icm

Countents of volume XCIII, number 3

J. Burzvk, A Paley—Wiener type theorem for regular operators of bounded sup-
port . . . . Cov oo, 187200

F. ZIMMERMANN, On vector-valued Fourxer mulupher theorems . 201-222
J.  Bastero and Y. Ravynaup, Quotients and mterpoldtlon spaces of stable Bandch

spaces . . 223-239%
K. SEDDIGHI, Andlytlc Toephtz dlgebras and 1ntertw1mng oper. dtors . . 241247
H. GOLDMANN, A remark on functional continuity of certain Fréchet a.lgebnh 249257
K. Zimmian, Rate of convergence of conditional entropies for some maps of an

interval . 259-269
—, Refinement of the ShdnnonchMlllan~Bre1man theorem for some mqps of an

interpval . . . L b 271-285
B. Awmszczyk, R, FRANKIEWICZ and C RYLL NARDZEWSKI, An examp]c or a nonsep-

arable Banach algebra without nonseparable commutative subalgebras 287-289

STUDIA MATHEMATICA

Managing Editors: Z. Ciesielski, W. Orlicz (Editor-in-Chief),
A. Pelezyiski, W. Zelazko
The journal publishes original papers in English, French, German and Russian, mamly in
functional analysis, abstract methods of mathematical analysis, and probability theory. Ustml]y 3
issues constitute a volume.
Manuscripts and correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA
Sniadeckich.8, 00-950 Warszawa, Poland

K

Correspondence concerning exchange should be addressed to

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

Sniadeckich 8, 00-950 Warszawa, Poland

The journal is available at your bookseller or at
_ ARS POLONA
Krakowskie Przedmiescie 7, 00-068 Warszawa, Poland

© Copyright by Pafistwowe Wydawnictwo Naukowe, Warszuwa 1989
ISBN 83-01-08993-8 ISSN 0039-3223

PRINTED IN POLAND

WRQCLAWSKA DRUKARNIA NAUEKOWA

STUDIA MATHEMATICA, T. XCIII (1989)

A’ Paley—Wiener type theorem for
regular operators of bounded support

by

JOZEF BURZYK (Katowice)

Abstract. The main result of this paper is the following Paley-Wiener type theorem: an
entire function F(z) is the Fourier transform of a Mikusifski operator with support in [ —¢, o]
if and only if F(z) is of the Cartwright class, i.e. it is of exponential type o and satisfies a certain
integral inequality,

1. Introduction. In this paper the Mikusitiski operators. are understood in
the sense of [4]. According to [4], % denotes the ring of continuous
functions which vanish to the left of some point of the real line. The ring
operations in % are the usual addition and the convelution as the product
operation:

o

[ fe-

— o0

(f*g)0) = 7)g(r)dr.
By the Titchmarsh theorem, % is a ring without zero divisors. The fractions
with respect to this ring will be denoted by

f

g

where f, g% and g # 0, i.e, the fraction denotes the operator which is the
class of all pairs (h, k) such that h, ke%, k# 0 and [ «k = g+h. The space
of operators is given the usual operations of addition and the convolution
defined analogously to the product of usual fractions, ie.,

h h
if x=igf«,y£’,—c, then x*y:'g:k.

Traditionally the product of operators x and y as well as convolution of
functions are both denoted by juxtaposition xy. In this paper the symbols
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188 J. Burzyk

fo,f/g will denote the pointwise product and quotient of the functions f, g,
respectively.

In general, the notion of support cannot be defined for all operators,
T. K. Boehme in [3] introduces the so-called regular operators for which
the support is defined. The class of regular operators is defined in terms of
delta-sequences.

By a delta-sequence we shall mean a sequence 18,) of smooth functions
with the following properties:

(i} There is a sequence of positive numbers &, converging to zero such
that 8,(t) = 0 whenever [t| = ¢, for neN.
(i) {8,=1for neN.
(it) There is a number M such that [|é,| <M <o for neN.

The class of delta-sequences is closed under coordinatewise convolution.

Following T. K. Boehme ([3]) an operator x is said to be regular if it
admits the so-called regular representation, ie., there is a sequence f,} in %
and a delta-sequence [§,} such that

for neN.

Distributions vanishing to the left of- some point of the real line are
regular operators. There are regular operators which are not distributions.
The set of regular operators is an algebra with respect to addition and
multiplication of operators. Note that in Boehme’s definition of a delta-
sequence in [3], it is assumed that 6,20 for neN. Our class of delta-
sequences is essentially wider in the sense that there are regular operators in
our sense which are not regular in the Boehme sense.

A regular operator x is said to be zero on an open set U if for every

compact set K = U there is a regular representation x =§ for neN such
i

that f,() = 0 for teK and neN. By the support of a regular operator x we

mean the smallest closed set outside which the operator equals zero, deno-

ting it by suppx.

The supports of a distribution vanishing to the left of some point of the
real line in the distributional sense and in the above sense coincide. Notice
that the support of every regular operator is bounded from the left.

A regular operator x is said to be of bounded support if there is
a number & = 0 such that suppx < [—a, a].

Distributions of bounded support are regular operators of bounded
support. There are regular operators of bounded support which are not
distributions of bounded support ([3]). The set of all regular operators of
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bounded support is an algebra with respect to the operations of addition
and multiplication described above.

Now we are going to define the Fourier transform of a regular operator
of bounded support. First we recall some basic definitions concerning entire
functions of one complex variable.

An entire function F(z) is said to be of exponential type o if for each
¢ > 0 there is a constant C, such that

IF(2)] < Coer o

for zeC; F(z) is said to be of exponential type if it is of type o for some
o, 0% e <o ([2], Ch. 2).
In the sequel we shall frequently refer to the following integral ine-
quality:
o)
(%) [ (43" log™ F ()| dt < oo,

— o0

where log™ |F (t)] = max (log{F(1)], 0). The class of all entire functions of
exponential type satisfying condition (%) is sometimes called the Cartwright
class. _ _

If fis a continuous function (distribution) of bounded support such
that suppf <[ -0, ] for some ¢ >0 and F(z) is the Fourier transform
of f(t}, ie.

-

w©
Joy=F@= [ &l
—m

then F(z) is an entire function of exponential type o and on the real axis it
satisfies condition (#). Tt is worth while to remark that there are entire
functions of exponential type o satisfying condition () which are not the
Fourier transforms of any distribution of bounded support. In this paper we
show that this cannot happen for regular operators of bounded support.

Assumne that x is a regular operator of bounded -support such that
suppx = [—¢, o] for some o> 0 and

M x =3

for neN is a regular representation for x, ie. {f,} is a sequence in % and {8,
is a delta-sequence such that suppé, <[ —g,, &,] for neN, where &, —+0. By
the definition of the support of x for every interval [c, d] =« R\[—~0—¢,, o
+¢,] there is a sequence g, in % and a delta-sequence {5, such that

=Im

@ : .
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and g, =0 on [¢—g,, d-¢,]. By (1) and (2), we get
f;r*gm =dm *5n

for m, ne N. We note that ¢,, %6, = 0 on [c, d] for m, neN, and f, *35,, — f,
almost uniformly (a.u) as m —oc. Hence f,= 0 on [c, 4] or, equivalently,
supp f, © [~6~18,, 6+&,] for neN. Consequently, the Fourier transforms
Fi(z) and §,(z) are entire functions of exponential type o +e, and &,, respect-
ively.

Moreover, by (1) and the definition of an operator, we have f,*3d,
= f 3, and, consequently,

f; (2 5»: (2) = fm @ 5" (2

for m, neN. Since §,(z) =1 au, we see that the orders of the zeros of 5,(2)
are not greater than those of f.(z). Thus the quotients f, (z)/5, (z) for neN are
entire functions which are all equal Their common value is denoted by %(z)
and called the Fourier transform of x. Therefore we have

%) = fu(@/3,()

for neN. Since §,(z) =1 au., we see that f,(z) - %(z) a.. The definition of
the Fourier transform of a regular operator of bounded support is consistent,
i.e. it does not depend on the regular representation of the operator.

If x and y are regular operators of bounded support, then

(x2)) (&) =22 J ().
The main result of this paper is the following Paley-Wiener type
theorem.

Tueorem 1. (a} The Fourier transform of a reqular operator with support
in [—o, 0] for some g 20 is an entire function of exponential type o and
satisfies condition (%).

(b) Conversely, every entire function of exponential type o which satisfies
condition () is the Fourier transform of a regular operator with support in

[~o, o]

The proof of Theorem 1 is given in Section 2.

In Section 3 we are concerned with various characterizations of regular
operators. Section 4 is devoted to a certain type of convergence of sequences
of regular operators.

"2. Proof of Theorem 1. We start this proof with recalling some facts
concerning entire functions. From Th. 6.3.6, p. 85 in [2] it follows that if F(z)

is an entire function of exponential type, then (*) holds iff
w0

| (1427t log|F (2] dt < o0.

-

icm

Faley-Wiener theorem 191

Hence, by routine calculations, we get

Lemwma 1. If F(2), G(z) and H(z) are entire functions of exponential type
such that '

H(z) = F(2)/G(2)
and F(z}) and G(z) satisfy condition (%), then so does H (z).
In the sequel we shall refer to the following

Lemma 2. If F(2), G,(z) and H,(z) are enmtire functions, G,(z) is of
exponential type o+, H,(z) is of exponenmtial type s, where n,>0,
g >0, n,-0and ¢, —0, and

F(2) = G,(z)/H, ()
Jor neN, then F(z) is of exponential type o.

Proof. Let ¢ and § be positive numbers such that of < and let n be
an integer such that ’

€)] (e+2n )1+ +4e, 871 (1+P) < o+e.
Under the conditions of the lemma there are constants 4 and B such that

(ot 2n,)|z|

G, (7)] < 4e . |H,(2)] < Be™!

for zeC. By the Hormander inequality ([5], p. 154, Lemma 3.1), we get
IF @) = |Gy () Hy(2)] < A0 Pl ggalt =2,

In view of (3), we have |F(z)| < C, e+ for zeC, where C, = AB¥2. This

means that F is of type o, which was to be proved.

Now we can prove the first part of Theorem 1.

Proof of Theorem 1(a). Assume that x is a regular operator such

that suppx =[~e, ¢] for some ¢ 2 0 and assume that x =? for neN is

n

a regular representation for x such that suppé, < [—¢,, €,] for neN, where
g, = 0. Then, by the definition of the Fourier transform, we have

£(2) = £,(2/5,(2

for neN and £(z) is an entire function. For every neN, f, and 5, are
entire functions of expenential type o+, and ¢,, respectively. Hence, by
Lemma 2, £ is an entire function of exponential type o. Moreover, the
functions f, and §, satisfy condition (+). Thus, by Lemma 1, £ satisfies
condition (s), This completes the proof of the first part of Theorem 1.
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The proof of the second part is preceded by some definitions, remarks
and lemmas.

First, denote traditionally by 2 the space of Schwartz’s test functions
and, moreover, put
Z = {(ﬁ ¢e~@}'! G, = \peD: suppp =[—é, 8]}7 ir‘,‘e:{gﬁ: (P‘—:f’ja}-

By the classical Paley-Wicner theorem F e %, iff F is an entire function
of exponential type ¢ and F) is a rapidly decreasing function on the
real line.

To prove the second part of Theorem 1 it is enough to show that if Fis
an entire function of exponential type ¢ and satisfies condition (%), then there
is a delta-sequence {6,) such that F 5,e% for neN. In fact, assume that |5,
is a delta-sequence such that Fb, e and suppé, =[—s, ¢,] for neN,
where g, ~+0. Then Fé, €% 4+, for neN or, equivalently, there is a sequence
')} in @ such that supp f, [ —o6—s,, +¢,] and Fé, = f, for neN. Hence
7.8, = f..8, and, consequently, f, %4, = f,,*, for m, neN. Letting

o

X =
n

for neN, we see that X = F and suppx c[—o, o].

The main tool in proving the existence of a deltasequence with the
above property is the following

TuroreM 2 (Beurling—Malliavin [1]). If F is an entire function of
exponential type and satisfies condition (x), then for every & >0 there is
a nonzero measure f such that supp f < [—e&, ] and Ffez.

As a matter of fact, we shall use thc.following stronger form of the
Beurling—Malliavin theorem.

TueoreM 3. If F is an entire function of exponential type and satisfies
condition (%), then for every & > 0 and for every z, €C there exists @ € % such
that FGeZ, ¢{zo) # 0 and (o = 1.

Proof. By the Beurling-Malliavin theorem, we have Ff ez for some
nonzero measure f such that supp f <[ —¢/2, ¢/2]. Choose €, and put
¢ = fxyr. Clearly, pe®,, ¢ is of exponential type e, Fé = Ff/¢ and
FpeZ. :

Suppose that z, and 0 are zeros of @(z) of orders p and g, respectively,
where. p, g = 0. Define

H() = ¢ @ —2o).
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Obviously, H(0) H(zg) # 0. Letting
H (z)=H{O) 'H(),

we have H,(0) =1, H,(zo) # 0, FH,eZ and H, is of exponential type &.
By the Paley-Wiener theorem for functions of class &, there exists a function
@ in @, such that G, = H,. Hence ¢o(z) # 0, FPo % and @0 (0} = i. The
Jast equality is equivalent to [¢o = 1. The proof of Theorem 3 is complete.

We denote by B, the class of all entire functions F of exponential type ¢
satisfying condition (). We define on B, the norms

p.(F) = sup {|F (z)] exp(—elzl): z€C]

for ¢ > o and the quasi-norm
g(F) = | (1+1%) Hlog(1+|F (t)i)dr.

It is easy to see that F €B, iff p,(F) < co for every ¢ > ¢ and ¢(F} < .
One can show that B, endowed with the topology generated by the norms
p. (e > @) and the quasi-norm ¢ is a complete metrizable space. Moreover,
F, -0 in B, iff p,(F,) —0 for every e >0 and

o
§ (143" tog™ [F, (1) dt —0.
. -

LEMMA 3. An entire function F belongs to B, iff there is a delta-sequence
18,) such that suppd, < [—&,; &.] and Fé,e%, for neN, where g, —0. In
other words, F B, iff F is the Fourier transform of a regular operator whose
support consists of the single point 0.

Proof. Assume that FSHE_@’E" with suppd, = [ —&,, &,} for n El\i and
g, —0. This means that there are functions @, €Y, such that Fo, = ¢, for
neN. Put

for neN and note that x is a regular operator such that suppx = {0}, and
% =F. By the first part of Theorem 1, it follows that FeBg. :

To prove the converse assume that F €4, and introduce the auxiliary
functions

Giz) = 14F()F@, G.()=G(n), neN.

Since F €B,, we have GeB, and G, €B, for neN. Since By is a complete
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linear metric space, there exists a sequence of positive numbers 4, such that
o
Z lln G" = H EBQ.
n=1

By Theorem 3, there is a function @ €2 such that suppp <= [~1, L], fo=1
and H¢ €2, in particular ¢ is a rapidly decreasing function on the real line.
It is clear that the sequence (6,} defined by &,(t) = n¢ (nt) is a delta-sequence
and F§, is a function of exponential type 1/n. Since G (1) = L+|F(#)|* = 0 for

reR, we have
¢ (E)} n G (E) ? (-t-) < (E) ¢ (i)
n n n n n

which means that F$, is a rapidly decreasing function on the real line for
neN. Hence, by the Paley-Wiener theorem, Fé,€Z,, which completes the
proof of Lemma 3.

Iy F (8) 6, (0] £ £, G (1)

3

We precede the next lemma by some notation and definitions. If f is
a function on R and AeR, then 7,f and f are defined as

@QNO =1~ FO=f(-1.

If x is an operator, then 7;x is an operator such that

X = ﬂ if x= -[ .
[
Note that if x and y are operators, then -
) - Ta () = (T3 X) *y = X #(13)).

A subspace H of % is said to be shifi-invariant if feH implies ©; feH
for reR.

Levma 4. If H is a shift-invarianr subspace of 9, then the following
conditions are equivalent:

(a) There is aq delta-sequence {8,} such that 8,eH for neN.
(b) For every ¢>0 and for every z,eC, there is a function pcH,
=H NP, such that ¢(z,) # 0.

Proof. Since §, -1 an., (a) implies (b). To prove the converse it is
enough to show under condition (b) that for every & > 0 the closure of H, in
the norm contains %, i.e, %, ccly H. Suppose that ¢l H > %, for scme
¢ > 0. Then there exists a nonzero bounded measurable function u such that
suppu < [—e¢, &] and

&

(5) | [ e@dr =0
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for every ¢ eH,. Note that

&
@Exp}(O) = [ul(s)r-,p)(s)ds.
]
Let » be an arbitrary positive number such that 5 <¢/2 and let ¢ be an
arbitrary function in H,. Then, for every te[—e+#,e—1], we - have
7., ¢H,, because H is a shift-invariant subspace of %. Hence, by (5), we get

suppiix @ < [~n—s, —e+n]U[—n+e, e+y].
Let @, and ¢, be functions, associated with ¢, such that supp¢; =[—#, 7]
for i=1,2 and ) o
(6) dxQ="1_,01+7,0;.
For arbitrary ¢,  €H,, we have (ii* @)« = () * @, s0

(T.—s 991) ¥ W +(Tx @2) * !l’ = (T-—a l»pl) * (D+(Te lf’z) * @
and oL
[supp (r— @) # ] M [supp(z, ) x @] = O.
Therefore we obtain ;=i =y, @ for i=1,2 and ¢,y cH, whenever
0 < n < ¢g/2. Consequently,

Y Gl =i é
for i =1, 2 and ¢, y €H,. We assert that the orders of the zeros of ¢ are not
greater than those of ¢; for i = 1, 2. In fact, if z; €C and (b) holds, then there

is a function ¥ €H, such that y(zo) # 0 and (7) holds for i = 1, 2. This
implies our assertion, Therefore, for every ¢ €H, and i =1, 2, the quotient

® el

is an entire function which, by (7), does not depend on ¢ <H, whenever
0 <7 <¢/2. Denote the common value of the quotients above by F; for
i=1,2. By Lemma 2 (with ¢ =0), F; is an entire function of exponential
type 0 for i =1, 2. Moreover, ¢; and ¢ satisfy condition (). By Lemma
1, F, satisfies condition (%}, so F; B, for i = 1, 2. Consequently, by Lemma
3, there are regular operators x; such that suppx; < {0}, %, = F; and, by
(8), x/%¢ = ¢ for i =1, 2 and peH, whenever 0 <# <¢/2. Hence, by ()]
and (4) we get .
Tag et (6 % @)+ T, (X % @) = (T_, Xy +T, X5} % .

This implies that
H=T_ X1 +TyXa.

In view of this equality u =0 on [—e, £], which contradicts our assumption
and thus proves Lemma 4. :
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Now we can prove the second part of Theorem 1.

Proof of Theorem 1(b). Assume that FeB,, ie. F is an entire
function of exponential type o and satisfies condition (). We put

H=\pe@®: FopeZ|

and note that H is a shift-invariant subspace of . Let & be a positive
number and let z, be a fixed complex number. By Theorem 3, there is
a @e®, such that FeZ and ¢(zo)# 0. This implies that H satisfies
condition (b) of Lemma 4. Therefore there is a delta-sequence {J,} in H. This
means that FS,eZ for neN, which was to be proved.

This completes the proof of Theorem 1.

3. Characterizations of regular operators. Let us now formulate several
consequences of the results of the preceding section. The following corellary
is a simple consequence of Theorem 1.

CoroLLARY 1. A Mikusinski operator x is a regular operator of bounded
support iff it has a representation

x==
l!l’
where ¢, W €F and the quotient ¢/ is an entire function.’

Proof. Obviously, if x is a regular operator of bounded support, then it
has a required representation. Assume now that a Mikusidski operator x has
a representation with the required properties. Then the Fourier transforms ¢
and 1y are of exponential type, and F = @/ is an entire function of
exponential type. Moreover, ¢ and \ satisfy condition (), Hence, by Lemma
1, F satisfies condition (). Consequently, by Theorem 1 (b), there exists a
regular operator y of bounded support such that j = F. Using basic defini-
tions it can easily be shown that x=y. This completes the proof of
Corollary 1.

We adopt the following notation. For fixed z €C we put E, (t) = ¢* for

t R, and
e fortz=0 0 for t >0
Ef ()= ’ T = ?
= () {0 fort <0, E. ) {e" for ¢t < 0.
We have
1
Ez(t) =__.._._’
§—z

where s is the differential operator ([6]. p. 35).
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Observe that if @@, ¢(z,) =0 and
1

S+i20

W=EX, ¢ or, equivalently, ¢ = 0,

then ¥ € %,. Moreover, if k is the order of the zero of ¢ at z,, then the order
of the zero of \ at zy is k—1.
A simple consequence of Lemma 4 is the following

CoroLLArY 2. Let H be a subspace of & such that the following conditions
are fulfilled:

1° H is a shift-invariant subspace.

2 H,=Hn@,+ {0 for every ¢>0.

3 peH, ¢(zp) =0 and § = EfizO x¢@ imply W eH,

Then H contains a delta-sequence.

Proof Assume that & >0, z,€C. If there is a @cH, such that
@(z0) # 0, then, by Lemma 4, H contains a delta-sequence.

Now suppose that @ (z,) = 0 for each ¢ €¢H, and choose ¢ for which the
order of z, is minimal, say k. Since ¢ € %,, we have Y €2, by the preceding
remark, and thus ¥ €H,, in view of condition 3°. Moreover, the order of z,
for \ is k—1. This contradiction completes the proof.

The following corollary gives us a useful characterization of regular
operators:

COROLLARY 3. An operator x is regular iff there are continuous functions

f, and g, such that suppg, < [—&n e,] with &, =0 and x :gifor neN-:

"

Proof, Bvidently, if x is a regular operator, then it has a required
representation. To prove the converse we put

H=l{pe?: xxpe¥}.

In view of (4), H is a shift-invariant subspace of &. Hence, by quollary 2, H

X *
contains a delta-sequence {5,}, i.e. X*3,€% for neN. Hence, x = 5 " for

n

neN, ie. x is a regular operator, as desired. The proof is complete.

An immediate consequence of Corollary 3 is the following

1
CoroLLarY 4. If x is a regular operator and suppx = {0Y, then i
a regular operator.
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4. Convergence of sequences of regular operators. We start this section
with introducing a convergence of sequences of regular operators.

We say that a sequence {x,} of regular operators converges to a regular
operator x and write x, 2 x if there is a delta~sequence {,} such that

fu . _k

n=5_k’ X B;

for n, keN and f, — f in %, ie. fz — f au. and there is a number o such
that f, (&) = 0 for re(—occ, a) and neN,

The above convergence is stronger than the following type 1 conver-
gence: x, — x (type I) if there are representations
‘EL: X = i:
P @
where f,, f, @ €% and f, = f a.u (see [6], p. 155).

Xy =

TaEOREM 4. A sequence {x,} of regular operators converges to a regular
operator x iff there are functions fu, fi and @, in ¥ such that suppo,
f [T"Hk3 ak] Wlih- & ""0,

3 1

. Pr P
Jor n,keN and f, = f, au. in € as n >0 for keN.

fa A

Proof. Evidently, if x, — x, then there are functions satisfying the above
conditions, To prove the converse we put
H={ped: x,+¢ »x+¢ in 4}

and assume the conditions are satisfied. By (4), H is shift-invariant. In view
of the conditions, the assumptions of Corollary 2 are fulfilled. Hence there is
a delta-sequence {,} in H. This means that x, %8, —»x*8, in % as n — oo for
keN, which completes the proof.

THEOREM 5. If {a,} is a sequence of positive numbers such that

[+ ]
> oot <o,
ns=
then the series
an
Y A Eg (1)
n=1
converges whenever the series
[+4]
2 Aoy
n=1

converges. In particular, the sequence {E;: (t)} converges to zero.
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Proof. Consider
d z
F(z) = - —
) RIJ]. ( iaﬂ

By routine calculations it can be checked that F(z) is of exponential type

zero and z, = ia, (neN) are the only zeros of F. Moreover, [F(e = 1 for
teR and F(Oh =1,

By Theorem 6.3.14 in [2], p. 86, the improper integral
[t™*log|F (1) F(—1) dt
0

converges. The integral exists as the Lebesgue integral, because |F(¢) F(—1)]
= 1. Hence we get

w [}
[t 2log|F@)|dt+ | t™?log|F () dt < co.
0 —

Consequently, we have

[ (1+1) " log* |F (9] dt < co0.

bl o

Therefore, by Theorem 1(b), there is a regular operator x such that
suppx < {0} and £ = F. Let {¢,} be a sequence in % and let {5;} be a delta-

sequence such that x = %, supp ¢, < { —0,, 0] and suppé, = [ —¢, g,] for
e

keN with o, =0 and ¢ 0. We see that
© E;tl*ng:Ea"*(Dk_“Ea_n*(Pk
for n, keN. Hence we get '
E, = Eoye [ gu(9)ds = By 6u(in)
= F (i) 8y (i) E, =0
for F(ix,) = 0. Moreover, we can write
NE; * @llr < 1Bz r loilly < oy * My,
where M, = (Ea,,(T)"I)H%”T- The last inequality implies that the series

0
Y B * ¢y
n=1
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converges in L, (—oc0, o) if ¥, 4,2, ' < co. Consequently, by (9), the series

oD
Y EL o

n=1

converges in L (—o0, 00) if ¥, 4,2, ' < oo, which proves the theorem.
In [7] it is shown that E;[:1 —0 with respect to type I convergence.

The author expresses his sincere thanks to Dr. P. Antosik and Dr. A.
Kamifiski for their generous assistance in preparation of this paper.
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On vector-valued Fourier multiplier theorems *
by
FRANK ZIMMERMANN (Kiel}

Abstract. The classical Fourier multiplier theorems of Littlewood-Paley, Marcinkiewicz,
and Mikhlin are generalized to the vector-valued setting in d dimensions. A direct and a tensor
product approach yield slightly different results. While the direct approach works in general
UMD-spaces, the tensor product technique requires some uncondifional structure and it is
shown that the latter results fail for the Schatten classes S, with p # 2.

0. Introduction and results. Let X be a complex Banach space. We first
consider the d-dimensional periodic case. For 1 € p < oo let f,p Tesp. ip (X
be the usual Lebesgue space on [0, 11! with the normalized Lebesgue
measure. A sequence a = (a,),_,4 = C is said to be an L,(X)-Fourier multi-
plier if there is a constant C <co such that

(0.1) For all finitely nonzero sequences (x,),_,q SX

Xe
| Y anx, e|pm < clx xuezmx")pr(X)-

kEzd *xe

The set of all f,p (X)-Fourier multipliers will be denoted by AZ‘I,(X) and the
smallest constant C such that (0.1) holds by Jal| My For an f,P(X}-Fourier
multiplier a the operator

Y x. e Y a,x, e
weZ! xeZ?

extends uniquely to an operator on I:,,(X) which will be denoted by T,.
To state the Littlewood—Paley theorem we need a decomposition of Ze,
Actually, we will work with two different ones:

1) A coarse decomposition arising as differences of dyadic cuboids:
Dy = {0! and for n=dr+j, reNy, jell, ..., d! let

_Dnz {M =(}{1, _.,,%d)EZdHMiI <2r+1 fOI' iE‘{l,...,j‘—ll,
<yl <2, | < for ielj+1, ..., d}}.

* This is a part of the authors PhD. thesis written under the supervision of Prof.
H. Kénig.



