

Contents of volume XCIII, number 2

K.	JAROSZ, Nonlinear generalizations of the Banach-Stone theorem	97~107
F.	Lust-Piquard and W. Schachermayer, Functions in $L^{\infty}(G)$ and associated	
	convolution operators	109~130
M.	VALDIVIA, Some properties of weakly countably determined Banach spaces	137-14
F.	PRZYTYCKI, On the law of iterated logarithm for Bloch functions	145-154
F.	PRZYTYCKI and M. URBANSKI, On the Hausdorff dimension of some fractal sets	155186

STUDIA MATHEMATICA

Managing Editors: Z. Ciesielski, W. Orlicz (Editor-in-Chief), A. Pelczyński, W. Żelazko

The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory. Usually 3 issues constitute a volume.

Manuscripts and correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA

Śniadeckich 8, 00-950 Warszawa, Poland

Correspondence concerning exchange should be addressed to

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES

Śniadeckich 8, 00-950 Warszawa, Poland

The journal is available at your bookseller or at

ARS POLONA

Krakowskie Przedmieście 7, 00-068 Warszawa, Poland

© Copyright by Państwowe Wydawnictwo Naukowe, Warszawa 1989

ISBN 83-01-08953-9

ISSN 0039-3223

PRINTED IN POLAND

WROCŁAWSKA DRUKARNIA NAUKOWA

STUDIA MATHEMATICA, T. XCIII (1989)

Nonlinear generalizations of the Banach-Stone theorem

ь

K. JAROSZ (Warszawa and Santa Barbara, Calif.)

Abstract. Let X, Y be locally compact sets. Assume there is a map T from $C_0(X)$ onto $C_0(Y)$ with $(1-\varepsilon)||f-g|| \le ||f-Tg|| \le (1+\varepsilon)||f-g||$, for $f,g \in C_0(X)$, where ε is sufficiently small. Then $C_0(X)$ and $C_0(Y)$ are linearly isometric. Similar results hold for function algebras, extremely regular function spaces, and certain spaces of vector-valued functions.

§ 0. Introduction. In this paper we study the following problem:

Does there exist a universal constant $\varepsilon > 0$ such that if T is a map from a Banach space A onto a Banach space B which satisfies

(*)
$$(1-\varepsilon)||f-g|| \le ||Tf-Tg|| \le (1+\varepsilon)||f-g||, \quad \text{for } f, g \in A,$$
 then

- (1) A and B are linearly homeomorphic,
- (2) if A and B are subspaces of $C_0(X)$ and $C_0(Y)$, respectively, then X and Y are homeomorphic?

We prove that the answer to the first problem is positive if both A and B are $C_0(X)$ spaces. The answer to the second problem is evidently negative, in general, since any Banach space can be represented in a number of ways as a subspace of a space C(X), with different X. However, we prove here that the answer to this question is positive if A, B are extremely regular function spaces.

The source of our problem is the classical Banach-Stone theorem which states that the Banach spaces C(X) and C(Y) are linearly isometric if and only if X and Y are homeomorphic. In the sixties Amir [2] and Cambern [6, 7] proved that this result is stable: if there is a linear homeomorphism T from C(X) onto C(Y) with $||T|| ||T^{-1}|| < 2$ then C(X) and C(Y) are actually linearly isometric. During the next years, linear isomorphisms with a small bound were studied in a number of papers; see, e.g., [3-4, 8-9, 11-16, 20].

The assumption about small bound is essential. For example, the Banach space C[0, 1] is linearly homeomorphic to C(X), for any compact, metric, uncountable space X. In the nonlinear case we even have the more

98

far-reaching, well-known result of Kadec [18] that any two separable infinite-dimensional Banach spaces are homeomorphic. The situation changes significantly if we consider uniform homeomorphisms. For example, if a Banach space E is uniformly homeomorphic to a Hilbert space H, then E and H are linearly homeomorphic [19]. Hence the answer to our first problem is positive if A is a Hilbert space. On the other hand, in 1977 Aharoni and Lindenstrauss [1] gave an example of two Banach spaces $C_0(X)$ and $C_0(Y)$ which are Lipschitz equivalent but not linearly homeomorphic. This means that the assumption that ε is small is essential also in the first problem.

§ 1. The result. We use the standard Banach space terminology. For a closed subspace A of $C_0(X)$ we denote by $\operatorname{Ch} A$ the set of all points $x_0 \in X$ such that for any $\varepsilon > 0$ and any neighborhood U of x_0 there is an $f \in A$ with $||f|| = f(x_0) = 1$ and $|f(x)| < \varepsilon$ for $x \in X - U$. A is called an almost extremely regular subspace of $C_0(X)$ if $\operatorname{Ch} A$ is dense in X and is called extremely regular if $\operatorname{Ch} A = X$. The main examples of almost extremely regular subspaces are function algebras. By a function algebra we mean any closed subalgebra of $C_0(X)$ which separates points of X. By ∂A we denote the Shilov boundary of A and $\operatorname{Ch} A$ defined above coincides with the Choquet boundary of A. A function algebra A is an almost extremely regular subspace of $C(\partial A)$ and it is extremely regular if $\operatorname{Ch} A = \partial A$.

A map T between Banach spaces A and B is called ε -bi-Lipschitz if the condition (*) is satisfied.

All our results hold both in the real and in the complex cases.

Theorem 1. Let X, Y be locally compact Hausdorff spaces, let A be an almost extremely regular subspace of $C_0(X)$ and B an extremely regular subspace of $C_0(Y)$. Assume there is an ε -bi-Lipschitz map T from A onto B with T0=0 and with $\varepsilon\leqslant \varepsilon_0$. Then there is a homeomorphism φ from X onto Y and

$$|||(Tf) \circ \varphi| - |f||| \le c(\varepsilon)||f||, \quad \forall f \in A,$$

where ε_0 is an absolute constant and $c(\varepsilon) \to 0$ as $\varepsilon \to 0$.

We postpone the proof of this result to the next section. Now we get two corollaries.

THEOREM 2. Let X, Y, T, A, B, φ be as in Theorem 1 and assume X is paracompact. Then there is a scalar-valued continuous function u defined on X, of modulus one, such that:

(a) if the spaces A and B are real, then

(1)
$$||(Tf) \circ \varphi - u \cdot f|| \leq c'(\varepsilon) ||f||, \quad \forall f \in A;$$

(b) if A, B are complex, then $X = X_1 \cup X_2$ and for any $f \in A$ with $||f|| \le 1$ we have

(2)
$$|Tf(\varphi(x)) - u(x)f(x)| \le c'(\varepsilon), \quad \forall x \in X_1,$$

(3)
$$|Tf(\varphi(x)) - u(x)\overline{f(x)}| \le c'(\varepsilon), \quad \forall x \in X_2,$$

where $c'(\varepsilon) \to 0$ as $\varepsilon \to 0$.

Note that (1) and (2)–(3) are formulated in different ways. In (1) and (**) we have "... $\leq c(\varepsilon) ||f||$, $\forall f \in A$," while in (2) and (3) we have "... $\leq c(\varepsilon)$, $\forall f \in A$ with $||f|| \leq 1$ ". The first type of statement is stronger, in general, since T is nonlinear.

Assume we can prove Theorem 1 with the weaker statement

$$|| || (Tf) \circ \varphi | - |f| || \le c(\varepsilon), \quad \forall f \in A, ||f|| \le 1,$$

in place of (**). If T is an ε -bi-Lipschitz map, then for any t > 0 the map

$$A\ni f\to (1/t)\ T(tf)\in B$$

is also ε -bi-Lipschitz. Hence for any t > 0 there is a homeomorphism φ_t : $X \to Y$ such that

$$|||(Tf) \circ \varphi_t| - |f||| \le tc(\varepsilon), \quad \forall f \in A, ||f|| \le t.$$

Hence

(4)
$$|||(Tf) \circ \varphi_{t'}| - |(Tf) \circ \varphi_{t''}||| \le (t' + t'') c(\varepsilon), \quad \forall f \in A, ||f|| \le \min(t', t'').$$

Using (4) and the regularity of B it is easy to note that the map $R^+ \ni t \to \varphi_t$ is locally constant, so it is constant.

The above means that in Theorem 1 our two types of equation are equivalent. The same situation is in the first part of Theorem 2 because two unimodular real-valued functions are identical or far from each other (with the distance equal to 2). A problem arises in the complex case. From (2) we deduce that for any t > 0 there is a unimodular function u_t such that

$$|Tf(\varphi(x)) - u_t(x) f(x)| \le tc(\varepsilon), \quad \forall f \in A, ||f|| \le t, \ \forall x \in X,$$

but now u_t may depend on t. This may happen even if X and Y are just one-point sets [17]. To deduce Theorem 2 from Theorem 1 and then to prove Theorem 1, we need the following proposition, which is an immediate consequence of Proposition 2 of [10] (put, in Proposition 2, f := T, x := 2f, y := 2g and also x := 2f, y := 0).

PROPOSITION. Let T be an ϵ -bi-Lipschitz map from a Banach space E onto a Banach space F, with $\epsilon < 1/3$ and T0 = 0. Then for any $f, g \in E$ with $||f||, ||g|| \le 2$ we have

$$||(Tf+Tg)-T(f+g)|| \le \varepsilon'$$

and

(G)
$$||f+g|| - \varepsilon' \le ||Tf + Tg|| \le ||f+g|| + \varepsilon',$$

where $\varepsilon' = 100 \, \varepsilon^{1/10}$.

Proof of Theorem 2. We define a carrier $F: X \to 2^B$ by

$$F(x) = \{g \in B : ||g|| = 1 = g(\varphi(x))\}$$

Since B is extremely regular F(x) is nonempty for any $x \in X$. It is also easy to check that F is a norm lower semicontinuous, convex, complete carrier, so by the Michael Selection Theorem [5] there is a norm continuous function $F: X \to B$ such that $||F(x)|| = 1 = F(x)(\varphi(x))$ for all $x \in X$. We define v on X by

$$v(x) = T^{-1}(F(x))(x), \text{ for } x \in X.$$

The map v is continuous and by (**)

(5)
$$||v(x)|-1| \le c(\varepsilon)(1+2\varepsilon), \quad \forall x \in X.$$

Put $\tilde{A} = A/v := \{f/v: f \in A\}$ and define $\tilde{T}: \tilde{A} \to B$ by $\tilde{T}(f/v) = T(f)$. The space \tilde{A} is an almost extremely regular subspace of $C_0(X)$ and \tilde{T} is an $(\varepsilon + 2c(\varepsilon))$ -bi-Lipschitz map. By the definition of \tilde{T} and (5) it is sufficient to prove Theorem 2 for \tilde{T} and \tilde{A} in place of T and A. We have also $\tilde{T}^{-1}(F(x))(x) \equiv 1$. Hence to simplify notation we can just assume that $v \equiv 1$, X = Y, $\varphi = id$ and that

$$||Tf| - |f|| \le \varepsilon$$
, $\forall f \in A$, $||f|| \le 3$.

Fix $x \in X$. For any $f \in A$ with $||f|| \le 1$ we have

(6)
$$|||T(f+T^{-1}(F(x)))|-|f+T^{-1}(F(x))||| \leq \varepsilon.$$

By the Proposition and since $\varphi(x) = x$ we have also

$$|1 + Tf(x)| - |T(f + T^{-1}(F(x)))(x)||$$

$$\leq \|(F(x)+Tf)-T(f+T^{-1}(F(x)))\| \leq \varepsilon'.$$

Hence evaluating (6) at the point x we get

$$\left| |1 + Tf(x)| - |1 + f(x)| \right| \le \varepsilon + \varepsilon'.$$

Hence, since $|f(x)| \le 1$ and $|Tf(x)| \le 1 + \varepsilon$, by a direct computation we get, in the real case,

$$|Tf(x)-f(x)| \leq 2\varepsilon + \varepsilon',$$

and in the complex case:

(a)
$$|Tf(x)-f(x)| \le 2\varepsilon + \varepsilon'$$
, or

(b)
$$|Tf(x) - \overline{f(x)}| \le 2\varepsilon + \varepsilon'$$
.

Now to end the proof we have to show that in the complex case, for any $x \in X$, we have always $Tf(x) \approx f(x)$ or always $Tf(x) \approx \overline{f(x)}$ independently of f. Assume that

(7)
$$T(iF(x))(x) \approx iF(x)(x) = i,$$

and let $f \in A$ with $||f|| \le 1$. Assume $Tf(x) \approx \overline{f(x)}$. Hence, by the previous result and the Proposition, we get

$$f(x)+i=f(x)+iF(x)(x)\approx T(f+iF(x))(x)\approx Tf(x)+i$$

or

$$f(x)+i = f(x)+iF(x)(x) \approx \overline{T(f+iF(x))(x)}$$
$$\approx \overline{Tf(x)}-i \approx f(x)-i.$$

The latter is impossible, so (7) implies $Tf(x) \approx f(x)$ for all $f \in A$. If T(iF(x))(x) = -i, then by exactly the same argument we get $Tf(x) \approx \overline{f(x)}$ for all $f \in A$.

COROLLARY. Let A, B be uniform algebras such that $\partial B = \operatorname{Ch} B$. Assume that there is an ε -bi-Lipschitz map from A onto B, with $\varepsilon \leqslant \varepsilon_0$ (absolute constant). Then ∂A and ∂B are homeomorphic. Furthermore, if $B = C(\partial B)$ then $A = C(\partial A)$.

- § 2. Proof of Theorem 1. To prove the theorem we first need some notation. For x_0 in X a net $(f_{\alpha})_{\alpha \in A} \subset C_0(X)$ is called *peaking* at x_0 if:
 - (i) for any $\alpha \in \Lambda$, $||f_{\alpha}|| = 1 = f_{\alpha}(x_0)$, and
 - (ii) $f_{\alpha} \to 0$ uniformly off any neighborhood of x_0 .

We denote by $P_A^1(x_0)$ the set of all nets $(f_a)_{a \in A}$ in A such that $(|f_a|)_{a \in A}$ peaks at x_0 and by $P_A^2(x_0)$ the subset of $P_A^1(x_0)$ consisting of nets which peak at x_0 .

Fix $M \ge 0$. For any $x_0 \in X$ and i = 1, 2 we define

$$S_{x_0}^i = \{ y \in Y \colon \exists (f_\alpha)_{\alpha \in A} \in P_A^i(x_0) \ \exists (y_\alpha)_{\alpha \in A} \subset Y,$$
$$y_\alpha \to y \text{ and } \forall \alpha \in A \ |Tf_\alpha(y_\alpha)| \geqslant M \}.$$

Evidently $S_{x_0}^2 \subset S_{x_0}^1$.

We divide the proof into a number of simple steps and at various points of the proof we use inequalities involving ε which are valid only if ε is sufficiently small; in these circumstances we will merely assume that ε is near zero. These assumptions are the source of ε_0 .

The strategy of the proof is the following: Steps 1 and 2 show that, for a suitable M and any $x \in Ch A$, the sets S_x^1 , S_x^2 coincide and contain exactly

one point. This gives a function φ : Ch $A \to Y$ defined by $\{\varphi(x)\} = S_x^1 = S_x^2$. Steps 3 and 4 show that

$$|Tf(\varphi(x))| \leq |f(x)| + o(\varepsilon_0),$$

and Steps 5,6 prove that

$$|Tf(\varphi(x))| \ge |f(x)| - o(\varepsilon),$$

which together give (**). In the last four steps we show that φ is continuous and injective and can be extended to a continuous and still injective map from X onto Y. The main tools of the proof are the Proposition, which says that T is "almost" additive, and the peaking functions, which, as we show, are mapped to "almost" peaking functions.

Step 1. If
$$M \le 1 - \varepsilon - \varepsilon'$$
, then for any $x_0 \in \operatorname{Ch} A$ we have $S_{x_0}^2 \neq \emptyset$.

Proof. If Y is compact, this is an immediate consequence of (G) with g = 0 = Tg. To consider the general case, let $(f_{\alpha})_{\alpha \in A} \in P_A^2(x_0)$. Fix $\alpha_0 \in A$. For any $\alpha \in A$ we have $||f_{\alpha} + f_{\alpha_0}|| = 2$, so by (G), $||Tf_{\alpha} + Tf_{\alpha_0}|| \ge 2 - \varepsilon'$. On the other hand, $||Tf_{\alpha}|| \le 1 + \varepsilon$, so we get

$$\sup \{|Tf_{\alpha}(y)|: y \in Y, |Tf_{\alpha_0}(y)| \ge 1 - \varepsilon\} \ge 1 - \varepsilon - \varepsilon'.$$

The set $\{y \in Y: |Tf_{\alpha_0}(y)| \ge 1 - \varepsilon\}$ is compact, so its intersection with $S_{x_0}^2$ is not empty.

Step 2. If $M \geqslant \sqrt{2}/2 + 2\varepsilon'$, then for any $x_0 \in \operatorname{Ch} A$ the set $S_{x_0}^1$ has at most one point.

Proof. Assume y^1 , y^2 are two distinct points of $S^1_{x_0}$ and let $(f^i_\alpha)_{\alpha\in A_i}\in P^1_A(x_0)$, $(y^i_\alpha)_{\alpha\in A_i}\subset Y$, i=1,2, be the corresponding nets given by the definition of $S^1_{x_0}$. Without loss of generality we can assume that $Tf^i_\alpha(y^i_\alpha) \xrightarrow[\alpha\in A_i]{} \lambda^i$ with $|\lambda^i| \ge M$ for i=1,2. Since B is extremely regular there are $g_1,g_2\in B$ such that

$$g_i(y^i) = \lambda^i/|\lambda^i|$$
 for $i = 1, 2, ||g_1| + |g_2|| \le 1 + \varepsilon'/3$.

We have

$$\liminf ||Tf_{\alpha}^{i}+g_{i}|| \ge 1+M, \quad i=1, 2;$$

hence, by the Proposition,

$$\liminf ||f_{\alpha}^{i} + T^{-1}g_{i}|| \ge 1 + M - \varepsilon', \quad i = 1, 2.$$

Hence, by the definition of the peaking sequence, $|T^{-1}g_i(x_0)| \ge M - \varepsilon'$ for i

= 1, 2, and we get

$$\max(\|T^{-1}g_1+T^{-1}g_2\|,\|T^{-1}g_1-T^{-1}g_2\|) \ge \sqrt{2}(M-\varepsilon')$$

(in the real case we even have $\max(...) \ge 2(M - \varepsilon')$). Now, by the Proposition or just by (*) and since $M > \sqrt{2}/2 + 2\varepsilon'$, we get

$$\max(\|g_1+g_2\|,\|g_1-g_2\|) \geqslant \sqrt{2}(M-\varepsilon')-\varepsilon' > 1+\varepsilon'/3,$$

which contradicts the assumption $||g_1| + |g_2||| \le 1 + \varepsilon'/3$.

In the remaining part of the proof we assume that $\sqrt{2}/2 + 2\varepsilon' < M = 1 - \varepsilon - \varepsilon'$, and we define φ : Ch $A \to Y$ by $\{\varphi(x)\} = S_x^1$.

We denote by Γ the set of all scalars of modulus one; this means Γ is a two-point set or a circle.

Step 3. Fix $x_0 \in \text{Ch } A$ and $f_0 \in A$ with $||f_0|| = 1 = f_0(x_0)$. For any $\lambda \in \Gamma$ we define $\chi(\lambda) = T(\lambda f_0)(\varphi(x_0))$. We have:

- (i) $\forall \lambda \in \Gamma \quad |\chi(\lambda)| \geq M$.
- (ii) $\{\chi(\lambda)/|\chi(\lambda)|: \lambda \in \Gamma\} = \Gamma$.

Proof. Let $(f_{\alpha})_{\alpha \in A} \in P_A^1(x_0)$. As in Step 1 we have $||\lambda f_{\alpha} + \lambda f_0|| = 2$, $\forall \alpha \in A$, hence

$$||T(\lambda f_{\alpha}) + T(\lambda f_{0})|| \ge 2 - \varepsilon', \quad \forall \alpha \in \Lambda,$$

and therefore

$$\sup \{|T(\lambda f_0)(y)|: y \in Y, |T(\lambda f_\alpha)(y)| \ge 1 - \varepsilon\} \ge 1 - \varepsilon' - \varepsilon.$$

It follows that there is a net (y_{α}) such that $|T(\lambda f_{\alpha})(y_{\alpha})| \ge 1 - \varepsilon$ and $|T(\lambda f_{0})(y_{\alpha})| \ge 1 - \varepsilon' - \varepsilon$. Hence, by the definition of $S_{x_{0}}^{1}$, we have

$$\sup \{ |T(\lambda f_0)(y)| \colon y \in S_{x_0}^1 \} \geqslant 1 - \varepsilon' - \varepsilon,$$

so, since $S_{x_0}^1 = {\varphi(x_0)}$, we get $|\chi(\lambda)| \ge M$.

To prove (ii), note that by our assumption (*), χ is continuous, and $|\chi(\lambda)| + \chi(-\lambda)| \leq \varepsilon'$; hence

$$\tilde{\chi}: \Gamma \ni \lambda \to \chi(\lambda)/|\chi(\lambda)| \in \Gamma$$

is a continuous function such that $|\tilde{\chi}(\lambda) + \tilde{\chi}(-\lambda)| \le 2(1-1/M) + \varepsilon' < 1$, so $\tilde{\chi}$ is surjective.

Step 4. For any $f_0 \in A$ with $||f_0|| \le 2$ and $x \in ChA$ we have

$$|Tf_0(\varphi(x))| \le |f_0(x)| + 2\varepsilon' + \varepsilon.$$

Proof. We have

$$1 + |f_0(x)| = \inf \{ \sup \{ ||f_0 + \lambda f|| : \lambda \in \Gamma \} : f \in A, ||f|| = f(x) \le 1 \},$$

and by Step 3.

 $M + |Tf_0(\varphi(x))| \le \inf \{\sup \{||Tf_0 + T(\lambda f)||: \lambda \in \Gamma\}: f \in A, ||f|| = f(x) \le 1\}.$

Hence, by the assumption that $M = 1 - \varepsilon - \varepsilon'$ and the Proposition,

$$|Tf_0(\varphi(x))| \le |f_0(x)| + (1-M) + \varepsilon' = |f_0(x)| + 2\varepsilon' + \varepsilon.$$

Step 5. Fix $x_0 \in \text{Ch } A$ and $g \in B$ with $g(\varphi(x_0)) = ||g|| = 1$. For any $\lambda \in \Gamma$ we define $K(\lambda) = T^{-1}(\lambda g)(x_0)$. We have:

- (i) $\forall \lambda \in \Gamma$ $|K(\lambda)| \ge 1 2\varepsilon' \varepsilon$.
- (ii) $\{K(\lambda)/|K(\lambda)|: \lambda \in \Gamma\} = \Gamma$.

Proof. (i) is an immediate consequence of Step 4, and we get (ii) exactly as in the proof of (ii) in Step 3.

Step 6. For any $f_0 \in A$ with $||f_0|| \le 1 + 2\varepsilon$ and $x_0 \in Ch A$ we have

(8)
$$|Tf_0(\varphi(x_0))| \geqslant |f_0(x_0)| - 4\varepsilon'.$$

Proof. Since B is extremely regular, there is a $g \in B$ such that ||g|| = 1 = $g(\varphi(x_0))$ and

(9)
$$|||Tf_0| + |g||| \leq 1 + |Tf_0(\varphi(x_0))| + 4\varepsilon.$$

By Step 5 there is a $\lambda \in \Gamma$ such that

$$||f_0 + T^{-1}(\lambda g)|| \ge |f_0(x_0)| + (1 - 2\varepsilon' - \varepsilon).$$

Hence, by the Proposition,

(10)
$$||Tf_0 + \lambda g|| \ge |f_0(x_0)| + (1 - 2\varepsilon' - \varepsilon) - \varepsilon'.$$

From (9) and (10) we get (8).

Step 7. φ can be extended to a continuous function from X into Y. We denote the extended function by the same symbol.

Proof. Assuming the contrary, there is an $x_0 \in X$ and two nets $(x_y^i)_{y \in I_i}$, i = 1, 2, in Ch A, both converging to x_0 , such that

$$y_{\gamma}^{i} = \varphi(x_{\gamma}^{i}) \xrightarrow[\gamma \in \Gamma_{i}]{} y^{i},$$

where $y^1 \neq y^2 \in Y$ (by Step 6, if Y is not compact, $\varphi(x_y)$ still cannot be divergent to ∞). In particular, to prove the continuity of the original function φ we assume that $(x_y^2)_{\gamma \in \Gamma_2}$ is a sequence constantly equal to x_0 . By Step 4, for any $g \in B$ with $||g|| \leq 1$ we have

$$|g(y_{\gamma}^{i})| \leq |T^{-1}g(x_{\gamma}^{i})| + 2\varepsilon' + \varepsilon$$
, for $i = 1, 2, \gamma \in \Gamma_{i}$,

hence

(11)
$$|g(y^i)| \leq |T^{-1}g(x_0)| + 2\varepsilon' + \varepsilon$$
, for $i = 1, 2$.

Now, as in the proof of Step 2, we let $g_1, g_2 \in B$ be such that $g_i(y^i) = 1$ for i = 1, 2 and $||g_1| + |g_2|| \le 1 + \varepsilon$. From (11) we get

$$|T^{-1}g_i(x_0)| \ge 1 - 2\varepsilon' - \varepsilon, \quad i = 1, 2.$$

Hence $\max ||T^{-1}g_1 \pm T^{-1}g_2|| \ge \sqrt{2}(1-2\varepsilon'-\varepsilon)$, so

$$\max ||g_1 \pm g_2|| \ge \sqrt{2}(1 - 2\varepsilon' - \varepsilon) - \varepsilon',$$

which contradicts the assumption $||g_1 \pm g_2|| \le 1 + \varepsilon$.

Step 8. If X is noncompact then neither is Y, and φ can be extended to a continuous map from $X^* = X \cup \{\infty\}$ (the one-point compactification of X) into $Y^* = Y \cup \{\infty\}$ (the one-point compactification of Y).

Proof. Assuming the contrary, there is a net $(x_y)_{y\in I}$ in X tending to ∞ such that $\varphi(x_y) = y_y$ tends to some point y_0 of Y. By Step 4 and since Ch A is dense in X, for any $g \in B$, $||g|| \le 1$, we get

$$|g(y_0)| = \lim_{y} |g(y_y)| \le \lim_{y} |T^{-1}g(x_y)| + 2\varepsilon' + \varepsilon = 2\varepsilon' + \varepsilon < 1,$$

which contradicts the assumption that B is extremely regular.

Step 9. φ maps X onto Y.

Proof. By the previous step φ is a closed map, so it is sufficient to show that $\varphi(X)$ is dense in Y. Assuming the contrary, there is a $g \in B$ with ||g|| = 1 such that

$$\sup \{|g(\varphi(x))|: x \in X\} < \varepsilon.$$

But on the other hand, by Step 6 and the Proposition,

$$\sup \{ |g(\varphi(x))| \colon x \in X \} \ge \sup \{ |T^{-1}g(x)| \colon x \in X \} - 4\varepsilon'$$
$$= ||T^{-1}g|| - 4\varepsilon' \ge ||g|| - 5\varepsilon' = 1 - 5\varepsilon'.$$

Step 10. φ is injective.

Proof. Let $x_1 \in X_0 := \operatorname{Ch} A$, $x_2 \in X$, $x_1 \neq x_2$, and let $f \in A$ be such that $||f|| = f(x_1) = 1$ and $|f(x_2)| < \varepsilon$. By Steps 3 and 4,

$$|Tf(\varphi(x_1))| \ge 1-\varepsilon'-\varepsilon, \quad |Tf(\varphi(x_2))| \le 2(\varepsilon'+\varepsilon).$$

Hence $\varphi(x_1) \neq \varphi(x_2)$, so in particular $\varphi|_{X_0}$ is injective.

Let us now pick one point from each set $\varphi^{-1}(y)$, $y \in Y$, i.e. let us consider a function $\psi \colon Y \to X$ such that $\varphi \circ \psi$ is the identity map. By Step 8, φ is a closed map, so ψ is continuous. To prove that φ is injective we have

to prove that ψ is surjective. Since $\phi|_{X_0}$ is injective $\psi(Y)$ contains X_0 , so is a dense subset of X. Hence if Y is compact then we are done. If Y is not compact, then by Step 8, ψ can be extended to a continuous function from Y^* into X^* with $\psi(\infty) = \infty$; now the domain is again compact and so is the image.

Now by Steps 7-10, φ is a homeomorphism from X onto Y and (**) follows from Steps 4 and 6 with $c(\varepsilon) = 4\varepsilon' = 400 \, \varepsilon^{1/10}$.

- § 3. Remark. Note that the complex Banach space $C_0(X)$ is isometric to $C_0^R(X) \otimes H_2$ (the injective tensor product of the real $C_0(X)$ space and the real two-dimensional Hilbert space) as well as to $C_0^R(X, H_2)$ (the real Banach space of H_2 -valued continuous functions on X vanishing at infinity). The inspection of the proof of Theorem 1 immediately shows that we have only used the following properties of $A \subset C_0^R(X) \otimes H_2$, $B \subset C_0^R(Y) \otimes H_2$:
 - (i) A is almost extremely regular and B is extremely regular.
 - (ii) $\exists c > 1 \ \forall h_1, h_2 \in H_2, ||h_1|| = 1 = ||h_2||,$ $\max(||h_1 + h_2||, ||h_1 - h_2||) \ge c.$
 - (iii) The unit ball of H_2 is compact.

Hence by exactly the same arguments we can get the following more general result.

Theorem 4. Let X, Y be locally compact Hausdorff spaces, let A be an almost extremely regular subspace of $C_0(X)$ and B an extremely regular subspace of $C_0(Y)$, and let E be a strictly convex finite-dimensional Banach space. Assume T is an ε -bi-Lipschitz map from $A \otimes E \subseteq C_0(X, E)$ onto $B \otimes E \subseteq C_0(Y, E)$ with T0 = 0 and $\varepsilon \leqslant \varepsilon_0$. Then there is a homeomorphism $\varphi \colon X \to Y$ such that

$$|||Tf(\varphi(x))|| - ||f(x)||| \le c(\varepsilon)||f||, \quad \forall f \in A \otimes E,$$

where $\varepsilon_0 > 0$ as well as the function $c(\cdot)$, with $c(\varepsilon) \to 0$ as $\varepsilon \to 0$, depend on the modulus of convexity of E only.

References

- [5] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa 1975.
- [6] M. Cambern, A generalized Banach-Stone theorem, Proc, Amer. Math. Soc. 17 (1966), 396-400.
- [7] -, On isomorphisms with small bound, ibid. 18 (1967), 1062-1066.
- [8] -, Isomorphisms of spaces of continuous vector-valued functions, Illinois J. Math. 20 (1976), 1-11.
- [9] M. Cambern and V. Pathak, Isometries of spaces of differentiable functions, Math. Japon. 26 (1981), 253-260.
- [10] J. Gevirtz, Injectivity in Banach spaces and the Mazur-Ulam theorem on isometries, Trans. Amer. Math. Soc. 274 (1982), 307-318.
- [11] -, Stability of isometries on Banach spaces, Proc. Amer. Math. Soc. 89 (1983), 633-636.
- [12] W. Holsztyński, Continuous mappings induced by isometries of spaces of continuous functions, Studia Math. 26 (1966), 133-136.
- [13] K. Jarosz, A generalization of the Banach-Stone theorem, ibid. 73 (1982), 33-39.
- [14] -, Into isomorphisms of spaces of continuous functions, Proc. Amer. Math. Soc. 90 (1984), 373-377.
- [15] -, Small isomorphisms between operator algebras, Proc. Edinburgh Math. Soc. 28 (1985), 121-131.
- [16] -, Perturbations of Banach Algebras, Lecture Notes in Math. 1120, Springer, 1985.
- [17] F. John, Rotation and strain, Comm. Pure Appl. Math. 14 (1961), 391-413.
- [18] M.I. Kadec, The proof of topological equivalence of all infinite-dimensional separable Banach spaces, Funktsional, Anal. i Prilozhen. 1 (1) (1967), 61-70 (in Russian).
- [19] P. Mankiewicz, On Lipschitz mappings between Fréchet spaces, Studia Math. 41 (1972), 225-241.
- [20] R. Rochberg, Deformation of uniform algebras on Riemann surfaces, Pacific J. Math. 121 (1986), 135-181.

INSTYTUT MATEMATYKI UNIWERSYTET WARSZAWSKI INSTITUTE OF MATHEMATICS WARSAW UNIVERSITY PKIN 9 p., 00-901 Warszawa, Poland DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA Santa Barbara, California 93106, U.S.A.

Received June 15, 1987
Revised version January 11, 1988

(2324)

^[1] I. Aharoni and J. Lindenstrauss, Uniform equivalence between Banach spaces, Bull. Amer. Math. Soc. 34 (1978), 281-283.

^[2] D. Amir, On isomorphisms of continuous function spaces, Israel J. Math. 3 (1965), 205-210.

^[3] E. Behrends, Isomorphic Banach-Stone theorems and isomorphisms which are close to isometries, Pacific J. Math., to appear.

^[4] E. Behrends and M. Cambern, An isomorphic Banach-Stone theorem, Studia Math. 90 (1988), 15-26.