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Nonlinear generalizations of the Banach-Stone theorem
by

K. JAROSZ (Warszawa and Santa Barbara, Calif)

Abstract, Let X, Y be locally compact sets. Assume there is a map T from Cg(X) onto
Co(Y) with (1—gllf—gll £ |1T— Tl < L+ —gll, for f, geCs(X), where ¢ is sufficiently
small. Then Cy(X) and Cy{Y) are linearly isometric. Similar results hold for function algebras,
extremely regular function spaces, and certain spaces of vector-valued functions.

§ 0. Introduction. In this paper we study the following problem:
Does there exist a universal constant & > 0 such that if T is a map from
a Banach space 4 onto'a Banach space B which satisfies

() (A= If-gll SUTf—Tgll QA+l f~gll, for f,ged,
then

(1) 4 and B are lincarly homeomorphic,
(2) if A and B are subspaces of C,(X) and Co(Y), respectively, then X
and Y are homeomorphic?

We prove that the answer to the first problem is positive if both' 4 and
B are C,(X) spaces. The answer to the second problem is evidently negative,
in general, since any Banach space can be represented in a number of ways
as a subspace of a space C(X), with different X. However, we prove here that
the answer to this question is positive if A, B are extremely regular function
spaces.

The source of our problem is the classical Banach—Stone theorem which
states that the Banach spaces C(X) and C(¥) are linearly isometric if and
only if X and Y are homeomorphic. In the sixties Amir [2] and Cambern [6,
7] proved that this result is stable: if there is a linear homeomorphism T
from C(X) onto C(Y) with ||T]]||T~Y| < 2 then C(X) and C(Y) are actually
linearly isometric. During the next years, linear isomorphisms with a small
bound were studied in a number of papers: see, eg., [3-4, 89, 11-16, 20].

The assumption about "small bound is essential. For example, the
Banach space C[O0, 1] is linearly homeomorphic to C(X), for any compact,
metric, uncountable space X. In the nonlinear case we even have the more
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far-reaching, well-known result of Kadec [18] that any two separabie infi-
nite-dimensional Banach spaces are homeomorphic. The situation changes
significantly if we consider uniform homeomorphisms. For example, if a
Banach space E is uniformly homeomorphic to a Hilbert space H, then E
and H are linearly homeomorphic [19]. Hence the answer to our first
 problem is positive if A4 is a Hilbert space. On the other hand, in 1977
Aharoni and Lindenstrauss [1] gave an example of two Banach spaces
Cy{X) and Cy(Y) which are Lipschitz equivalent but not linearly homeo-
morphic. This means that the assumption that ¢ is small is essential also in
the first problem.

§ 1. The result. We use the standard Banach space terminology. For a

closed subspace A of Cy(X) we denote by ChA4 the set of all points x,eX

such that for any ¢ > 0 and any neighborhood U of x, there is an f 4 with
WSl = f(xg) =1 and |f(x)] <e&for xeX —U. A is called an almost extremely
regular subspace of Cy(X) if ChA is dense in X and is called extremely
reqular if ChA = X. The main examples of almost extremely regular sub-
spaces are function algebras. By a function algebra we mean any closed
subalgebra of C,(X) which separates points of X. By 84 we denote the
Shilov boundary of 4 and Ch A defined above coincides with the Choquet
boundary of 4. A function algebra A4 is an almost extremely regular subspace
of C(84) and it is extremely regular if Chd = é4. -

A map T between Banach spaces 4 and B is called g-bi-Lipschitz if the
condition (%) is satisfied. _

All our results hold both in the real and in the complex cases.

TueoremM 1. Let X, Y be locally compact Hausdorff spaces, let A be an
almost extremely regular subspace of Cy(X) and B an extremely regular
subspace of Cy(Y). Assume there is an g-bi-Lipschitz map T from A onto B
with TO = 0 and with & < 8. Then there is a homeomorphism ¢ from X onto Y
and

() 1T oel—If1H < c@IIfl,

where &, is an absolute constant and c(g) =0 as ¢ —0.

VfeA,

We postpone the proof of this resuli to the next section. Now we get
two corollaries.

TueoreM 2. Let X, Y, T, A, B, ¢ be as in Theorem 1 and assume X is
paracompact. Then there is a scalar-valued continuous function u defined on X,
of modulus one, such that:

(a) If the spaces A and B are real, then

(1) %I(Tf)oqo will <C@Ifl, Vied; -
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(b) if A, B are complex, then X = X, UXZ and for any € A with || f|] <
we have

2 T ( @(X) u(x) f () < ¢'(e),
) |7 (@)1 f (%)] < ¢'(e),

where ¢'(g) =0 as ¢ =0,

Vx EXl,
Vx EXz,

Note that (1) and (2)+3) are formulated in different ways. In (1) and (+%)
we have “..<el@|lfll, Vfed” while in (2) and (3) we have

< c(g), Vfed with ||f|| < 1”. The first type of statement is stronger, in
general, since T is nonlinear.

Assume we can prove Theorem 1 with the weaker statement

I(TNopl—Iflll <ecle), VSed, |fll<l
in place of (x#). If T is an &-bi-Lipschitz map, then for any t > 0 the map
Asf (/) T()eB

is also g-bi-Lipschitz. Hence for any ¢ > 0 there is a homeomorphism ¢,: X
—7Y such that

KT opl—IfIl <tele), Vfed, liflI<t

Hence

@ T Yool -l(Tf) ool < Yfed, ||fll <

Using {4) and the regularity of B it is easy to note that the map R* =t —> ¢, is
locally constant, so it is constant.

The above means that in Theorem 1 our two types of eguation are
equivalent. The same situation is in the first part of Theorem 2 because two
unimodular real-valued functions are identical or far from each other (with
the distance equal to 2). A problem arises in the complex case. From (2) we
deduce that for any ¢ > 0 there is a unimodular function u, such that

[T (@) —w () f (%) <te(@, VYSfed, ||fll <1, VxeX,

but now u, may depend on ¢. This may happen even if X and Y are just one-
point sets [17]. To deduce Theorem 2 from Theorem 1 and then to prove
Theorem 1, we need the following proposition, which is an immediate
consequence of Proposition 2 of [107 (put, in Proposition 2, f:=T, x:=2f
y:=2g and also x:=2f y:=0) ‘

(t'+t")e(e), min (¢, t").

Prorosimion. Let T be an e-bi-Lipschitz map from a Banach space E onto
a Banach space F, with e <1/3 and TO0=0. Then for any f, geE with
L gl < 2 we have .~

T+ T ~T(+9)l <e
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and
(G) ‘ ILf+gll—& <NTf+ Tglt < || f+gll +¢,

where ¢ = 100&/1°,

Proof of Theorem 2. We define a carrier F: X —2% by
F(x) = lgeB: llgll =1 =g(p(x)}

Since B is extremely regular F(x) is nonempty for any xeX. It is also
eagy to check that F is a norm lower semicontinuous, convex, complete
carrier, 50 by the Michael Selection Theorem [5] there is a norm continuous
function F: X —B such that |[F(x)]l =1 =F(x)(¢(x) for all xeX. We
define » on X by

v(x) = T ' (F(x))(x), for xeX.
The map v is continuous and by (¥x)
(5) “v x)|—1[ c(e)(1+2), VxeX.
Put A= Ajv:= lf/u feA} and defmne T: 4 »B by T(fjv) = T(f). The

space 4 is an almost extremely regular subspace of Co(X) and T is an
(e+ 2c(e))-bi-Lipschitz. map. By the definition of T and (5) it is sufficient to
provc Theorem 2 for T and A in place of T and 4. We have also
T-YF (x))(x) = 1. Hence to simplify notation we can just assume that & = 1,

X =Y, p=id and that
NTfI~1flll<e, Vfed, <3
Fix xeX. For any fed with ||f|| €1 we have
(6) NT(+ T F N =1+ T (F )] < e

By the Propositicn and since ¢(x) = x we have also
M+ T =] T(+ T (FYal]
< ||(F 9+ 1f)-

Hence evaluating (6) at the point x we get
[|1+fo)|—r1+f(x)[| e+
1 and |Tf(x)] <

T{(f+T ' (F)) < ¢

Hence, since |f(x)] €
in the real case,

< 1+e, by a direct computation we get,

ITf () —f (X} € 26+¢,

and in the complex case:
@ |Tf(x)—f() <2+e¢, or
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®) T () —f (X < 28+¢.

Now to end the proof we have to show that in the complex case, for any

xeX, we have always Tf(x) = f(x) or always Tf(x) :ﬁﬁ independently of
1. Assume that

) TEF)® = FM() =1,
and let fed with || /]l < 1. Assume Tf(x) tm. Hence, by the previous
result and the Proposition, we get

SO +i=f(xX)+iF(x)(x) & T(f+iF (x))(x) = Tf (x}+1i

or
F)+i=f(x)+iF () (x) = T(f+iF (x))(x)

, = Tfix)—i ~f(x)—1i.
The latter is impossible, so (7) implies Tf (x) = f (x) for all feA. If T(iF (x))(x)
= —1{, then by exactly the same argument we get Tf(x) = f(x) for all feA.

CoroLLARY. Let A, B be uniform algebras such that 8B = Ch B. Assume
that there is an e-bi-Lipschitz map from A onto B, with £ < ¢y (absolute
constant). Then 84 and 8B are homeomorphic. Furthermore, if B = C(3B) then
A = C(34).

§ 2. Proof of Theorem 1. To prove the theorem we first need some
nolation. For xp in X a net (f)),.4 © Co(X) is called peaking at x, if:

(1) for any a €A, ||f]l =1 = f.(xp), and
(ii) f, =0 uniformly off any neighborhood of x,.

We denote by P.(x,) the set of all nets (f}),., in 4 such that ([ faDaeq PEAKS
at x, and by P3(x,) the subset of P} (x,) consisting of nets. which peak at xo
Fix M = 0. For any x,cX and i =1, 2 we define

Sifo =yeY: 3(fuen €Pi(x0) Adeea © 7,
v, =y and Vaed |TL,(v) = M?

Evidently Sﬁo = 5%,

We divide the proof into a number of simple steps and at various points
of the proof we use inequalities involving ¢ which are valid only if ¢ is
sufficiently small; in these circumstances we will merely assume that & is near
zero. These assumptions are the source of &.

The strategy of the proof is the following: Steps 1 and 2 show that, for a
suitable M and any xeCh4, the sets S, S2 coincide and contain exactly
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one point. This gives a function @: Ch A4 —Y defined by ¢ (x)} = §% =
Steps 3 and 4 show that

|77/ ()
and Steps 5,6 prove that

< 1S ()| +o(so),

|Tf (9 () = 1f (x| ~o(e),

which together give (+#). In the last four steps we show that ¢ is continuous
and ipjective and can be extended to a continuous and still injective map
from X onto Y. The main tools of the proof are the Proposition, which says
that T is “almost” additive, and the peaking functions, which, as we show,
are mapped to “zlmost” peaking functions.

Step 1. If M 1—e—¢g, then for any x,6ChA we have S,z,o#@.

Proof. If Y is compact, this is an immediate consequence of (G) with ¢
= 0= Ty. To consider the general case, let (£f),.,&P%(xy). Fix ¢5eA. For
any o €4 we have |[f,+£, )l = 2 so by (G), [T+ Tl = 2-¢. On the other
hand, |Tf,|| < 1+¢, so we get

sup |TA O yel, |Th, () = 1—¢]

The set (ye¥: |Tf, () = 1
not empty.

2 1-g—¢,

—¢} is compact, so its intersection with $% is

Step2. If M= \/5/2+2£’, then for any x,eCh A the set S}CO has at most
ohe point.

Proof. Assume )%, )° are two distinct points of S; —and let

(fDaes EPU(X0)s (Weey =Y. i=1,2, be the corresponding nets given by
the definition of Sl. Without loss of generality we can assume that
T ~——>i‘ with |A‘I>M for i=1,2 Since B is extremely regular

there are g;, g, €B such that

g () = AN for i=1,2, gyl +1gll] € 1+&/3.
We have
liminf|| TR +gll 2 1+ M, i=1,2;
hence, by the Proposition,
liminf|| i+ T 'gfl = 1+M—¢, i=1,2.
a . . .

Hence, by the definition of the peaking sequence, |T7 ' g;(xo)| = M —¢ for i
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=1, 2, and we get

max (177 g + T gall, 1T g, = T gall) = \2(M —¢)

{in the real case we even have max(...) 2 2(M —¢&"). Now, by the Proposition
or just by (+) and since M > ,/2/242¢, we get
max(lgs +gall, llge ~gsll) = 2(M —&) &' > 1+&/3,
which contradicts the assumption |flg{|+[gs||l = 1+873.
In the temaining part of the proof we assume that \/5/2+2a‘ <M =
1—g—¢, and we define ¢: Chd - Y by le(x)} = Si.

We denote by I' the set of all scalars of modulus one; this means I" is a
two-point set or a circle.

Slep 3. Fix xo €Ch A and f, € A with || fll =1 = fa(x). For any Lel we
define x(A) = T(io) (¢ (xq). We have:

G Yiel |x(A )|,>,M.

(i) L @/xAl: Aell =

Proof. Let (f,,)aeAePA(xo) As in Step 1 we have ||Afu+)»fo|['
=2, Yaed, hence

ITAL)+TALN =2—¢, Vaed,

and therefore
sup {T(A )0 ye¥, [TALON =

It. follows that there is a net (y,) such that |[T(Af)(v) =1
I T(Lf) (o) = 1~¢ ~e. Hence, by the definition of S5, we have

l1—-g} 2 1—¢—e

—g and

sup {| T(Af) O)I: yeSxD,, ~& ¢,

so, since Sy, = (@ (xo)}, we get lx () =
To prove (ii), note that by our assumptlon (#), x is continuous, and |x (4)
+x{(—2) <¢; hence

gt rai =y lx(Aiel

is a continuous function such that [F{A)+7(—A) <
surjective.

Step 4. For any foeA with | foll <2 and xeChA we have
ITfo (e ()] < ol +2¢ +e.

2(1-1/My+¢& <1,s0 Jis

Proof. We have o
L+|fo () = inf fsup Ife+AfIl: A€T}: fed, Ifll=f(x <1
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and by Step 3.

M +|Tfo (@ (x)) < inf {sup N Tfo+ TGN Ael): fed, ifl =f (0 < 1.
Hence, by the assumption that M =1—¢—¢' and the Proposition,
(0 CO) < 1fo 1+ (1= M) +8 = | fo (o)l + 28 +.

Step 5. Fix xo€Ch A and geB with g(p(xp)) = llgll = 1. For any Aer
we define K() = T~ 1(Ag)(x,). We have:

i Viel K 21-2%—¢
(i) KWK Aell =T.

Proof. (i) is an immediate consequence of Step 4, and we get (ii) exactly
as in the proof of (i) in Step 3. )

Step 6. For any fye4 with ||foll < 142 and x,€ChA we have
(8) | Tfo (@ (x0))] 2 | fo (o)l —4e.

Proof. Since B is extremely regular, there is a geB such that flgll =1
= g(@(x)) and

©) TR+l < 1| T (oo (o)) + e
By Step 5 there is a tel” such that
Ifo+ T (A9l 2 | fo (xo)l +(1 = 26" —0).
Hence, by the Proposition, ‘
'(.10) I Tfo+2gll 2 |5 (xo)| +(1 — 26" — &) —¢.
From (9) and (10) we get (8).

Step 7. ¢ can be extended to a continuous function from X into Y, We
denote the extended function by the same symbol.

Proof. Assummg the contrary, there is an x,eX and two nets
(x),)?s,i, i=1,2, in ChA, both converging to x,, such that

Y= @(x) g

where y' s y*eY (by Step 6, :f Y is not compact, @(x,) still cannot be
divergent to oc). In particular, to prove the continuity of the original
function ¢ we assume that ( X6 r, 18 & sequence constantly equal to x,. By
Step 4, for any geB with {lgl| < 1 we have

lg N < [T g(x})i+2¢ +¢, for i=1,2, yel,,
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hence
(11) lg V) < 1T~ g (xo)|+2¢' +e,

Now, as in the proof of Step 2, we let ¢,, g, €B be sﬁch that g, (") = 1
for i=1, 2 and |f|g;]+|g5/|| € 1+& From (11) we get

T~ gi(xg)l 2 1~26" e, i=1,2.

for i=1,2

Hence max || T~ g, +T 1g,l = /2(1 -2 ~¢), so

max lgy £g2ll > /2(1 =2~ )~
which contradicts the assumption |lg, +g.|| < 1+=

Step 8. If X is noncompact then neither is Y, and ¢ can be extended to a
continuous map from X* = X U (o0} {the one-point compactification of X) into
Y* = Yu {co) (the one-poimt compactification of Y).

Proof. Assuming the contrary, there is a net (x,),.,in X tending to oo
such that ¢ (x,) = y, tends to some point y, of Y. By Step 4 and since Ch A4 is
dense in X, for any geB, Jjgll <1, we get

Ig(yo)iwhmly(y? llm!T"lg 26 +e =2+ < 1,

which contradicts the assurnptlon that B is extremely regular.
Step 9. ¢ maps X onto Y.

Proof By the previous step ¢ is a closed map, so it is sufficient to
show that @(X) is dense in Y. Assuming the contrary, there is a g €B with
Hgll = 1 such that

sup {la(e()): xeX} <e.
But on the other hand, by Step 6 and the Proposition,
sup g (@(x): xeX) Zsup{|T™1g(q: xeX}—4
=|IT"*gll—4¢ = llgll —5¢' = 1 —5¢".
Step 10. ¢ is injective.

Proof. Let x; € Xy = ChA, x,€X, x, # X3, and let fed be such that
1|l =f(x,) =1 and |f(x;)] <& By Steps 3 and 4,

|Tf(¢(x1))“>"1“s’—f” |Tf (@ (x2))| < 2¢¢" +2).

Hence ¢(x;) # ®(x,), so in particular @y, is injective.

Let us now pick one point from each set @~ *(¥), yeY, ie. let us
consider a function y: Y— X such that ¢ oy is the identity map. By Step 8,
@ is a closed map, so ¥ is continuous. To prove that ¢ is injective we have
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to prove that ¥ Is surjective. Since oy, is injective ¥ (¥) contains X, so.is a

dense subset of X. Hence if Y is compact then we are done. If Y is not
compact, then by Step 8, ¥ can be extended to a continuous function from
Y* into X* with 1/ (00) = oo; now the domain is again compact and so is the
image.

Now by Steps 7-10, ¢ is a homeomorphism from X onto ¥ and (##)
follows from Steps 4 and 6 with c¢(e) = 4¢' = 400510,

§ 3. Remark, Note that the complex Banach space C,(X) is isometric to
C§(X) ® H; (the injective tensor product of the real C, (X) space and the
real two-dimensional Hilbert space) as well as to CR{X, H.) (the real Banach
space of Hz-valued continuous functions on X vanishing at infinity). The
inspection of the proof of Theorem 1 immediately shows that we have only
used the following properties of 4 « C](X)® H,, B < C}(Y) Q H,:

(i} A is almost extremely regular and B is extremely regular,
{#) e >1 Vi, hyeH,, Il =1 =k,
max (b +hyll, [lhy— k) > c.
(iif) The unit ball of H, is compact.

Hence by exactly the same arguments we can get the following more
general result.

Tueorem 4. Let X, Y be locally compact Hausdorff spaces, let A be an
almost extremely regular subspace of C,(X) and B an extremely regular
subspace of Co(Y), and let E be a strictly convex finite-dimensional Banach
space. Assume T is an e-bi-Lipschitz map from A®E cCy(X, E) onto
B®E <Cy(Y, E) with TO=0 and ¢ < &,. Then there is a homeomorphism
©: X =Y such that

HTf (@)= Ir el < c@llfll, Yfed ®F,

where g5 > 0 as well as the Junction (), with c(e) =0 as g 0, depend on the
modulus of convexity of E .only.
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