare some notation for that preof we fist prove
HD (v,) < 1. We rely on Garsia’s ideas, paying special attention to the places
not clearly written in [G,]. Then we use the Shannon-McMillan-Breiman
Theorem which allows us to omit much more complicated arguments from
[AY] and [Yg].

Proof of Theorem 8(%. By v, € My 5 for every sequence A4, —0
there exists y > 0 such that for every ¢ > 0 it is posmble to find an integer k
and a set S, of integers such that

{12) #S<e/4,  (# S, is the number of elements in S,),

(13) Y vl 1+ D A) 2y
18
As A7 is a PV-number, the distance between any two values of f;,
::Z:; (’"}}J'r,, is at least CA* where C is a constant depending only on A (see
eg. [G,], Lemma 1.6). This forces an abundance of equalities P(%) = B (i)

(®) Another proof of this theorem, including a formula for HD (gr
aph f,) ¢an be deduced
from [McM]. See Note at the end of the paper. (graph f;) can be deduc
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for P, P two different polynomials of degree k— 1, with coefficients + 1. This
also forces the number g, of all possible values P(4) for such polynomials (i.e.
values of f;,) to satisfy

(14) [ Cs Ak

~ while the number of different polynomials is 2*. By considerations from

Proposition 2 we have also
(13) o, = Ce A",

Here Cs. C, are positive constants depending only on 4.

For A, = CA* there is at most one value of Jix In every interval
[ICA%, (1+1) CA*). Let %, be the partition of [0, 1) « W, into unions of
intervals such that for every De%,, fixlp is constant and if
D, D'ei, D#D', then f,1p # firlp

Recall that |, —fii € #(1—2) = (1/C (1= D)) Ci%. Set
T=EQQCA-)+1, S =8+{-T —T+1,..., Th
We deduce that

YA 1+ D A) < T vis (e (1) 44))

1e8y TesSk

where v, , denotes the probability distribution of f,. (In [G,], Lemma 2.5,
vy is already replaced by v;, in (13). We do not understand why this was
possible at that stage of the proof)

Let

Py = Dew: fixsD) = r%‘ Lica, (i + 1) C'lk)}'
&

Then # 7, < (2T+1)¢/(CA" but my, (U %) = v. So by (15), # G/, —0 as
¢—0,k —o0, and we conclude that Garsia’s property ([G,], p. 430) is
satisfied, ie.

# G

(I m U J"k log——l—m

This implies that for the measure-theoretic entropy we have

k)=m(U fk)log (U{/)

(Here m = my )

(16) B (9 Y ~log oy, = —00 * as k — .

(Recall that b is the baker's transformation on [0, 1)} Indeed, since the
partitions </, and b~**(%,) are independent for every n > 0, we have

B (Vs ¥y =Y (—m(D)logm(D)).

Daty,
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Sc (omitting the index k to simplify notation)

I (7, ) ~logo = ({3 —m(D)logm(D)}—m (U ¥)loga)

Det”

Jr_((Zé—m(D)logm(D))»m(u(@\c}))logo*) =T+I1.

. Dyt
Write m({) %) =p and estimate
m(D) m(D)) )
I= ——log~r |—log p—log o
(g a s
< p(log # % —log o —log p),

which is the first summand in G (k). We can make the similar estimate for II
replacing & by %\ %. We conclude that I+1I1 £ G (k). This and G(k) - — 0
give (16). .

Fix k such that h,(%, b"—logo, <logdCs'. By (14), h,(2,, b
<log3Ai~* By the Shannon-McMillan—Breiman Theorem applied to the
partition %, and the map b, for m-ae. xeW,,

1 D}
im ) (o,
where Dj(x) is the_atom from the partjtion

n—1 i
Vb7 = (Do nbTHD) 0. b THI(D, ) Dyedy),
containing x. Hence
m(Dj(x)) 2 2" Ak

fort <1 arbitrarily close to 1 and evéry n sufficiently large (in dependence
on ). J

We clearly have

£i(0163) < B { fu ), A*"WL).

1-2

So, for v-ae. y, every t <1 and n large enough,
(17) v(B (y PRI NP
AT =1))7 -

We conclude that

og v, (B(y, ) <1 log 2

!
HD(v;} < lim inf
—klog i

) logr

< 1.
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(It is easy to see that in fact

: Ihm (Q}k! bk)
HD(v;) € ——
(v2) ,,hj?o klogi™?

In [AY] even the equality is proved (for Rényi’s dimension).) By Theorem 7

we obtain
HD (1) < 2—a.

Proof of the estimate HD(graph f;) < 2—a. Keep k fixed as before.
As the partitions 5% (%), for n=0, 1, ..., are independent, the random
variables I,(x) = —~logmy, (D} (b*"())) are independent. Moreover, they are
bounded and have the same probability disttibution with expectation value
b, (%, b%). Therefore considerations involving the “exponential form” of
Chebyshev’s inequality imply for an arbitrary & > 0 the existence of 6 > 0
such that for » large enough and for

n~1
Q= {xel0, i ¥ L,(x) 2 (hn (L, B +6)n]
j=0

we have my, () < exp(—dn) (see eg. {L], Sec. 2.11, the inequality (7).
For xe[0, 1)\£2, we have

=1
(18)  va(B(fal(x), 21— A)) = exp(--J;O 1;(x))

2 exp(—( (%, B)+8)n) = 2" A exp(—en)
(compare this with (17)).
Consider the family of intervals
# = (B(fi(x), (1 -A): xel0, D\Q,}.
Clearly it is possible to choose a subfamily %’ such that &' =[] # and
every point is covered by intervals from 4’ at most twice. Then by (18)
#H <227 A" exp(en).

Let r = E(nka/(1—a))+1. Then all the sets Q, = (F7")(n3*(B), where,
Be# and (F;'), runs over all branches of F;', are almost squares (precise-
ly: rectangles with ratios of side lengths bounded by 2/(1—2A).

We obtain the set F3'(graph fi |10, covered by a family % consist-
ing of 2 -2~2"‘"1“""exp(én) squares of side length (2/(1—A))27" (slightly
larger than the rectangles Q).

Since b preserves the measure my, we have

pa (F5" (graph f; |g,)) = myw, (b7 (24)) < exp(—n).
Q, is the union of some intervals of the form [127"%, (1+1)27"). By applying
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b~" we obtain a covering Z of the set b~"(Q,) by intervals of the form
[127%, (I+1)27") where ¢ = nk+r such that Y e Mw () < exp{(—dn).

For every I € & there exists a covering of graph(f;|,) by a family .#7 of
squares of side length my (I) such that # .4} < (2/(1-A) (mw, D1 (cf.
Proposition 2). )

We now estimate the s-Hausdorff measure of graph f; for an arbitrary
5>
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Ag(graph f) < lim ¥, {(diam Q)*: Q ex" (| {A): re2}))

= tim [27-2:27" A" *exp (em) (241~ 1)) 277F

+{exp(—né)27) A1 - 2)2" €D 27w,

This is 0 for s sufficiently close to 2—u ({for 5= 2-- it is bounded for
every n by const-(27"exp(en) +exp(—nd)). u

Remark 14 (continuation of Remark 12). Let us make the assumption
that Ledrappier and Young’s theory [LYg] is applicable in our case, for the
map F. The map F has singular lines on which it is not continuous, but in
considerations invelving Pesin’s theory such singularities are usually irrele-
vant. Also, F is not 1-1 so one should consider the natural extension (inverse
limit). However, we prefer te be careful and not to write that the theory
[LYg] is just applicable, since we have not checked all details of it,

One assumption is that the Volume Lernma holds ([LYg], Prop. 7.3.1).
Namely, for y;-ae. z, :

liminriC8 BE ) L sup log s (B(z, )

= HD .
=0 logr r =0 logr (= HD (x)

This easily implies (see the proof of Lemma 8 and Theorem 7) that for
vi-a.8. ¥,

B
liming 82BN o 08 BON) e
=0 108 r r—0 lOg r
hence ' _
(19) HD () = 1+ HD(v){1 o),

which simplifies the statement of Theorem 7. _

The Volume Lemma relies on the existence of a system of conditiona,
‘measures ' (z) of y, on the strong unstable manifolds W*(z), which are
horizontal lines here. The general formula [LYg], p. 545, takes the form

(20 by, (F) = 8 log 2+(HD (1) —6*) log /4. -
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Here & = HD(pi’(2)) for w,-ae. z, log2 is the characteristic Lyapunov
exponent, and 6"log2 is the conditional entropy relative to a partition
subordinate to the foliation into W™ (z). The factors of the second summand |
in (20) have the same meaning for the “transverse” dynamics. We compute
from (20)

(21) SN = (1 —~HD (,Ll;.) a)/(l ~a),
so by (19),
(22) " =1-oHD(v), o= —logi/log2.

The conclusion from Corollary 3 is that for most parameters A (most in
the sense defined in Corollary 3) and for yy-ae. z, HD (4 (z)) = 1 —« and the
stransverse Hausdorff dimension” is 1. However, for A~ a PV-number both
dimensions are different. (Caution: “transverse” does not mean: on an
invariant transverse foliation, which consists of vertical lines here. Indeed,
graph f; intersects every vertical line at one point only)

Let us finish the paper with the remark that the map F(x, y)
= (2x(mod 1), 2~* (y—cos x)) preserves the graph of the Weierstrass function
W (x) wz:ioxl"cos 2"x. If [LYg] is applicable (one has to consider the
inverse limit; Wy, i depend on backward trajectories) we also get the
formulas (20), (21), but there is no way to compare y, with v,. One should
consider, instead of W, with v,, some space “transverse” to the sets W™

The case to which [LYg] is applicable literally is a smooth map F: T*
xR = T*x R, with T* a k-dimensional torus, given by F(x, y) = (4x, A~ (y
~g(x)) where A is a hyperbolic toral automorphism, 4”1 > 1 and less than
max|f|, B running over all eigenvalues of 4, g smooth. Then graph f; for f;
=¥* ,A"q(4"x) is an F-invariant repeller. For F~% it is the attracting
fractal torus discussed in [KMY]. (We suppose that g is such that f; is not
Clsmooth) If 4 bas only one eigenvalue § with | > 1, then we have an
analog of (20), and for 8" = HD (1" (z)) and &' = HD (i} (2)) for p;-ae. z, we
get the formula

&= (1 - 5 u)/(], ) with &= ~ log A/log ﬁ

{13 denotes the conditional measures of y; on unstable manifolds),
In particular, we obtain the equivalence of the two conjectures: §" ==
Deerr and 3" s 1 —a,

Note (added after complefing the paper). Only after having finished the
paper we became acquainted with C. McMullen’s significant paper [McM]
and its relationship with our results.

A slight modification of his construction gives a continuous function
f: [0, 1] =R satisfying Holder's conditions (1) in § 1 (1% 2° in § 5) with an
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arbitrary exponent x of the form logm/logn (n > m > 1 are integers), such
that HD (graph f) is an arbitrary number between 1 and 2—a.

One defines graph fas (2, P, where the sets P, are defined inductively.
Consider a set R consisting of pairs of integers (i,)) with 0<i<n, 05j
< m satisfying the following conditions: for every i there exists precisely one
j=Jj; such that (i, )€R, jo =0, j; = 1, jy-y = m—=2, j,.;'=m—1; finally, for
every i=1,...,7n—3, i <jis1 Sisa O ji 2 fiyg Zhen and il ji=jiyy =]
then ji_y <j>ji4s OF ji—y >J <jis, (ie. every extremum is double).

Define R, =R and by induction the sets R,c={0,1,...,
x10,1, m*~1}. Having defined R, we say (u, v)eR,,, ill

n—1

k k
(ua I)) = ( E xk—rnrz Z yk-rmr)’ where
r=0 r=0
k1 k—1
(Zxk -r= ln Zyk r—lm) (S,I)ERk,
r=0 r=90

and either (x, y) €R in the case t,; <t; or t, <t,4y, or (h—1—x, y)ER
in the case t,_; >, or t, > 1., (a, denotes the only a such that (b, a) eR,.
This uniqueness must be checked along the induction).
Now define
Po=") [sn % G+Dn ¥ ] x[tm™ t+1)m™*

(s,)eRy

By McMullen’s theorem the Hausdorff dimension of the resulting graph f
=% P, is precisely

m-—1
logm( Z d;ogm/logn)
j=0

where d; denotes the number of i such that (i, j) eR. This gives a dense set of
possible Hausdorff dimensions. To get an arbitrary Hausdorff dimension one
should keep modifying the pattern (the set R) along the induttive construe-
tion.

McMullen's method provides also another proof of Theorem 8 and
allows one to write a precise formula for HD (graph f;). Namely,

: o
HD (graph f}} = llm G

w klogi=T og A~1
where G = logz L@P)?, « = —log Aflog2. The function Z A‘r, takes
o, different values a,c 1o ees O ,,k and d("’ denotes the number of mtervals of
the form [s27% (s+1)2~ "], 5= -1, where Z ' aty, =ay;.

icm

[AY]
[Be]
(BU]
(Ba]
[l
[Eng]
{E,]
[E.]
[Fal]
[F]
[(G.]
[G.]
[Han]
[H]
1%

(1]
Ow]

[K]
[KMY}
(KM]
(L]
fLYg)

M)
[MW]

[MeM]

Hausdorff dimension of fractal sets 185

References

J.C. Alexander and J A, Yorke, Fat baker's transformation, Ergodic Theory Dynami-
cal Systems 4 (1984), 1-23,

T. Bedford, Generating special Markov partitions for hyperbolic toral automorphisms
using fractals, ibid. 6 (1986), 325-333,

A.8. Besicovitch and H.D. Ursell, Sets of fractional dimensions (V): On dimensional
numbers of some continuous curves, J, London Math. Soc. 12 (1937), 18-25.

R, Bowen, Markov partitions are nmot smooth, Proc. Amer. Math. Soc. 71 (1978),
130-132.

LW.5. Cassels, An Introduction to Diophantine Approximation, Cambridge Univ.
Press, 1957

R. Engelking, Dimension Theory, PWN and North-Holland, Warszawa—Amsterdam
1978,

P. Erdds, On the smoothmess properties of a fumily of Bernoulll convelutions, Amer, T,
Math, 62 (1940), 180-186,

—, On a family of symmetric Bernoulli convolutions, ibid. 61 {1939), 974-974.

K.J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, 1985,

J, Franks, Invariant sets of hvperbolic toral automorphisms, Amer. J. Math, 99 (1977),
10891095,

A.M., Garsia, Arithmetic properties of Berneslli convolutions, Trans. Amer. Math. Soc.
102 (1962), 409-432.

-, Entropy and singularity of infinite convolutions, Pacific J, Math, 13 (1963), 1159~
1169.

8.G. Hancock, Construction of invariant sets for Anosov diffeomorphisms, J, London
Math, Soc. (2) 18 (1978), 339-348.

G.H, Hardy, Welerstrass's nond;ﬁ”eremiable Junction, Trans. Amer, Math Soc. 17
(1916), 301~325.

M.C. Irwin, The orbit of a Holder continuous path under a hyperbolic toral automor-

phism, Ergodic Theory Dynamical Systems 3 (1983), 345--349,

., Hlder continuous paths and hyperbolic toral automorphisms, ibid. 6 (1986), 241-257.
B. J essen and A, Wintner, Distribution functions and the Riemann zeta finction,
Trans, Amer. Math. Soc. 38 (1935), 48-88.

J-P. Kahane, Mesures et dimensions, in: Turbulence and Navier—Stokes Equation,
Orsay 1975, Lecture Notes in Math. 565, Springer, Berlin 1976, 94-103.

L.L. Kaplan, J. Mallet-Paret and LA, Yorke, The Lyapunov dimension of a
nowhere differentioble torus, Ergodic Theory Drynamical Systems 4 (1984), 261-281.
K. Kuratowsk: and A. Mostowski, Set Theory with an Introduction te Descriptive
Set Theary, PWN and Worth-Holland, Warszawa~Amsterdam 1976.

1. Lampertl, Probabliity: A Survey of the Mathematical Theory, Benjamin, New York
1966.

F. Ledrappier and LS. Young, The merric entropy of diffeomorphisms. Part 1:
Characterizetion of measures satisfying Pesin's entropy formula, Port 2: Relarions
berween entropy, exponents and dimension, Ann, of Math, 122 (1983), '540-574.

R, Maiié, Orbirs of paths under hyperbolic toral automorphisms, Proc, Amer, Math. Soc.
73 {1979), 121-125.

R.D. Matldin and S.C. Williams, On the Hausdorfi dimension of some graphs,
Trans, Amer, Math, Soc. 298 (2) (1986), 793-803.

C. McMulle n, The Hausdorff dimension of general Sierpiniski carpets, Nagoya Math. J.
96 (1984), 1~



186 F. Przytycki and M, Urbanski

[P] F. Przytycki, Construction of invariant sets for Anosov diffeomorphisms and hyperbolic
attractors, Studia Math. 68 (1980), 199~213.

F. Przytycki, M, Urbanski and A, Zdunik, Harmonic, Gibbs and Huausdorff
measures on repellers for holomorphic maps, preprint, Univ. of Warwick, 1986 {to appear
in part in Ann. of Math).

[uj M. Urbanski, On o capacity of a continuum with non-dense orbit under a hyperbolic
toral cutomorphism, Studia Math, 81 (1985), 37-51.

L.-S. Young, Dimension, entropy and Lyapunov exponents, Exrgodic Theory Dynamical
Systems 2 (1982), 109124,

[PUZ])

[Ye]

INSTYTUT MATEMATYK]
UNIWERSYTET MIKOLAJA KOPERNIKA
INSTITUTE OF MATHEMATICS
NICHOLAS COPERNICUS UNIVERSITY
Chopina 12, 87-100 Torud, Toland

INSTYTUT MATEMATYCZNY
POLSKA AKADEMIA NAUK
INSTITUTE OF MATEMATICS
POLISH ACADEMY OF §CIENCES
Sniadeckich 8, 00-950 Warszawa, Poland

Recejved December 23, 1987 (2394)

Added in proof (January 1989}, The study from this paper has been continued in:
M. Urbariski, The probability distribution and Hausdor{l dimension of self-affine functions, to
appear in Probab, Theory Related Fields; T. Bedford and M. Urbanski, The hox and
Hausdorfl' dimension of self-affine sers, preprint, Dellt 1988; M. Urbariski, The Huusdorff
dimension of the graphs of continious self-affine functions, preprint.

icm

rREpR-EE

STUDIA MATHEMATICA

Contents of fortheoming issues
Volame XCIII, nomber 3

Burzyk, A Paley-Wiener type theorem for regular operators of bounded support.
ZIMMERMANN, On vector-valued Fourier multiplier theorems.
BasTERO and Y. Raynaun, Quotients and interpolation spaces of stable Banach spaces.
. SEDDIGHI, Analytic Toeplitz algebras and intertwining operators.
. GOLDMANN, A remark on functional continuity of Fréchet spaces.
. ZIEMIAN, Rate of convergence of condjtional entropies for some maps of an interval.
—, Refinement of the Shannon—~McMillan-Breiman theerem for some maps of an interval.
B. Aniszezyk, R, Frankiewicz and C. RYLL-NARDZEWSK!, An example of a nonseparable
Banach algebra without nonseparable commnutative subalgebras.

Volume XCIV, number 1

F. BELLENOT, The maximum path theorem and extreme points of James® space.

RarH, Havsdorlf dimension for piecewise monotonic maps.

M. STO;(OLOS, On the differentiation of integrals of functions from Orlicz classes.
Berkson, T. A. GiLieseie and P. S, MunLy, I*-Muliiplier transference induced by repre-
sentations in Hilbert space. :

. R. ALLAN and T. J. Ransrorp, Power-dominated elements in a Banach algebra,
Dziusakskr and A. HuLANiCkl, On semigroups generated by left-invariant positive differen-
tial operators on nilpotent Lie groups.

Kazamak! and M, KrkucHr, Some remarks on ratio inequalities for continuous martingales.

m> o

=0

z

Volume XCIV, number 2

D. Nou. and W. STADLER, Abstract sliding hump technique and churacterization of barrelled
spaces,

D. GALLARDG, Weighted integral inequalities for the ergodic maximal eperator and other
sublinear operators. Convergence of the averages and the ergodic Hilbert transform.

N. GROENBAEK, A chatracterization of wenkly amenable Banach algebras.

M. Nawrockl, The Fréchet envelope of vector-valued Smirnov classes.

R. Szwhnce, Matrix coefficients of irteducible representations of fres products of groups,

I. ZALDUENDO, A geometric condition equivalent to commutativily in Banach algebras.



